mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-08 04:05:30 -05:00
518 lines
13 KiB
OCaml
518 lines
13 KiB
OCaml
(*
|
|
Copyright (c) 2013, Simon Cruanes
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer. Redistributions in binary
|
|
form must reproduce the above copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other materials provided with
|
|
the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*)
|
|
|
|
(** {1 Continuation List} *)
|
|
|
|
type 'a sequence = ('a -> unit) -> unit
|
|
type 'a gen = unit -> 'a option
|
|
type 'a equal = 'a -> 'a -> bool
|
|
type 'a ord = 'a -> 'a -> int
|
|
type 'a printer = Buffer.t -> 'a -> unit
|
|
type 'a formatter = Format.formatter -> 'a -> unit
|
|
|
|
type + 'a t = unit ->
|
|
[ `Nil
|
|
| `Cons of 'a * 'a t
|
|
]
|
|
|
|
let nil () = `Nil
|
|
let cons a b () = `Cons (a,b)
|
|
let empty = nil
|
|
|
|
let singleton x () = `Cons (x, nil)
|
|
|
|
let rec _forever x () = `Cons (x, _forever x)
|
|
|
|
let rec _repeat n x () =
|
|
if n<=0 then `Nil else `Cons (x, _repeat (n-1) x)
|
|
|
|
let repeat ?n x = match n with
|
|
| None -> _forever x
|
|
| Some n -> _repeat n x
|
|
|
|
(*$T
|
|
repeat ~n:4 0 |> to_list = [0;0;0;0]
|
|
repeat ~n:0 1 |> to_list = []
|
|
repeat 1 |> take 20 |> to_list = (repeat ~n:20 1 |> to_list)
|
|
*)
|
|
|
|
let is_empty l = match l () with
|
|
| `Nil -> true
|
|
| `Cons _ -> false
|
|
|
|
let head_exn l = match l() with | `Nil -> raise Not_found | `Cons (x, _) -> x
|
|
let head l = match l() with `Nil -> None | `Cons (x, _) -> Some x
|
|
let tail_exn l = match l() with | `Nil -> raise Not_found | `Cons (_, l) -> l
|
|
let tail l = match l() with | `Nil -> None | `Cons (_, l) -> Some l
|
|
|
|
let rec equal eq l1 l2 = match l1(), l2() with
|
|
| `Nil, `Nil -> true
|
|
| `Nil, _
|
|
| _, `Nil -> false
|
|
| `Cons (x1,l1'), `Cons (x2,l2') ->
|
|
eq x1 x2 && equal eq l1' l2'
|
|
|
|
let rec compare cmp l1 l2 = match l1(), l2() with
|
|
| `Nil, `Nil -> 0
|
|
| `Nil, _ -> -1
|
|
| _, `Nil -> 1
|
|
| `Cons (x1,l1'), `Cons (x2,l2') ->
|
|
let c = cmp x1 x2 in
|
|
if c = 0 then compare cmp l1' l2' else c
|
|
|
|
let rec fold f acc res = match res () with
|
|
| `Nil -> acc
|
|
| `Cons (s, cont) -> fold f (f acc s) cont
|
|
|
|
let rec iter f l = match l () with
|
|
| `Nil -> ()
|
|
| `Cons (x, l') -> f x; iter f l'
|
|
|
|
let iteri f l =
|
|
let rec aux f l i = match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x, l') ->
|
|
f i x;
|
|
aux f l' (i+1)
|
|
in
|
|
aux f l 0
|
|
|
|
let length l = fold (fun acc _ -> acc+1) 0 l
|
|
|
|
let rec take n (l:'a t) () = match l () with
|
|
| _ when n=0 -> `Nil
|
|
| `Nil -> `Nil
|
|
| `Cons (x,l') -> `Cons (x, take (n-1) l')
|
|
|
|
let rec take_while p l () = match l () with
|
|
| `Nil -> `Nil
|
|
| `Cons (x,l') ->
|
|
if p x then `Cons (x, take_while p l') else `Nil
|
|
|
|
(*$T
|
|
of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3]
|
|
*)
|
|
|
|
let rec drop n (l:'a t) () = match l () with
|
|
| l' when n=0 -> l'
|
|
| `Nil -> `Nil
|
|
| `Cons (_,l') -> drop (n-1) l' ()
|
|
|
|
let rec drop_while p l () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x,l') when p x -> drop_while p l' ()
|
|
| `Cons _ as res -> res
|
|
|
|
(*$Q
|
|
(Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \
|
|
let s = of_list l in let s1, s2 = take n s, drop n s in \
|
