ocaml-containers/src/data/CCRingBuffer.ml
2015-11-08 22:27:59 +01:00

711 lines
21 KiB
OCaml

(*
* CCRingBuffer - Polymorphic circular buffer with
* deque semantics for accessing both the head and tail.
*
* Copyright (C) 2015 Simon Cruanes, Carmelo Piccione
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** Polymorphic Circular Buffer for IO *)
module Array = struct
(** The abstract type for arrays *)
module type S = sig
(** The element type *)
type elt
(** The type of an array instance *)
type t
val empty : t
(** The empty array *)
val make: int -> elt -> t
(** [make s e] makes an array of size [s] with [e] elements *)
val length: t -> int
(** [length t] gets the total number of elements currently in [t] *)
val get: t -> int -> elt
(** [get t i] gets the element at position [i] *)
val set: t -> int -> elt -> unit
(** [set t i e] sets the element at position [i] to [e] *)
val sub: t -> int -> int -> t
(** [sub t i len] gets the subarray of [t] from
position [i] to [i + len] *)
val copy : t -> t
(** [copy t] makes a fresh copy of the array [t] *)
val blit : t -> int -> t -> int -> int -> unit
(** [blit t s arr i len] copies [len] elements from [arr] starting at [i]
to position [s] from [t] *)
val iter : (elt -> unit) -> t -> unit
(** [iter f t] iterates over the array [t] invoking [f] with
the current element, in array order *)
end
module Byte :
S with type elt = char and type t = Bytes.t = struct
type elt = char
include Bytes
end
module Make(Elt:sig type t end) :
S with type elt = Elt.t and type t = Elt.t array = struct
type elt = Elt.t
type t = Elt.t array
let make = Array.make
let length = Array.length
let get = Array.get
let set = Array.set
let copy = Array.copy
let blit = Array.blit
let iter = Array.iter
let sub = Array.sub
let empty = Array.of_list []
end
end
module type S = sig
(** The module type of Array for this ring buffer *)
module Array : Array.S
(** Defines the ring buffer type, with both bounded and
unbounded flavors *)
type t
(** Raised in querying functions when the buffer is empty *)
exception Empty
val create : ?bounded:bool -> int -> t
(** [create ?bounded size] creates a new buffer with given size.
Defaults to [bounded=false]. *)
val copy : t -> t
(** Make a fresh copy of the buffer. *)
val capacity : t -> int
(** Length of the inner buffer. *)
val max_capacity : t -> int option
(** Maximum length of the inner buffer, or [None] if unbounded. *)
val length : t -> int
(** Number of elements currently stored in the buffer. *)
val blit_from : t -> Array.t -> int -> int -> unit
(** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from
a input buffer [from_buf] to the end of the buffer.
@raise Invalid_argument if [o,len] is not a valid slice of [s] *)
val blit_into : t -> Array.t -> int -> int -> int
(** [blit_into buf to_buf o len] copies at most [len] elements from [buf]
into [to_buf] starting at offset [o] in [s].
@return the number of elements actually copied ([min len (length buf)]).
@raise Invalid_argument if [o,len] is not a valid slice of [s] *)
val append : t -> into:t -> unit
(** [append b ~into] copies all data from [b] and adds it at the
end of [into] *)
val to_list : t -> Array.elt list
(** Extract the current content into a list *)
val clear : t -> unit
(** Clear the content of the buffer. Doesn't actually destroy the content. *)
val reset : t -> unit
(** Clear the content of the buffer, and also resize it to a default size *)
val is_empty :t -> bool
(** Is the buffer empty (i.e. contains no elements)? *)
val junk_front : t -> unit
(** Drop the front element from [t].
@raise Empty if the buffer is already empty. *)
val junk_back : t -> unit
(** Drop the back element from [t].
@raise Empty if the buffer is already empty. *)
val skip : t -> int -> unit
(** [skip b len] removes [len] elements from the front of [b].
