ocaml-containers/src/iter/CCKList.ml
2018-01-14 23:32:13 +00:00

541 lines
12 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Continuation List} *)
type 'a sequence = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a printer = Format.formatter -> 'a -> unit
type + 'a t = unit ->
[ `Nil
| `Cons of 'a * 'a t
]
let nil () = `Nil
let cons a b () = `Cons (a,b)
let empty = nil
let singleton x () = `Cons (x, nil)
let rec _forever x () = `Cons (x, _forever x)
let rec _repeat n x () =
if n<=0 then `Nil else `Cons (x, _repeat (n-1) x)
let repeat ?n x = match n with
| None -> _forever x
| Some n -> _repeat n x
(*$T
repeat ~n:4 0 |> to_list = [0;0;0;0]
repeat ~n:0 1 |> to_list = []
repeat 1 |> take 20 |> to_list = (repeat ~n:20 1 |> to_list)
*)
let is_empty l = match l () with
| `Nil -> true
| `Cons _ -> false
let head_exn l = match l() with | `Nil -> raise Not_found | `Cons (x, _) -> x
let head l = match l() with `Nil -> None | `Cons (x, _) -> Some x
let tail_exn l = match l() with | `Nil -> raise Not_found | `Cons (_, l) -> l
let tail l = match l() with | `Nil -> None | `Cons (_, l) -> Some l
let rec equal eq l1 l2 = match l1(), l2() with
| `Nil, `Nil -> true
| `Nil, _
| _, `Nil -> false
| `Cons (x1,l1'), `Cons (x2,l2') ->
eq x1 x2 && equal eq l1' l2'
let rec compare cmp l1 l2 = match l1(), l2() with
| `Nil, `Nil -> 0
| `Nil, _ -> -1
| _, `Nil -> 1
| `Cons (x1,l1'), `Cons (x2,l2') ->
let c = cmp x1 x2 in
if c = 0 then compare cmp l1' l2' else c
let rec fold f acc res = match res () with
| `Nil -> acc
| `Cons (s, cont) -> fold f (f acc s) cont
let rec iter f l = match l () with
| `Nil -> ()
| `Cons (x, l') -> f x; iter f l'
let iteri f l =
let rec aux f l i = match l() with
| `Nil -> ()
| `Cons (x, l') ->
f i x;
aux f l' (i+1)
in
aux f l 0
let length l = fold (fun acc _ -> acc+1) 0 l
let rec take n (l:'a t) () =
if n=0 then `Nil
else match l () with
| `Nil -> `Nil
| `Cons (x,l') -> `Cons (x, take (n-1) l')
let rec take_while p l () = match l () with
| `Nil -> `Nil
| `Cons (x,l') ->
if p x then `Cons (x, take_while p l') else `Nil
(*$T
of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3]
*)
let rec drop n (l:'a t) () = match l () with
| l' when n=0 -> l'
| `Nil -> `Nil
| `Cons (_,l') -> drop (n-1) l' ()
let rec drop_while p l () = match l() with
| `Nil -> `Nil
| `Cons (x,l') when p x -> drop_while p l' ()
| `Cons _ as res -> res
(*$Q
(Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \
let s = of_list l in let s1, s2 = take n s, drop n s in \
append s1 s2 |> to_list = l )
*)
let rec map f l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') -> `Cons (f x, map f l')
(*$T
(map ((+) 1) (1 -- 5) |> to_list) = (2 -- 6 |> to_list)
*)
let mapi f l =
let rec aux f l i () = match l() with
| `Nil -> `Nil
| `Cons (x, tl) ->
`Cons (f i x, aux f tl (i+1))
in
aux f l 0
(*$T
mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3]
*)
let rec fmap f (l:'a t) () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
begin match f x with
| None -> fmap f l' ()
| Some y -> `Cons (y, fmap f l')
end
(*$T
fmap (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \
= [6;12;18;24;30]
*)
let rec filter p l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') ->
if p x
then `Cons (x, filter p l')
else filter p l' ()
let rec append l1 l2 () = match l1 () with
| `Nil -> l2 ()
| `Cons (x, l1') -> `Cons (x, append l1' l2)
let rec cycle l () = append l (cycle l) ()
(*$T
cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1]
cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0
*)
let rec unfold f acc () = match f acc with
| None -> `Nil
| Some (x, acc') -> `Cons (x, unfold f acc')
(*$T
let f = function 10 -> None | x -> Some (x, x+1) in \
unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9]
*)
let rec flat_map f l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') ->
_flat_map_app f (f x) l' ()