|
append s1 s2 |> to_list = l )
|
|
*)
|
|
|
|
let rec map f l () = match l () with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') -> `Cons (f x, map f l')
|
|
|
|
(*$T
|
|
(map ((+) 1) (1 -- 5) |> to_list) = (2 -- 6 |> to_list)
|
|
*)
|
|
|
|
let mapi f l =
|
|
let rec aux f l i () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, tl) ->
|
|
`Cons (f i x, aux f tl (i+1))
|
|
in
|
|
aux f l 0
|
|
|
|
(*$T
|
|
mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3]
|
|
*)
|
|
|
|
let rec fmap f (l:'a t) () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') ->
|
|
begin match f x with
|
|
| None -> fmap f l' ()
|
|
| Some y -> `Cons (y, fmap f l')
|
|
end
|
|
|
|
(*$T
|
|
fmap (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \
|
|
= [6;12;18;24;30]
|
|
*)
|
|
|
|
let rec filter p l () = match l () with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') ->
|
|
if p x
|
|
then `Cons (x, filter p l')
|
|
else filter p l' ()
|
|
|
|
let rec append l1 l2 () = match l1 () with
|
|
| `Nil -> l2 ()
|
|
| `Cons (x, l1') -> `Cons (x, append l1' l2)
|
|
|
|
let rec cycle l () = append l (cycle l) ()
|
|
|
|
(*$T
|
|
cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1]
|
|
cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0
|
|
*)
|
|
|
|
let rec unfold f acc () = match f acc with
|
|
| None -> `Nil
|
|
| Some (x, acc') -> `Cons (x, unfold f acc')
|
|
|
|
(*$T
|
|
let f = function 10 -> None | x -> Some (x, x+1) in \
|
|
unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9]
|
|
*)
|
|
|
|
let rec flat_map f l () = match l () with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') ->
|
|
_flat_map_app f (f x) l' ()
|
|
and _flat_map_app f l l' () = match l () with
|
|
| `Nil -> flat_map f l' ()
|
|
| `Cons (x, tl) ->
|
|
`Cons (x, _flat_map_app f tl l')
|
|
|
|
let product_with f l1 l2 =
|
|
let rec _next_left h1 tl1 h2 tl2 () =
|
|
match tl1() with
|
|
| `Nil -> _next_right ~die:true h1 tl1 h2 tl2 ()
|
|
| `Cons (x, tl1') ->
|
|
_map_list_left x h2
|
|
(_next_right ~die:false (x::h1) tl1' h2 tl2)
|
|
()
|
|
and _next_right ~die h1 tl1 h2 tl2 () =
|
|
match tl2() with
|
|
| `Nil when die -> `Nil
|
|
| `Nil -> _next_left h1 tl1 h2 tl2 ()
|
|
| `Cons (y, tl2') ->
|
|
_map_list_right h1 y
|
|
(_next_left h1 tl1 (y::h2) tl2')
|
|
()
|
|
and _map_list_left x l kont () = match l with
|
|
| [] -> kont()
|
|
| y::l' -> `Cons (f x y, _map_list_left x l' kont)
|
|
and _map_list_right l y kont () = match l with
|
|
| [] -> kont()
|
|
| x::l' -> `Cons (f x y, _map_list_right l' y kont)
|
|
in
|
|
_next_left [] l1 [] l2
|
|
|
|
let product l1 l2 =
|
|
product_with (fun x y -> x,y) l1 l2
|
|
|
|
let rec group eq l () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') ->
|
|
`Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l'))
|
|
|
|
(*$T
|
|
of_list [1;1;1;2;2;3;3;1] |> group (=) |> map to_list |> to_list = \
|
|
[[1;1;1]; [2;2]; [3;3]; [1]]
|
|
*)
|
|
|
|
let rec _uniq eq prev l () = match prev, l() with
|
|
| _, `Nil -> `Nil
|
|
| None, `Cons (x, l') ->
|
|
`Cons (x, _uniq eq (Some x) l')
|
|
| Some y, `Cons (x, l') ->
|
|
if eq x y
|
|
then _uniq eq prev l' ()
|
|
else `Cons (x, _uniq eq (Some x) l')
|
|
|
|
let uniq eq l = _uniq eq None l
|
|
|
|
let rec filter_map f l () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, l') ->
|
|
begin match f x with
|
|
