ocaml-containers/levenshtein.ml
Simon Cruanes ea92877a0a bugfixes and improved API (not implemented yet) for Levenshtein;
some bugs remain in DFA construction
2014-03-04 01:01:41 +01:00

442 lines
13 KiB
OCaml

(*
copyright (c) 2013, simon cruanes
all rights reserved.
redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Levenshtein distance} *)
module NDA = struct
type 'a char =
| Any
| Char of 'a
type 'a transition =
| Success
| Upon of 'a char * int * int
| Epsilon of int * int
(* non deterministic automaton *)
type 'a t = {
compare : 'a -> 'a -> int;
matrix : 'a transition list array array;
}
let length nda = Array.length nda.matrix
let get_compare nda = nda.compare
let rec mem_tr ~compare tr l = match tr, l with
| _, [] -> false
| Success, Success::_ -> true
| Epsilon (i,j), Epsilon(i',j')::_ -> i=i' && j=j'
| Upon (Any,i,j), Upon(Any,i',j')::_ when i=i' && j=j' -> true
| Upon (Char c,i,j), Upon(Char c',i',j')::_
when compare c c' = 0 && i=i' && j=j' -> true
| _, _::l' -> mem_tr ~compare tr l'
(* build NDA from the "get : int -> 'a" function *)
let make ~compare ~limit ~len ~get =
let m = Array.make_matrix (len+1) (limit+1) [] in
let add_transition i j tr =
if not (mem_tr ~compare tr m.(i).(j))
then m.(i).(j) <- tr :: m.(i).(j)
in
(* internal transitions *)
for i = 0 to len-1 do
for j = 0 to limit do
(* correct char *)
add_transition i j (Upon (Char (get i), i+1, j));
(* other transitions *)
if j < limit then begin
(* substitution *)
add_transition i j (Upon (Any, i+1, j+1));
(* deletion in indexed string *)
add_transition i j (Upon (Any, i, j+1));
(* addition to indexed string *)
add_transition i j (Epsilon (i+1, j+1));
end
done
done;
for j = 0 to limit do
(* deletions at the end *)
if j < limit
then add_transition len j (Upon (Any, len, j+1));
(* win in any case *)
add_transition len j Success;
done;
{ matrix=m; compare; }
let get nda (i,j) =
nda.matrix.(i).(j)
end
(** deterministic automaton *)
module DFA = struct
type 'a t = {
compare : 'a -> 'a -> int;
mutable transitions : ('a * int) list array;
mutable is_final : bool array;
mutable otherwise : int array; (* transition by default *)
mutable len : int;
}
let create ~compare size = {
compare;
len = 0;
transitions = Array.make size [];
is_final = Array.make size false;
otherwise = Array.make size ~-1;
}
let _double_array a =
let a' = Array.make (2 * Array.length a) a.(0) in
Array.blit a 0 a' 0 (Array.length a);
a'
(* add a new state *)
let add_state dfa =
let n = dfa.len in
(* resize *)
if n = Array.length dfa.transitions then begin
dfa.transitions <- _double_array dfa.transitions;
dfa.is_final <- _double_array dfa.is_final;
dfa.otherwise <- _double_array dfa.otherwise;
end;
dfa.len <- n + 1;
n
let rec __mem_tr ~compare tr l = match tr, l with
| _, [] -> false
| (c,i), (c',i')::l' ->
(i=i' && compare c c' = 0)
|| __mem_tr ~compare tr l'
(* add transition *)
let add_transition dfa i tr =
if not (__mem_tr ~compare:dfa.compare tr dfa.transitions.(i))
then dfa.transitions.(i) <- tr :: dfa.transitions.(i)
let add_otherwise dfa i j =
dfa.otherwise.(i) <- j
let set_final dfa i =
dfa.is_final.(i) <- true
(* set of pairs of ints: used for representing a set of states of the NDA *)
module NDAStateSet = Set.Make(struct
type t = int * int
let compare = Pervasives.compare
end)
(*
let set_to_string s =
let b = Buffer.create 15 in
Buffer.add_char b '{';
NDAStateSet.iter
(fun (x,y) -> Printf.bprintf b "(%d,%d)" x y)
s;
Buffer.add_char b '}';
Buffer.contents b
*)
(* list of characters that can specifically be followed from the given set *)
let chars_from_set nda set =
