mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
Add forgetful propagation
This may be not really needed if late propagations can be done, as the current code could allow. To think about...
This commit is contained in:
parent
7d57b3f1b5
commit
035002fd95
4 changed files with 38 additions and 9 deletions
|
|
@ -905,10 +905,20 @@ module Make
|
||||||
be done *)
|
be done *)
|
||||||
Stack.push c env.clauses_to_add
|
Stack.push c env.clauses_to_add
|
||||||
|
|
||||||
let slice_propagate f lvl =
|
let slice_propagate f = function
|
||||||
|
| Plugin_intf.Eval lvl ->
|
||||||
let a = atom f in
|
let a = atom f in
|
||||||
Iheap.grow_to_by_double env.order (St.nb_elt ());
|
Iheap.grow_to_by_double env.order (St.nb_elt ());
|
||||||
enqueue_bool a lvl (Semantic lvl)
|
enqueue_bool a lvl (Semantic lvl)
|
||||||
|
| Plugin_intf.Consequence (causes, proof) ->
|
||||||
|
let l = List.rev_map atom causes in
|
||||||
|
if List.for_all (fun a -> a.is_true) l then
|
||||||
|
let p = atom f in
|
||||||
|
let c = make_clause (fresh_tname ())
|
||||||
|
(p :: List.map (fun a -> a.neg) l) (Lemma proof) in
|
||||||
|
enqueue_bool p (decision_level ()) (Bcp c)
|
||||||
|
else
|
||||||
|
raise (Invalid_argument "Msat.Internal.slice_propagate")
|
||||||
|
|
||||||
let current_slice (): (_,_,_) Plugin_intf.slice = {
|
let current_slice (): (_,_,_) Plugin_intf.slice = {
|
||||||
Plugin_intf.start = env.th_head;
|
Plugin_intf.start = env.th_head;
|
||||||
|
|
|
||||||
|
|
@ -34,12 +34,20 @@ type ('term, 'formula) assumption =
|
||||||
(** Asusmptions made by the core SAT solver. Can be either a formula, or an assignment.
|
(** Asusmptions made by the core SAT solver. Can be either a formula, or an assignment.
|
||||||
Assignemnt are given a level. *)
|
Assignemnt are given a level. *)
|
||||||
|
|
||||||
|
type ('formula, 'proof) reason =
|
||||||
|
| Eval of int
|
||||||
|
| Consequence of 'formula list * 'proof
|
||||||
|
(** The type of reasons for propagations of a formula [f].
|
||||||
|
[Semantic lvl] means that [f] is true because of the assignments whose level is [<= lvl].
|
||||||
|
[Consequence (l, p)] means that the formulas in [l] imply [f]. The proof should be a proof
|
||||||
|
of the clause [l] implies [f]. *)
|
||||||
|
|
||||||
type ('term, 'formula, 'proof) slice = {
|
type ('term, 'formula, 'proof) slice = {
|
||||||
start : int;
|
start : int;
|
||||||
length : int;
|
length : int;
|
||||||
get : int -> ('term, 'formula) assumption;
|
get : int -> ('term, 'formula) assumption;
|
||||||
push : 'formula list -> 'proof -> unit;
|
push : 'formula list -> 'proof -> unit;
|
||||||
propagate : 'formula -> int -> unit;
|
propagate : 'formula -> ('formula, 'proof) reason -> unit;
|
||||||
}
|
}
|
||||||
(** The type for a slice of litterals to assume/propagate in the theory.
|
(** The type for a slice of litterals to assume/propagate in the theory.
|
||||||
[get] operations should only be used for integers [ start <= i < start + length].
|
[get] operations should only be used for integers [ start <= i < start + length].
|
||||||
|
|
|
||||||
|
|
@ -25,10 +25,15 @@ type ('form, 'proof) slice = {
|
||||||
length : int;
|
length : int;
|
||||||
get : int -> 'form;
|
get : int -> 'form;
|
||||||
push : 'form list -> 'proof -> unit;
|
push : 'form list -> 'proof -> unit;
|
||||||
|
propagate : 'form -> 'form list -> 'proof -> unit;
|
||||||
}
|
}
|
||||||
(** The type for a slice of literals to assume/propagate in the theory.
|
(** The type for a slice of literals to assume/propagate in the theory.
|
||||||
[get] operations should only be used for integers [ start <= i < start + length].
|
[get] operations should only be used for integers [ start <= i < start + length].
|
||||||
[push clause proof] allows to add a tautological clause to the sat solver. *)
|
[push clause proof] allows to add a tautological clause to the sat solver.
|
||||||
|
[propagate lit causes proof] informs the solver to propagate [lit], with the reason
|
||||||
|
that the clause [causes => lit] is a theory tautology. It is faster than pushing
|
||||||
|
the associated clause but the clause will not be remembered by the sat solver,
|
||||||
|
i.e it will not be used by the solver to do boolean propagation. *)
|
||||||
|
|
||||||
module type S = sig
|
module type S = sig
|
||||||
(** Signature for theories to be given to the Solver. *)
|
(** Signature for theories to be given to the Solver. *)
|
||||||
|
|
|
||||||
|
|
@ -39,16 +39,22 @@ module Plugin(E : Formula_intf.S)
|
||||||
|
|
||||||
let current_level = Th.current_level
|
let current_level = Th.current_level
|
||||||
|
|
||||||
let assume_get s i =
|
let assume_get get =
|
||||||
match s.Plugin_intf.get i with
|
function i ->
|
||||||
|
match get i with
|
||||||
| Plugin_intf.Lit f -> f
|
| Plugin_intf.Lit f -> f
|
||||||
| _ -> assert false
|
| _ -> assert false
|
||||||
|
|
||||||
|
let assume_propagate propagate =
|
||||||
|
fun f l proof ->
|
||||||
|
propagate f (Plugin_intf.Consequence (l, proof))
|
||||||
|
|
||||||
let mk_slice s = {
|
let mk_slice s = {
|
||||||
Theory_intf.start = s.Plugin_intf.start;
|
Theory_intf.start = s.Plugin_intf.start;
|
||||||
length = s.Plugin_intf.length;
|
length = s.Plugin_intf.length;
|
||||||
get = assume_get s;
|
get = assume_get s.Plugin_intf.get;
|
||||||
push = s.Plugin_intf.push;
|
push = s.Plugin_intf.push;
|
||||||
|
propagate = assume_propagate s.Plugin_intf.propagate;
|
||||||
}
|
}
|
||||||
|
|
||||||
let assume s = Th.assume (mk_slice s)
|
let assume s = Th.assume (mk_slice s)
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue