ocaml-containers/src/core/CCVector.ml
2024-11-18 12:22:16 -05:00

718 lines
16 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Growable, mutable vector} *)
type rw = [ `RW ]
type ro = [ `RO ]
type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a printer = Format.formatter -> 'a -> unit
type ('a, 'mut) t = {
mutable size: int;
mutable vec: 'a array;
}
(** A vector of 'a. *)
type 'a vector = ('a, rw) t
type 'a ro_vector = ('a, ro) t
external as_float_arr : 'a array -> float array = "%identity"
external as_obj_arr : 'a array -> Obj.t array = "%identity"
let fill_with_junk_ (a : _ array) i len : unit =
if Obj.(tag (repr a) = double_array_tag) then
Array.fill (as_float_arr a) i len 0.
else
Array.fill (as_obj_arr a) i len (Obj.repr ())
let freeze v = { size = v.size; vec = v.vec }
let freeze_copy v = { size = v.size; vec = Array.sub v.vec 0 v.size }
let create () = { size = 0; vec = [||] }
let create_with ?(capacity = 128) x =
let vec = Array.make capacity x in
fill_with_junk_ vec 0 capacity;
{ size = 0; vec }
let return x = { size = 1; vec = [| x |] }
let make n x = { size = n; vec = Array.make n x }
let init n f = { size = n; vec = Array.init n f }
(* is the underlying array empty? *)
let[@inline] array_is_empty_ v = Array.length v.vec = 0
(* next capacity, if current one is [n] *)
let[@inline] next_grow_ n = min Sys.max_array_length (n + (n lsr 1) + 2)
(* resize the underlying array using x to temporarily fill the array *)
let resize_ v newcapacity x =
assert (newcapacity >= v.size);
assert (not (array_is_empty_ v));
let new_vec = Array.make newcapacity x in
Array.blit v.vec 0 new_vec 0 v.size;
fill_with_junk_ new_vec v.size (newcapacity - v.size);
v.vec <- new_vec;
()
(* grow the array, using [x] as a filler if required *)
let grow_with_ v ~filler:x =
if array_is_empty_ v then (
let len = 4 in
v.vec <- Array.make len x;
(* do not really use [x], it was just for knowing the type *)
fill_with_junk_ v.vec 0 len
) else (
let n = Array.length v.vec in
let size = next_grow_ n in
if size = n then invalid_arg "vec: can't grow any further";
resize_ v size v.vec.(0)
)
(* v is not empty; ensure it has at least [size] slots.
Use a doubling-size strategy so that calling many times [ensure] will
behave well *)
let ensure_assuming_not_empty_ v ~size =
if size > Sys.max_array_length then
invalid_arg "vec.ensure: size too big"
else if size < Array.length v.vec then
()
(* nothing to do *)
else (
let n = ref (Array.length v.vec) in
while !n < size do
n := next_grow_ !n
done;
resize_ v !n v.vec.(0)
)
let ensure_with ~init v size =
if array_is_empty_ v then (
v.vec <- Array.make size init;
fill_with_junk_ v.vec 0 size
) else
ensure_assuming_not_empty_ v ~size
let ensure v size =
if not (array_is_empty_ v) then ensure_assuming_not_empty_ v ~size
let[@inline] clear v = v.size <- 0
let clear_and_reset v =
v.size <- 0;
v.vec <- [||]
(* TODO*)
(*
let v = create() in
let a = Weak.create 1 in
push v ("hello"^"world");
Weak.set a 0 (Some (get v 0));
Gc.full_major(); Gc.compact();
assert_bool "is alive" (Weak.check a 0);
Gc.full_major(); Gc.compact();
assert_equal None (Weak.get a 0);
*)
let[@inline] is_empty v = v.size = 0
[@@@ifge 4.13]
let[@inline] push_unsafe_ v x =
Sys.opaque_identity (Array.unsafe_set v.vec v.size x);
v.size <- v.size + 1
[@@@else_]
let[@inline never] push_unsafe_ v x =
Array.unsafe_set v.vec v.size x;
v.size <- v.size + 1
[@@@endif]
let push v x =
if v.size = Array.length v.vec then grow_with_ v ~filler:x;
push_unsafe_ v x
let resize_with v f size =
if size < 0 then invalid_arg "Vec.resize_with";
if Array.length v.vec = 0 then (
let new_vec = Array.init size f in
v.vec <- new_vec;
v.size <- size
) else (
ensure_assuming_not_empty_ v ~size;
let { size = cur_size; vec } = v in
for i = cur_size to size - 1 do
Array.unsafe_set vec i (f i)
done;
assert (size <= Array.length v.vec);