NDAStateSet.fold
(fun state acc ->
let transitions = NDA.get nda state in
List.fold_left
(fun acc tr -> match tr with
| NDA.Upon (NDA.Char c, _, _) ->
if List.exists (fun c' -> nda.NDA.compare c c' = 0) acc
then acc
else c :: acc (* new char! *)
| _ -> acc
) acc transitions
) set []
(* saturate current set w.r.t epsilon links *)
let saturate_epsilon nda set =
let q = Queue.create () in
NDAStateSet.iter (fun s -> Queue.push s q) set;
let set = ref set in
while not (Queue.is_empty q) do
let state = Queue.pop q in
(*Printf.printf "saturate epsilon: add state %d,%d\n" (fst state)(snd state);*)
set := NDAStateSet.add state !set;
List.iter
(fun tr' -> match tr' with
| NDA.Epsilon (i,j) ->
if not (NDAStateSet.mem (i,j) !set)
then Queue.push (i,j) q
| _ -> ()
) (NDA.get nda state)
done;
!set
exception LeadToSuccess
(* find the transition that matches the given char (if any);
may raise exceptions Not_found or LeadToSuccess. *)
let rec get_transition_for_char nda c transitions =
match transitions with
| NDA.Success::_ -> raise LeadToSuccess
| NDA.Upon (NDA.Char c', i, j) :: transitions' ->
if nda.NDA.compare c c' = 0
then i, j
else get_transition_for_char nda c transitions'
| NDA.Upon (NDA.Any, i, j) :: transitions' ->
begin try get_transition_for_char nda c transitions'
with Not_found -> i, j (* only if no other transition works *)
end
| _::transitions' -> get_transition_for_char nda c transitions'
| [] -> raise Not_found
let rec get_transitions_for_any nda acc transitions =
match transitions with
| NDA.Success::_ -> raise LeadToSuccess
| NDA.Upon (NDA.Any, i, j) :: transitions' ->
let acc = NDAStateSet.add (i,j) acc in
get_transitions_for_any nda acc transitions'
| _:: transitions' -> get_transitions_for_any nda acc transitions'
| [] -> acc
(* follow transition for given NDA.char, returns a new state
and a boolean indicating whether it's final *)
let follow_transition nda set c =
let is_final = ref false in
let set' = NDAStateSet.fold
(fun state acc ->
let transitions = NDA.get nda state in
(* among possible transitions, follow the one that matches c
the most closely *)
try
let state' = get_transition_for_char nda c transitions in
NDAStateSet.add state' acc
with
| LeadToSuccess -> is_final := true; acc
| Not_found -> acc (* state dies *)
) set NDAStateSet.empty
in
let set' = saturate_epsilon nda set' in
set', !is_final
let follow_transition_any nda set =
let is_final = ref false in
let set' = NDAStateSet.fold
(fun state acc ->
let transitions = NDA.get nda state in
(* among possible transitions, follow the ones that are labelled with "*" *)
try
get_transitions_for_any nda acc transitions
with
| LeadToSuccess -> is_final := true; acc
) set NDAStateSet.empty
in
let set' = saturate_epsilon nda set' in
set', !is_final
(* call [k] with every [transition'] that can be reached from [set], with
a bool that states whether it's final *)
let iterate_transition_set nda set k =
(* all possible "fixed char" transitions *)
let chars = chars_from_set nda set in
List.iter
(fun c ->
(*Printf.printf "iterate_transition follows %c (at %s)\n"
(Obj.magic c) (set_to_string set);*)
let set', is_final = follow_transition nda set c in
if not (NDAStateSet.is_empty set')
then k ~is_final (NDA.Char c) set';
) chars;
(* remaining transitions, with only "Any" *)
(*Printf.printf "iterate transition follows * (at %s)\n" (set_to_string set);*)
let set', is_final = follow_transition_any nda set in
if not (NDAStateSet.is_empty set')
then k ~is_final NDA.Any set'
module StateSetMap = Map.Make(NDAStateSet)
(* get the state that corresponds to the given set of NDA states.