| None -> filter_map f l' ()
|
|
| Some y -> `Cons (y, filter_map f l')
|
|
end
|
|
|
|
let flatten l = flat_map (fun x->x) l
|
|
|
|
let range i j =
|
|
let rec aux i j () =
|
|
if i=j then `Cons(i, nil)
|
|
else if i<j then `Cons (i, aux (i+1) j)
|
|
else `Cons (i, aux (i-1) j)
|
|
in aux i j
|
|
|
|
(*$T
|
|
range 0 5 |> to_list = [0;1;2;3;4;5]
|
|
range 0 0 |> to_list = [0]
|
|
range 5 2 |> to_list = [5;4;3;2]
|
|
*)
|
|
|
|
let (--) = range
|
|
|
|
let rec fold2 f acc l1 l2 = match l1(), l2() with
|
|
| `Nil, _
|
|
| _, `Nil -> acc
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
fold2 f (f acc x1 x2) l1' l2'
|
|
|
|
let rec map2 f l1 l2 () = match l1(), l2() with
|
|
| `Nil, _
|
|
| _, `Nil -> `Nil
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
`Cons (f x1 x2, map2 f l1' l2')
|
|
|
|
let rec iter2 f l1 l2 = match l1(), l2() with
|
|
| `Nil, _
|
|
| _, `Nil -> ()
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
f x1 x2; iter2 f l1' l2'
|
|
|
|
let rec for_all2 f l1 l2 = match l1(), l2() with
|
|
| `Nil, _
|
|
| _, `Nil -> true
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
f x1 x2 && for_all2 f l1' l2'
|
|
|
|
let rec exists2 f l1 l2 = match l1(), l2() with
|
|
| `Nil, _
|
|
| _, `Nil -> false
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
f x1 x2 || exists2 f l1' l2'
|
|
|
|
let rec merge cmp l1 l2 () = match l1(), l2() with
|
|
| `Nil, tl2 -> tl2
|
|
| tl1, `Nil -> tl1
|
|
| `Cons(x1,l1'), `Cons(x2,l2') ->
|
|
if cmp x1 x2 < 0
|
|
then `Cons (x1, merge cmp l1' l2)
|
|
else `Cons (x2, merge cmp l1 l2')
|
|
|
|
let rec zip a b () = match a(), b() with
|
|
| `Nil, _
|
|
| _, `Nil -> `Nil
|
|
| `Cons (x, a'), `Cons (y, b') -> `Cons ((x,y), zip a' b')
|
|
|
|
let unzip l =
|
|
let rec first l () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons ((x,_), tl) -> `Cons (x, first tl)
|
|
and second l () = match l() with
|
|
| `Nil -> `Nil
|
|
| `Cons ((_, y), tl) -> `Cons (y, second tl)
|
|
in
|
|
first l, second l
|
|
|
|
(*$Q
|
|
Q.(list (pair int int)) (fun l -> \
|
|
let l = CCKList.of_list l in let a, b = unzip l in equal (=) l (zip a b))
|
|
*)
|
|
|
|
(** {2 Implementations} *)
|
|
|
|
let return x () = `Cons (x, nil)
|
|
let pure = return
|
|
let (>>=) xs f = flat_map f xs
|
|
let (>|=) xs f = map f xs
|
|
|
|
let (<*>) fs xs = product_with (fun f x -> f x) fs xs
|
|
|
|
(** {2 Conversions} *)
|
|
|
|
let rec _to_rev_list acc l = match l() with
|
|
| `Nil -> acc
|
|
| `Cons (x,l') -> _to_rev_list (x::acc) l'
|
|
|
|
let to_rev_list l = _to_rev_list [] l
|
|
|
|
let to_list l =
|
|
let rec direct i (l:'a t) = match l () with
|
|
| `Nil -> []
|
|
| _ when i=0 -> List.rev (_to_rev_list [] l)
|
|
| `Cons (x, f) -> x :: direct (i-1) f
|
|
in
|
|
direct 200 l
|
|
|
|
let of_list l =
|
|
let rec aux l () = match l with
|
|
| [] -> `Nil
|
|
| x::l' -> `Cons (x, aux l')
|
|
in aux l
|
|
|
|
let of_array a =
|
|
let rec aux a i () =
|
|
if i=Array.length a then `Nil
|
|
else `Cons (a.(i), aux a (i+1))
|
|
in
|
|
aux a 0
|
|
|
|
let to_array l =
|
|
match l() with
|
|
| `Nil -> [| |]
|
|
| `Cons (x, _) ->
|
|
let n = length l in
|
|
let a = Array.make n x in (* need first elem to create [a] *)
|
|
iteri
|
|
(fun i x -> a.(i) <- x)
|
|
l;
|
|
a
|
|
|
|
(*$Q
|
|
Q.(array int) (fun a -> of_array a |> to_array = a)
|
|
*)
|
|
|
|
(*$T
|
|
of_array [| 1; 2; 3 |] |> to_list = [1;2;3]