@raise Invalid_argument if [len > length b]. *)
val iter : t -> f:(Array.elt -> unit) -> unit
(** [iter b ~f] calls [f i t] for each element [t] in [buf] *)
val iteri : t -> f:(int -> Array.elt -> unit) -> unit
(** [iteri b ~f] calls [f i t] for each element [t] in [buf], with [i]
being its relative index within [buf]. *)
val get_front : t -> int -> Array.elt
(** [get_front buf i] returns the [i]-th element of [buf] from the front, ie
the one returned by [take_front buf] after [i-1] calls to [junk_front buf].
@raise Invalid_argument if the index is invalid (> [length buf]) *)
val get_back : t -> int -> Array.elt
(** [get_back buf i] returns the [i]-th element of [buf] from the back, ie
the one returned by [take_back buf] after [i-1] calls to [junk_back buf].
@raise Invalid_argument if the index is invalid (> [length buf]) *)
val push_back : t -> Array.elt -> unit
(** Push value at the back of [t].
If [t.bounded=false], the buffer will grow as needed,
otherwise the oldest elements are replaced first. *)
val peek_front : t -> Array.elt
(** First value from front of [t].
@raise Empty if buffer is empty. *)
val peek_back : t -> Array.elt
(** Get the last value from back of [t].
@raise Empty if buffer is empty. *)
val take_back : t -> Array.elt option
(** Take the last value from back of [t], if any *)
val take_back_exn : t -> Array.elt
(** Take the last value from back of [t].
@raise Empty if buffer is already empty. *)
val take_front : t -> Array.elt option
(** Take the first value from front of [t], if any *)
val take_front_exn : t -> Array.elt
(** Take the first value from front of [t].
@raise Empty if buffer is already empty. *)
val of_array : Array.t -> t
(** Create a buffer from an initial array, but doesn't take ownership
of it (stills allocates a new internal array) *)
val to_array : t -> Array.t
(** Create an array from the elements, in order.
@since 0.11 *)
end
module MakeFromArray(A:Array.S) = struct
module Array = A
type t = {
mutable start : int;
mutable stop : int; (* excluded *)
mutable buf : Array.t;
bounded : bool;
size : int
}
exception Empty
let create ?(bounded=false) size =
{ start=0;
stop=0;
bounded;
size;
buf = A.empty
}
let copy b =
{ b with buf=A.copy b.buf; }
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
let b' = Byte.copy b in \
try Byte.iteri b (fun i c -> if Byte.get_front b' i <> c then raise Exit); true with Exit -> false)
*)
(*$T
let b = Byte.of_array (Bytes.of_string "abc") in \
let b' = Byte.copy b in \
Byte.clear b; \
Byte.to_array b' = (Bytes.of_string "abc") && Byte.to_array b = Bytes.empty
*)
let capacity b =
let len = A.length b.buf in
match len with 0 -> 0 | l -> l - 1
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.capacity b >= s_len)
*)
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \
let i = abs i in \
let s_len = Bytes.length s in \
let b = Byte.create ~bounded:true i in \
Byte.blit_from b s 0 s_len; \
Byte.capacity b <= i)
*)
let max_capacity b = if b.bounded then Some b.size else None
(*$Q
Q.small_int (fun i -> \
let i = abs i in \
let b = Byte.create i in \
Byte.max_capacity b = None)
*)
(*$Q
Q.small_int (fun i -> \
let i = abs i in \
let b = Byte.create ~bounded:true i in \
Byte.max_capacity b = Some i)
*)
let length b =
if b.stop >= b.start
then b.stop - b.start
else (A.length b.buf - b.start) + b.stop
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \
let i = abs i in \
let s_len = Bytes.length s in \
let b = Byte.create i in \
Byte.blit_from b s 0 s_len; \
Byte.length b = s_len)
*)
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \
let i = abs i in \
let s_len = Bytes.length s in \
let b = Byte.create ~bounded:true i in \
Byte.blit_from b s 0 s_len; \
Byte.length b >= 0 && Byte.length b <= i)
*)
(* resize [b] so that inner capacity is [cap] *)
let resize b cap elem =
assert (cap >= A.length b.buf);
let buf' = A.make cap elem in
(* copy into buf' *)
if b.stop >= b.start
then
A.blit b.buf b.start buf' 0 (b.stop - b.start)
else begin
let len_end = A.length b.buf - b.start in