and _flat_map_app f l l' () = match l () with
| `Nil -> flat_map f l' ()
| `Cons (x, tl) ->
`Cons (x, _flat_map_app f tl l')
let product_with f l1 l2 =
let rec _next_left h1 tl1 h2 tl2 () =
match tl1() with
| `Nil -> _next_right ~die:true h1 tl1 h2 tl2 ()
| `Cons (x, tl1') ->
_map_list_left x h2
(_next_right ~die:false (x::h1) tl1' h2 tl2)
()
and _next_right ~die h1 tl1 h2 tl2 () =
match tl2() with
| `Nil when die -> `Nil
| `Nil -> _next_left h1 tl1 h2 tl2 ()
| `Cons (y, tl2') ->
_map_list_right h1 y
(_next_left h1 tl1 (y::h2) tl2')
()
and _map_list_left x l kont () = match l with
| [] -> kont()
| y::l' -> `Cons (f x y, _map_list_left x l' kont)
and _map_list_right l y kont () = match l with
| [] -> kont()
| x::l' -> `Cons (f x y, _map_list_right l' y kont)
in
_next_left [] l1 [] l2
let product l1 l2 =
product_with (fun x y -> x,y) l1 l2
let rec group eq l () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
`Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l'))
(*$T
of_list [1;1;1;2;2;3;3;1] |> group (=) |> map to_list |> to_list = \
[[1;1;1]; [2;2]; [3;3]; [1]]
*)
let rec _uniq eq prev l () = match prev, l() with
| _, `Nil -> `Nil
| None, `Cons (x, l') ->
`Cons (x, _uniq eq (Some x) l')
| Some y, `Cons (x, l') ->
if eq x y
then _uniq eq prev l' ()
else `Cons (x, _uniq eq (Some x) l')
let uniq eq l = _uniq eq None l
let rec filter_map f l () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
begin match f x with
| None -> filter_map f l' ()
| Some y -> `Cons (y, filter_map f l')
end
let flatten l = flat_map (fun x->x) l
let range i j =
let rec aux i j () =
if i=j then `Cons(i, nil)
else if i<j then `Cons (i, aux (i+1) j)
else `Cons (i, aux (i-1) j)
in aux i j
(*$T
range 0 5 |> to_list = [0;1;2;3;4;5]
range 0 0 |> to_list = [0]
range 5 2 |> to_list = [5;4;3;2]
*)
let (--) = range
let (--^) i j =
if i=j then empty
else if i<j then range i (j-1)
else range i (j+1)
(*$T
1 --^ 5 |> to_list = [1;2;3;4]
5 --^ 1 |> to_list = [5;4;3;2]
1 --^ 2 |> to_list = [1]
0 --^ 0 |> to_list = []
*)
let rec fold2 f acc l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> acc
| `Cons(x1,l1'), `Cons(x2,l2') ->
fold2 f (f acc x1 x2) l1' l2'
let rec map2 f l1 l2 () = match l1(), l2() with
| `Nil, _
| _, `Nil -> `Nil
| `Cons(x1,l1'), `Cons(x2,l2') ->
`Cons (f x1 x2, map2 f l1' l2')
let rec iter2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> ()
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2; iter2 f l1' l2'
let rec for_all2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> true
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2 && for_all2 f l1' l2'
let rec exists2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> false
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2 || exists2 f l1' l2'
let rec merge cmp l1 l2 () = match l1(), l2() with
| `Nil, tl2 -> tl2
| tl1, `Nil -> tl1
| `Cons(x1,l1'), `Cons(x2,l2') ->
if cmp x1 x2 < 0
then `Cons (x1, merge cmp l1' l2)
else `Cons (x2, merge cmp l1 l2')
let rec zip a b () = match a(), b() with
| `Nil, _
| _, `Nil -> `Nil
| `Cons (x, a'), `Cons (y, b') -> `Cons ((x,y), zip a' b')
let unzip l =
let rec first l () = match l() with
| `Nil -> `Nil
| `Cons ((x,_), tl) -> `Cons (x, first tl)
and second l () = match l() with
| `Nil -> `Nil
| `Cons ((_, y), tl) -> `Cons (y, second tl)
in
first l, second l
(*$Q
Q.(list (pair int int)) (fun l -> \
let l = CCKList.of_list l in let a, b = unzip l in equal (=) l (zip a b))
*)
(** {2 Implementations} *)
let return x () = `Cons (x, nil)
let pure = return
let (>>=) xs f = flat_map f xs
let (>|=) xs f = map f xs
let (<*>) fs xs = product_with (fun f x -> f x) fs xs
(** {2 Conversions} *)
let rec _to_rev_list acc l = match l() with
| `Nil -> acc
| `Cons (x,l') -> _to_rev_list (x::acc) l'
let to_rev_list l = _to_rev_list [] l
let to_list l =
let rec direct i (l:'a t) = match l () with
| `Nil -> []
| _ when i=0 -> List.rev (_to_rev_list [] l)