|
|
of_list [1;2;3] |> to_array = [| 1; 2; 3; |]
|
|
*)
|
|
|
|
let rec to_seq res k = match res () with
|
|
| `Nil -> ()
|
|
| `Cons (s, f) -> k s; to_seq f k
|
|
|
|
let to_gen l =
|
|
let l = ref l in
|
|
fun () ->
|
|
match !l () with
|
|
| `Nil -> None
|
|
| `Cons (x,l') ->
|
|
l := l';
|
|
Some x
|
|
|
|
type 'a of_gen_state =
|
|
| Of_gen_thunk of 'a gen
|
|
| Of_gen_saved of [`Nil | `Cons of 'a * 'a t]
|
|
|
|
let of_gen g =
|
|
let rec consume r () = match !r with
|
|
| Of_gen_saved cons -> cons
|
|
| Of_gen_thunk g ->
|
|
begin match g() with
|
|
| None ->
|
|
r := Of_gen_saved `Nil;
|
|
`Nil
|
|
| Some x ->
|
|
let tl = consume (ref (Of_gen_thunk g)) in
|
|
let l = `Cons (x, tl) in
|
|
r := Of_gen_saved l;
|
|
l
|
|
end
|
|
in
|
|
consume (ref (Of_gen_thunk g))
|
|
|
|
(*$R
|
|
let g = let n = ref 0 in fun () -> Some (incr n; !n) in
|
|
let l = of_gen g in
|
|
assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
|
|
assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
|
|
assert_equal [11;12] (drop 10 l |> take 2 |> to_list);
|
|
*)
|
|
|
|
let sort ?(cmp=Pervasives.compare) l =
|
|
let l = to_list l in
|
|
of_list (List.sort cmp l)
|
|
|
|
let sort_uniq ?(cmp=Pervasives.compare) l =
|
|
let l = to_list l in
|
|
uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l))
|
|
|
|
(** {2 Fair Combinations} *)
|
|
|
|
let rec interleave a b () = match a() with
|
|
| `Nil -> b ()
|
|
| `Cons (x, tail) -> `Cons (x, interleave b tail)
|
|
|
|
let rec fair_flat_map f a () = match a() with
|
|
| `Nil -> `Nil
|
|
| `Cons (x, tail) ->
|
|
let y = f x in
|
|
interleave y (fair_flat_map f tail) ()
|
|
|
|
let rec fair_app f a () = match f() with
|
|
| `Nil -> `Nil
|
|
| `Cons (f1, fs) ->
|
|
interleave (map f1 a) (fair_app fs a) ()
|
|
|
|
let (>>-) a f = fair_flat_map f a
|
|
let (<.>) f a = fair_app f a
|
|
|
|
(*$T
|
|
interleave (of_list [1;3;5]) (of_list [2;4;6]) |> to_list = [1;2;3;4;5;6]
|
|
fair_app (of_list [(+)1; ( * ) 3]) (of_list [1; 10]) \
|
|
|> to_list |> List.sort Pervasives.compare = [2; 3; 11; 30]
|
|
*)
|
|
|
|
(** {2 Monadic Operations} *)
|
|
module type MONAD = sig
|
|
type 'a t
|
|
val return : 'a -> 'a t
|
|
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
|
|
end
|
|
|
|
module Traverse(M : MONAD) = struct
|
|
open M
|
|
|
|
let map_m f l =
|
|
let rec aux acc l = match l () with
|
|
| `Nil -> return (of_list (List.rev acc))
|
|
| `Cons (x,l') ->
|
|
f x >>= fun x' ->
|
|
aux (x' :: acc) l'
|
|
in
|
|
aux [] l
|
|
|
|
let sequence_m l = map_m (fun x->x) l
|
|
|
|
let rec fold_m f acc l = match l() with
|
|
| `Nil -> return acc
|
|
| `Cons (x,l') ->
|
|
f acc x >>= fun acc' -> fold_m f acc' l'
|
|
end
|
|
|
|
(** {2 IO} *)
|
|
|
|
let pp ?(sep=",") pp_item buf l =
|
|
let rec pp buf l = match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x,l') -> Buffer.add_string buf sep; pp_item buf x; pp buf l'
|
|
in
|
|
match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x,l') -> pp_item buf x; pp buf l'
|
|
|
|
let print ?(sep=",") pp_item fmt l =
|
|
let rec pp fmt l = match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x,l') ->
|
|
Format.pp_print_string fmt sep;
|
|
Format.pp_print_cut fmt ();
|
|
pp_item fmt x;
|
|
pp fmt l'
|
|
in
|
|
match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x,l') -> pp_item fmt x; pp fmt l'
|