A.blit b.buf b.start buf' 0 len_end;
A.blit b.buf 0 buf' len_end b.stop;
end;
b.buf <- buf'
let blit_from_bounded b from_buf o len =
let cap = capacity b - length b in
(* resize if needed, with a constant to amortize *)
if cap < len then (
let new_size =
let desired = A.length b.buf + len + 24 in
min (b.size+1) desired in
resize b new_size (A.get from_buf 0);
let good = capacity b = b.size || capacity b - length b >= len in
assert good;
);
let sub = A.sub from_buf o len in
let iter x =
let capacity = A.length b.buf in
A.set b.buf b.stop x;
if b.stop = capacity-1 then b.stop <- 0 else b.stop <- b.stop + 1;
if b.start = b.stop then
if b.start = capacity-1 then b.start <- 0 else b.start <- b.start + 1
in
A.iter iter sub
let blit_from_unbounded b from_buf o len =
let cap = capacity b - length b in
(* resize if needed, with a constant to amortize *)
if cap < len
then resize b (max (b.size+1) (A.length b.buf + len + 24)) (A.get from_buf 0);
let good = capacity b - length b >= len in
assert good;
if b.stop >= b.start
then (* [_______ start xxxxxxxxx stop ______] *)
let len_end = A.length b.buf - b.stop in
if len_end >= len
then (A.blit from_buf o b.buf b.stop len;
b.stop <- b.stop + len)
else (A.blit from_buf o b.buf b.stop len_end;
A.blit from_buf (o+len_end) b.buf 0 (len-len_end);
b.stop <- len-len_end)
else begin (* [xxxxx stop ____________ start xxxxxx] *)
let len_middle = b.start - b.stop in
assert (len_middle >= len);
A.blit from_buf o b.buf b.stop len;
b.stop <- b.stop + len
end;
()
let blit_from b from_buf o len =
if A.length from_buf = 0 then () else
if b.bounded then
blit_from_bounded b from_buf o len
else
blit_from_unbounded b from_buf o len
(*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create 24 in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s'))
*)
(*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create ~bounded:true (Bytes.length s + Bytes.length s') in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s'))
*)
let blit_into b to_buf o len =
if o+len > A.length to_buf
then invalid_arg "CCRingBuffer.blit_into";
if b.stop >= b.start
then
let n = min (b.stop - b.start) len in
let _ = A.blit b.buf b.start to_buf o n in
n
else begin
let len_end = A.length b.buf - b.start in
A.blit b.buf b.start to_buf o (min len_end len);
if len_end >= len
then len (* done *)
else begin
let n = min b.stop (len - len_end) in
A.blit b.buf 0 to_buf (o+len_end) n;
n + len_end
end
end
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let b = Byte.create (Bytes.length s) in \
Byte.blit_from b s 0 (Bytes.length s); \
let to_buf = Bytes.create (Bytes.length s) in \
let len = Byte.blit_into b to_buf 0 (Bytes.length s) in \
to_buf = s && len = Bytes.length s)
*)
let clear b =
b.stop <- 0;
b.start <- 0;
()
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.clear b; \
Byte.length b = 0)
*)
let reset b =
clear b;
b.buf <- A.empty
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.reset b; \
Byte.length b = 0 && Byte.capacity b = 0)
*)
let is_empty b = b.start = b.stop
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.skip b s_len; \
Byte.is_empty b)
*)
let take_front_exn b =
if b.start = b.stop then raise Empty;
let c = A.get b.buf b.start in
if b.start + 1 = A.length b.buf
then b.start <- 0
else b.start <- b.start + 1;
c
let take_front b = try Some (take_front_exn b) with Empty -> None
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let front = Byte.take_front_exn b in \
front = Bytes.get s 0 with Byte.Empty -> s_len = 0)
*)
let take_back_exn b =
if b.start = b.stop then raise Empty;
if b.stop - 1 = 0
then b.stop <- A.length b.buf - 1
else b.stop <- b.stop - 1;
A.get b.buf b.stop
let take_back b = try Some (take_back_exn b) with Empty -> None
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.take_back_exn b in \
back = Bytes.get s (Bytes.length s - 1) with Byte.Empty -> s_len = 0)
*)
let junk_front b =
if b.start = b.stop then raise Empty;
if b.start + 1 = A.length b.buf
then b.start <- 0