| `Cons (x, f) -> x :: direct (i-1) f
in
direct 200 l
let of_list l =
let rec aux l () = match l with
| [] -> `Nil
| x::l' -> `Cons (x, aux l')
in aux l
let of_array a =
let rec aux a i () =
if i=Array.length a then `Nil
else `Cons (a.(i), aux a (i+1))
in
aux a 0
let to_array l =
match l() with
| `Nil -> [| |]
| `Cons (x, _) ->
let n = length l in
let a = Array.make n x in (* need first elem to create [a] *)
iteri
(fun i x -> a.(i) <- x)
l;
a
(*$Q
Q.(array int) (fun a -> of_array a |> to_array = a)
*)
(*$T
of_array [| 1; 2; 3 |] |> to_list = [1;2;3]
of_list [1;2;3] |> to_array = [| 1; 2; 3; |]
*)
let rec to_seq res k = match res () with
| `Nil -> ()
| `Cons (s, f) -> k s; to_seq f k
let to_gen l =
let l = ref l in
fun () ->
match !l () with
| `Nil -> None
| `Cons (x,l') ->
l := l';
Some x
type 'a of_gen_state =
| Of_gen_thunk of 'a gen
| Of_gen_saved of [`Nil | `Cons of 'a * 'a t]
let of_gen g =
let rec consume r () = match !r with
| Of_gen_saved cons -> cons
| Of_gen_thunk g ->
begin match g() with
| None ->
r := Of_gen_saved `Nil;
`Nil
| Some x ->
let tl = consume (ref (Of_gen_thunk g)) in
let l = `Cons (x, tl) in
r := Of_gen_saved l;
l
end
in
consume (ref (Of_gen_thunk g))
(*$R
let g = let n = ref 0 in fun () -> Some (incr n; !n) in
let l = of_gen g in
assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
assert_equal [11;12] (drop 10 l |> take 2 |> to_list);
*)
let sort ~cmp l =
let l = to_list l in
of_list (List.sort cmp l)
let sort_uniq ~cmp l =
let l = to_list l in
uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l))
type 'a memoize =
| MemoThunk
| MemoSave of [`Nil | `Cons of 'a * 'a t]
let rec memoize f =
let r = ref MemoThunk in
fun () -> match !r with
| MemoSave l -> l
| MemoThunk ->
let l = match f() with
| `Nil -> `Nil
| `Cons (x, tail) -> `Cons (x, memoize tail)
in
r := MemoSave l;
l
(*$R
let printer = Q.Print.(list int) in
let gen () =
let rec l = let r = ref 0 in fun () -> incr r; `Cons (!r, l) in l
in
let l1 = gen () in
assert_equal ~printer [1;2;3;4] (take 4 l1 |> to_list);
assert_equal ~printer [5;6;7;8] (take 4 l1 |> to_list);
let l2 = gen () |> memoize in
assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list);
assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list);
*)
(** {2 Fair Combinations} *)
let rec interleave a b () = match a() with
| `Nil -> b ()
| `Cons (x, tail) -> `Cons (x, interleave b tail)
let rec fair_flat_map f a () = match a() with
| `Nil -> `Nil
| `Cons (x, tail) ->
let y = f x in
interleave y (fair_flat_map f tail) ()
let rec fair_app f a () = match f() with
| `Nil -> `Nil
| `Cons (f1, fs) ->
interleave (map f1 a) (fair_app fs a) ()
let (>>-) a f = fair_flat_map f a
let (<.>) f a = fair_app f a
(*$T
interleave (of_list [1;3;5]) (of_list [2;4;6]) |> to_list = [1;2;3;4;5;6]
fair_app (of_list [(+)1; ( * ) 3]) (of_list [1; 10]) \
|> to_list |> List.sort Pervasives.compare = [2; 3; 11; 30]
*)
(** {2 Infix} *)
module Infix = struct
let (>>=) = (>>=)
let (>|=) = (>|=)
let (<*>) = (<*>)
let (>>-) = (>>-)
let (<.>) = (<.>)
let (--) = (--)
let (--^) = (--^)
end
(** {2 Monadic Operations} *)
module type MONAD = sig
type 'a t
val return : 'a -> 'a t
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
end
module Traverse(M : MONAD) = struct
open M
let map_m f l =
let rec aux acc l = match l () with
| `Nil -> return (of_list (List.rev acc))
| `Cons (x,l') ->
f x >>= fun x' ->
aux (x' :: acc) l'
in
aux [] l
let sequence_m l = map_m (fun x->x) l
let rec fold_m f acc l = match l() with
| `Nil -> return acc
| `Cons (x,l') ->
f acc x >>= fun acc' -> fold_m f acc' l'
end
(** {2 IO} *)
let pp ?(sep=",") pp_item fmt l =
let rec pp fmt l = match l() with
| `Nil -> ()
| `Cons (x,l') ->
Format.pp_print_string fmt sep;
Format.pp_print_cut fmt ();
pp_item fmt x;
pp fmt l'
in
match l() with
| `Nil -> ()
| `Cons (x,l') -> pp_item fmt x; pp fmt l'