[states] is a map [nda set] -> [nfa state] *)
let get_state dfa states set =
try StateSetMap.find set !states
with Not_found ->
let i = add_state dfa in
states := StateSetMap.add set i !states;
i
(* traverse the NDA. Currently we're at [set] *)
let rec traverse nda dfa states set =
let set_i = get_state dfa states set in
iterate_transition_set nda set
(fun ~is_final c set' ->
let set_i' = get_state dfa states set' in
(* did we reach success? *)
if is_final
then set_final dfa set_i'
(* link set -> set' *)
else match c with
| NDA.Char c' ->
add_transition dfa set_i (c', set_i');
traverse nda dfa states set'
| NDA.Any ->
add_otherwise dfa set_i set_i';
traverse nda dfa states set'
)
let of_nda nda =
let compare = NDA.get_compare nda in
let dfa = create ~compare (NDA.length nda) in
(* map (set of NDA states) to int (state in DFA) *)
let states = ref StateSetMap.empty in
(* traverse the NDA to build the NFA *)
let set = NDAStateSet.singleton (0,0) in
let set = saturate_epsilon nda set in
traverse nda dfa states set;
(*StateSetMap.iter
(fun set i ->
Printf.printf "set %s --> state %d\n" (set_to_string set) i
) !states; *)
dfa
let get dfa i =
dfa.transitions.(i)
let otherwise dfa i =
dfa.otherwise.(i)
let is_final dfa i =
dfa.is_final.(i)
end
let debug_print oc dfa =
Printf.fprintf oc "automaton of %d states\n" dfa.DFA.len;
for i = 0 to dfa.DFA.len-1 do
let transitions = DFA.get dfa i in
if DFA.is_final dfa i
then Printf.fprintf oc " success %d\n" i;
List.iter
(fun (c, j) -> Printf.fprintf oc " (%c) %d -> %d\n" c i j ) transitions;
let o = DFA.otherwise dfa i in
if o >= 0
then Printf.fprintf oc " (*) %d -> %d\n" i o
done
type 'a automaton = 'a DFA.t
let of_array ?(compare=Pervasives.compare) ~limit a =
let nda = NDA.make ~compare ~limit ~len:(Array.length a) ~get:(Array.get a) in
let dfa = DFA.of_nda nda in
dfa
let of_list ?compare ~limit l =
of_array ?compare ~limit (Array.of_list l)
let of_string ~limit a =
let compare = Char.compare in
let nda = NDA.make ~compare ~limit ~len:(String.length a) ~get:(String.get a) in
(*debug_print_nda stdout nda;
flush stdout;*)
let dfa = DFA.of_nda nda in
dfa
type match_result =
| TooFar
| Distance of int
exception FoundDistance of int
let rec __find_char ~compare c l = match l with
| [] -> raise Not_found
| (c', next) :: l' ->
if compare c c' = 0
then next
else __find_char ~compare c l'
(* real matching function *)
let __match ~len ~get dfa =
let rec search i state =
(*Printf.printf "at state %d (dist %d)\n" i dist;*)
if i = len
then DFA.is_final dfa state
else begin
let transitions = DFA.get dfa state in
(* current char *)
let c = get i in
try
let next = __find_char ~compare:dfa.DFA.compare c transitions in
search (i+1) next
with Not_found ->
let o = DFA.otherwise dfa state in
if o >= 0
then search (i+1) o
else false
end
in
search 0 0
let match_with dfa a =
__match ~len:(Array.length a) ~get:(Array.get a) dfa
let match_with_string dfa s =
__match ~len:(String.length s) ~get:(String.get s) dfa
(** {6 Index for one-to-many matching} *)
(** Continuation list *)
type 'a klist =
[
| `Nil
| `Cons of 'a * (unit -> 'a klist)
]
module Index = struct
type ('a, 'b) node =
| Empty
| Node of 'b option * ('a, 'b) assoc_list
and ('a, 'b) assoc_list = ('a * ('a, 'b) node) list
type ('a, 'b) t = {
tree : ('a, 'b) node;
compare : 'a -> 'a -> int;
}
let empty ?(compare=Pervasives.compare) () = {
tree = Empty;
compare;
}
let add idx arr value =
assert false (* TODO *)
let add_string idx arr str =
assert false (* TODO *)
let retrieve ~limit idx arr =
assert false (* TODO *)
let retrieve_string ~limit idx str =
assert false (* TODO *)
end