else b.start <- b.start + 1
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_front b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
*)
let junk_back b =
if b.start = b.stop then raise Empty;
if b.stop = 0
then b.stop <- A.length b.buf - 1
else b.stop <- b.stop - 1
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_back b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
*)
let skip b len =
if len > length b then
invalid_arg ("CCRingBuffer.skip: " ^ string_of_int len);
if b.stop >= b.start
then b.start <- b.start + len
else
let len_end = A.length b.buf - b.start in
if len > len_end
then b.start <- len-len_end (* wrap to the beginning *)
else b.start <- b.start + len
(*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create 24 in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
let h = Bytes.of_string "hello world" in \
Byte.blit_from b h 0 (Bytes.length h); (* big enough *) \
let l = Byte.length b in let l' = l/2 in Byte.skip b l'; \
Byte.length b + l' = l))
*)
let iter b ~f =
if b.stop >= b.start
then for i = b.start to b.stop - 1 do f (A.get b.buf i) done
else (
for i = b.start to A.length b.buf -1 do f (A.get b.buf i) done;
for i = 0 to b.stop - 1 do f (A.get b.buf i) done;
)
let iteri b ~f =
if b.stop >= b.start
then for i = b.start to b.stop - 1 do f i (A.get b.buf i) done
else (
for i = b.start to A.length b.buf -1 do f i (A.get b.buf i) done;
for i = 0 to b.stop - 1 do f i (A.get b.buf i) done;
)
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try Byte.iteri b (fun i c -> if Byte.get_front b i <> c then raise Exit); \
true with Exit -> false)
*)
let get b i =
if b.stop >= b.start
then
if i >= b.stop - b.start
then invalid_arg ("CCRingBuffer.get:" ^ string_of_int i)
else A.get b.buf (b.start + i)
else
let len_end = A.length b.buf - b.start in
if i < len_end
then A.get b.buf (b.start + i)
else if i - len_end > b.stop
then invalid_arg ("CCRingBuffer.get: " ^ string_of_int i)
else A.get b.buf (i - len_end)
let get_front b i =
if is_empty b then
invalid_arg ("CCRingBuffer.get_front: " ^ string_of_int i)
else
get b i
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \
let front = Byte.get_front b index in \
front = Bytes.get s index)
*)
let get_back b i =
let offset = ((length b) - i - 1) in
if offset < 0 then
raise (Invalid_argument ("CCRingBuffer.get_back:" ^ string_of_int i))
else get b offset
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \
let back = Byte.get_back b index in \
back = Bytes.get s (s_len - index - 1))
*)
let to_list b =
let len = length b in
let rec build l i =
if i < 0 then l else
build ((get_front b i)::l) (i-1) in
build [] (len-1)
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
let l = Byte.to_list b in \
let explode s = let rec exp i l = \
if i < 0 then l else exp (i - 1) (Bytes.get s i :: l) in \
exp (Bytes.length s - 1) [] in \
explode s = l)
*)
let push_back b e = blit_from b (A.make 1 e) 0 1
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.push_back b 'X'; \
Byte.peek_back b = 'X')
*)
(* TODO: more efficient version *)
let append b ~into =
iter b ~f:(push_back into)
let peek_front b =
if is_empty b then raise Empty
else A.get b.buf b.start
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_front b in \
back = Bytes.get s 0 with Byte.Empty -> s_len = 0)
*)
let peek_back b = if is_empty b
then raise Empty
else A.get b.buf
(if b.stop = 0 then capacity b - 1 else b.stop-1)
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_back b in \
back = Bytes.get s (s_len - 1) with Byte.Empty -> s_len = 0)
*)
let of_array a =
let b = create (max (A.length a) 16) in
blit_from b a 0 (A.length a);
b
let to_array b =
if is_empty b then A.empty
else (
let a = A.make (length b) (peek_front b) in
let n = blit_into b a 0 (length b) in
assert (n = length b);
a
)
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let b = Byte.of_array s in let s' = Byte.to_array b in \
s = s')
*)
end
module Byte = MakeFromArray(Array.Byte)
module Make(Elt:sig type t end) = MakeFromArray(Array.Make(Elt))