v.size <- size
)
let resize_with_init v ~init size =
if size < 0 then invalid_arg "Vec.resize_with_init";
if Array.length v.vec = 0 then (
let vec = Array.make size init in
v.vec <- vec;
v.size <- size
) else (
ensure_assuming_not_empty_ v ~size;
(* nothing will change [v] *)
for i = v.size to size - 1 do
Array.unsafe_set v.vec i init
done;
v.size <- size
)
(** Add all elements of b to a *)
let append a b =
if array_is_empty_ a then
if array_is_empty_ b then
()
else (
a.vec <- Array.copy b.vec;
a.size <- b.size
)
else (
ensure_assuming_not_empty_ a ~size:(a.size + b.size);
assert (Array.length a.vec >= a.size + b.size);
Array.blit b.vec 0 a.vec a.size b.size;
a.size <- a.size + b.size
)
[@@@ifge 4.13]
let[@inline] get v i =
if i < 0 || i >= v.size then invalid_arg "CCVector.get";
(* NOTE: over eager inlining seems to miscompile for int32 at least (#454) *)
Sys.opaque_identity (Array.unsafe_get v.vec i)
let[@inline] set v i x =
if i < 0 || i >= v.size then invalid_arg "CCVector.set";
Array.unsafe_set v.vec i x
[@@@else_]
let[@inline never] get v i =
if i < 0 || i >= v.size then invalid_arg "CCVector.get";
Array.unsafe_get v.vec i
let[@inline never] set v i x =
if i < 0 || i >= v.size then invalid_arg "CCVector.set";
Array.unsafe_set v.vec i x
[@@@endif]
let remove_and_shift v i =
if i < 0 || i >= v.size then invalid_arg "CCVector.remove";
(* if v.(i) not the last element, then put last element at index i *)
if i < v.size - 1 then Array.blit v.vec (i + 1) v.vec i (v.size - i - 1);
(* remove one element *)
v.size <- v.size - 1;
fill_with_junk_ v.vec v.size 1
let remove_unordered v i =
if i < 0 || i >= v.size then invalid_arg "CCVector.remove_unordered";
(* if v.(i) not the last element, then put last element at index i *)
if i < v.size - 1 then v.vec.(i) <- v.vec.(v.size - 1);
(* remove one element *)
v.size <- v.size - 1;
fill_with_junk_ v.vec v.size 1
let insert v i x =
(* Note that we can insert at i=v.size *)
if i < 0 || i > v.size then invalid_arg "CCVector.insert";
if v.size = Array.length v.vec then grow_with_ v ~filler:x;
(* Shift the following elements, then put the element at i *)
if i < v.size then Array.blit v.vec i v.vec (i + 1) (v.size - i);
v.vec.(i) <- x;
v.size <- v.size + 1
let[@inline] append_iter a i = i (fun x -> push a x)
let append_seq a seq = Seq.iter (fun x -> push a x) seq
let append_array a b =
let len_b = Array.length b in
if array_is_empty_ a then (
a.vec <- Array.copy b;
a.size <- len_b
) else (
ensure_assuming_not_empty_ a ~size:(a.size + len_b);
Array.blit b 0 a.vec a.size len_b;
a.size <- a.size + len_b
)
let append_list a b =
match b with
| [] -> ()
| x :: _ ->
(* need to push at least one elem *)
let len_a = a.size in
let len_b = List.length b in
ensure_with ~init:x a (len_a + len_b);
List.iter (push_unsafe_ a) b;
()
let rec append_gen a b =
match b () with
| None -> ()
| Some x ->
push a x;
append_gen a b
let equal eq v1 v2 =
v1.size = v2.size
&&
let n = v1.size in
let rec check i = i = n || (eq (get v1 i) (get v2 i) && check (i + 1)) in
check 0
let compare cmp v1 v2 =
let n = min v1.size v2.size in
let rec check i =
if i = n then
compare v1.size v2.size
else (
let c = cmp (get v1 i) (get v2 i) in
if c = 0 then
check (i + 1)
else
c
)
in
check 0
exception Empty
let pop_exn v =
if v.size = 0 then raise Empty;
let new_size = v.size - 1 in
v.size <- new_size;
let x = v.vec.(new_size) in
(* free last element *)
fill_with_junk_ v.vec new_size 1;
x
let pop v = try Some (pop_exn v) with Empty -> None
let[@inline] top v =
if v.size = 0 then
None
else
Some (Array.unsafe_get v.vec (v.size - 1))
let[@inline] top_exn v =
if v.size = 0 then raise Empty;
(* NOTE: over eager inlining seems to miscompile for int32 at least (#454) *)
Sys.opaque_identity (Array.unsafe_get v.vec (v.size - 1))
let[@inline] copy v = { size = v.size; vec = Array.sub v.vec 0 v.size }
let truncate v n =
let old_size = v.size in
if n < old_size then (
v.size <- n;
(* free elements by erasing them *)
fill_with_junk_ v.vec n (old_size - n)
)
let shrink_to_fit v : unit =
if v.size = 0 then
v.vec <- [||]
else if v.size < Array.length v.vec then
v.vec <- Array.sub v.vec 0 v.size
let sort' cmp v =
(* possibly copy array (to avoid junk at its end), then sort the array *)
let a =
if Array.length v.vec = v.size then
v.vec
else
Array.sub v.vec 0 v.size
in
Array.fast_sort cmp a;
v.vec <- a
let sort cmp v =
let v' = { size = v.size; vec = Array.sub v.vec 0 v.size } in
Array.sort cmp v'.vec;
v'
let uniq_sort cmp v =
sort' cmp v;
let n = v.size in
(* traverse to remove duplicates. i= current index,
j=current append index, j<=i. new_size is the size
the vector will have after removing duplicates. *)
let rec traverse prev i j =
if i >= n then
()
(* done traversing *)
else if cmp prev v.vec.(i) = 0 then (
v.size <- v.size - 1;
traverse prev (i + 1) j (* duplicate, remove it *)
) else (
v.vec.(j) <- v.vec.(i);
traverse v.vec.(i) (i + 1) (j + 1)
)
(* keep it *)
in
if v.size > 0 then traverse v.vec.(0) 1 1
(* start at 1, to get the first element in hand *)
let iter k v =
let { vec; size = n } = v in
for i = 0 to n - 1 do
k (Array.unsafe_get vec i)
done
let iteri k v =
let { vec; size = n } = v in
for i = 0 to n - 1 do
k i (Array.unsafe_get vec i)
done
let map f v =
if array_is_empty_ v then
create ()
else (
let { vec; size } = v in
let vec = Array.init size (fun i -> f (Array.unsafe_get vec i)) in
{ size; vec }
)
let mapi f v =
if array_is_empty_ v then
create ()
else (
let { vec; size } = v in
let vec = Array.init size (fun i -> f i (Array.unsafe_get vec i)) in
{ size; vec }
)
let map_in_place f v =
let { vec; size = n } = v in
for i = 0 to n - 1 do
Array.unsafe_set vec i (f (Array.unsafe_get vec i))
done
let filter_in_place p v =
let i = ref 0 in
(* cur element *)
let j = ref 0 in
(* cur insertion point *)
let n = v.size in
while !i < n do
if p v.vec.(!i) then (
(* move element i at the first empty slot.
invariant: i >= j*)
if !i > !j then v.vec.(!j) <- v.vec.(!i);
incr i;
incr j
) else
incr i
done;
(* free elements *)
fill_with_junk_ v.vec !j (v.size - !j);
v.size <- !j
let filter p v =
if array_is_empty_ v then
create ()
else (
let v' = create_with ~capacity:v.size v.vec.(0) in
iter (fun x -> if p x then push_unsafe_ v' x) v;
v'
)
let fold f acc v =
let { vec; size } = v in
let rec fold acc i =
if i = size then
acc
else (
let x = Array.unsafe_get vec i in
fold (f acc x) (i + 1)
)
in
fold acc 0
let foldi f acc v =
let { vec; size } = v in
let rec fold acc i =
if i = size then
acc
else (
let x = Array.unsafe_get vec i in
fold (f i acc x) (i + 1)
)
in
fold acc 0
let exists p v =
let n = v.size in
let rec check i =
if i = n then
false
else
p v.vec.(i) || check (i + 1)
in
check 0
let for_all p v =
let n = v.size in
let rec check i =
if i = n then
true
else
p v.vec.(i) && check (i + 1)
in
check 0
let member ~eq x v = exists (eq x) v
let find_internal_ p v =
let n = v.size in
let rec check i =
if i = n then
raise_notrace Not_found
else (
let x = v.vec.(i) in
if p x then
x
else
check (i + 1)
)
in
check 0
let find_exn p v = try find_internal_ p v with Not_found -> raise Not_found
let find p v = try Some (find_internal_ p v) with Not_found -> None
let find_map f v =
let n = v.size in
let rec search i =
if i = n then
None
else (
match f v.vec.(i) with
| None -> search (i + 1)
| Some _ as res -> res
)
in
search 0
let filter_map f v =
let v' = create () in
iter
(fun x ->
match f x with
| None -> ()
| Some y -> push v' y)
v;
v'
let filter_map_in_place f v =
let i = ref 0 in
(* cur element *)
let j = ref 0 in
(* cur insertion point *)
let n = v.size in
while !i < n do
match f v.vec.(!i) with
| None -> incr i (* drop *)
| Some y ->
(* move element i at the first empty slot.
invariant: i >= j*)
v.vec.(!j) <- y;
incr i;
incr j
done;
(* free elements *)
fill_with_junk_ v.vec !j (v.size - !j);
v.size <- !j
let flat_map f v =
let v' = create () in
iter (fun x -> iter (push v') (f x)) v;
v'
let flat_map_seq f v =
let v' = create () in
iter
(fun x ->
let seq = f x in
append_seq v' seq)
v;
v'
let flat_map_list f v =
let v' = create () in
iter
(fun x ->
let l = f x in
append_list v' l)
v;
v'
let monoid_product f a1 a2 : _ t =
let na1 = a1.size in
init (na1 * a2.size) (fun i_prod ->
let i = i_prod mod na1 in
let j = i_prod / na1 in
f a1.vec.(i) a2.vec.(j))
let ( >>= ) x f = flat_map f x
let ( >|= ) x f = map f x
let rev_in_place v =
if v.size > 0 then (
let n = v.size in
let vec = v.vec in
for i = 0 to (n - 1) / 2 do
let x = Array.unsafe_get vec i in
let y = Array.unsafe_get vec (n - i - 1) in
Array.unsafe_set vec i y;
Array.unsafe_set vec (n - i - 1) x
done
)
let rev v =
let v' = copy v in
rev_in_place v';
v'
let rev_iter f v =
let { vec; size = n } = v in
for i = n - 1 downto 0 do
f (Array.unsafe_get vec i)
done
let size v = v.size
let length v = v.size
let capacity v = Array.length v.vec
let unsafe_get_array v = v.vec
let of_iter ?(init = create ()) seq =
append_iter init seq;
init
let of_seq ?(init = create ()) seq =
append_seq init seq;
init
let to_iter v k = iter k v
let to_iter_rev v k =
let { vec; size = n } = v in
for i = n - 1 downto 0 do
k (Array.unsafe_get vec i)
done
let to_seq v =
let { size; vec } = v in
let rec aux i () =
if i >= size then
Seq.Nil
else
Seq.Cons (vec.(i), aux (i + 1))
in
aux 0
let to_seq_rev v =
let { size; vec } = v in
let rec aux i () =
if i < 0 then
Seq.Nil
else
Seq.Cons (vec.(i), aux (i - 1))
in
aux (size - 1)
let slice_iter v start len =
assert (start >= 0 && len >= 0);
fun k ->
let { size; vec } = v in
assert (start + len <= size);
for i = start to start + len - 1 do
let x = Array.unsafe_get vec i in
k x
done
let slice v = v.vec, 0, v.size
let ( -- ) i j =
if i > j then
init (i - j + 1) (fun k -> i - k)
else
init (j - i + 1) (fun k -> i + k)
let ( --^ ) i j =
if i = j then
create ()
else if i > j then
init (i - j) (fun k -> i - k)
else
init (j - i) (fun k -> i + k)
let of_array a =
if Array.length a = 0 then
create ()
else
{ size = Array.length a; vec = Array.copy a }
let of_list l =
match l with
| [] -> create ()
| [ x ] -> return x
| [ x; y ] -> { size = 2; vec = [| x; y |] }
| x :: _ ->
let v = create_with ~capacity:(List.length l) x in
List.iter (push_unsafe_ v) l;
v
let to_array v = Array.sub v.vec 0 v.size
let to_list v = List.rev (fold (fun acc x -> x :: acc) [] v)
let of_gen ?(init = create ()) g =
let rec aux g =
match g () with
| None -> init
| Some x ->
push init x;
aux g
in
aux g
let to_gen v =
let { size; vec } = v in
let i = ref 0 in
fun () ->
if !i < size then (
let x = vec.(!i) in
incr i;
Some x
) else
None
let to_string ?(start = "") ?(stop = "") ?(sep = ", ") item_to_string v =
start ^ (to_list v |> List.map item_to_string |> String.concat sep) ^ stop
let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
?(pp_sep = fun fmt () -> Format.fprintf fmt ",@ ") pp_item fmt v =
pp_start fmt ();
iteri
(fun i x ->
if i > 0 then pp_sep fmt ();
pp_item fmt x)
v;
pp_stop fmt ()
let ( let+ ) = ( >|= )
let ( let* ) = ( >>= )
let[@inline] ( and+ ) a1 a2 = monoid_product (fun x y -> x, y) a1 a2
let ( and* ) = ( and+ )