mirror of
https://github.com/c-cube/sidekick.git
synced 2026-01-21 16:56:41 -05:00
Removed trailing whitespaces
This commit is contained in:
parent
5610cb4984
commit
13060e348d
39 changed files with 1249 additions and 1249 deletions
|
|
@ -21,8 +21,8 @@ end
|
|||
|
||||
module type S = sig
|
||||
type t
|
||||
type elem
|
||||
|
||||
type elem
|
||||
|
||||
val empty : t
|
||||
val pop : t -> elem * t
|
||||
val add : t -> elem list -> t
|
||||
|
|
@ -37,22 +37,22 @@ module Make ( X : OrderType ) = struct
|
|||
|
||||
let empty = Empty
|
||||
|
||||
let rec fusion t1 t2 =
|
||||
let rec fusion t1 t2 =
|
||||
match t1, t2 with
|
||||
| _ , Empty -> t1
|
||||
| Empty , _ -> t2
|
||||
| Node (m1, g1, d1), Node (m2, g2, d2) ->
|
||||
if X.compare m1 m2 <= 0 then Node (m1, d1, fusion g1 t2)
|
||||
else Node (m2, d2, fusion g2 t1)
|
||||
|
||||
|
||||
let pop = function
|
||||
| Empty -> raise EmptyHeap
|
||||
| Node(m, g, d) -> m, fusion g d
|
||||
|
||||
let add h l =
|
||||
let add h l =
|
||||
List.fold_left (fun h x -> fusion (Node(x, Empty, Empty)) h ) h l
|
||||
|
||||
let elements h =
|
||||
|
||||
let elements h =
|
||||
let rec elements_aux acc = function
|
||||
| Empty -> acc
|
||||
| Node (m1 ,g1 ,d1) -> elements_aux (m1 :: acc) (fusion g1 d1)
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ end
|
|||
|
||||
module type S = sig
|
||||
type t
|
||||
type elem
|
||||
type elem
|
||||
|
||||
val empty : t
|
||||
val pop : t -> elem * t
|
||||
|
|
|
|||
|
|
@ -13,9 +13,9 @@
|
|||
|
||||
open Hashcons
|
||||
|
||||
module S =
|
||||
Hashcons.Make_consed(struct include String
|
||||
let hash = Hashtbl.hash
|
||||
module S =
|
||||
Hashcons.Make_consed(struct include String
|
||||
let hash = Hashtbl.hash
|
||||
let equal = (=) end)
|
||||
|
||||
module HS = struct
|
||||
|
|
@ -38,7 +38,7 @@ module HS = struct
|
|||
| [] -> raise Not_found
|
||||
| (y, v) :: l -> if equal x y then v else list_assoc x l
|
||||
|
||||
let rec list_mem_assoc x = function
|
||||
let rec list_mem_assoc x = function
|
||||
| [] -> false
|
||||
| (y, _) :: l -> compare x y = 0 || list_mem_assoc x l
|
||||
|
||||
|
|
@ -65,7 +65,7 @@ module HS = struct
|
|||
| [] -> false
|
||||
| d :: l -> compare_couple c d = 0 || list_mem_couple c l
|
||||
|
||||
let print fmt s =
|
||||
let print fmt s =
|
||||
Format.fprintf fmt "%s" (view s)
|
||||
|
||||
end
|
||||
|
|
|
|||
|
|
@ -14,14 +14,14 @@
|
|||
(** {b Hash-consed strings}
|
||||
|
||||
Hash-consing is a technique to share values that are structurally
|
||||
equal. More details on
|
||||
equal. More details on
|
||||
{{:http://en.wikipedia.org/wiki/Hash_consing} Wikipedia} and
|
||||
{{:http://www.lri.fr/~filliatr/ftp/publis/hash-consing2.pdf} here}.
|
||||
|
||||
This module provides an easy way to use hash-consing for strings.
|
||||
*)
|
||||
|
||||
open Hashcons
|
||||
open Hashcons
|
||||
|
||||
type t = string hash_consed
|
||||
(** The type of Hash-consed string *)
|
||||
|
|
|
|||
|
|
@ -12,27 +12,27 @@
|
|||
(**************************************************************************)
|
||||
|
||||
type t = {heap : int Vec.t; indices : int Vec.t }
|
||||
|
||||
|
||||
let dummy = -100
|
||||
|
||||
let init sz =
|
||||
let init sz =
|
||||
{ heap = Vec.init sz (fun i -> i) dummy;
|
||||
indices = Vec.init sz (fun i -> i) dummy}
|
||||
|
||||
|
||||
let left i = (i lsl 1) + 1 (* i*2 + 1 *)
|
||||
let right i = (i + 1) lsl 1 (* (i+1)*2 *)
|
||||
let parent i = (i - 1) asr 1 (* (i-1) / 2 *)
|
||||
|
||||
(*
|
||||
let rec heap_property cmp ({heap=heap} as s) i =
|
||||
i >= (Vec.size heap) ||
|
||||
let rec heap_property cmp ({heap=heap} as s) i =
|
||||
i >= (Vec.size heap) ||
|
||||
((i = 0 || not(cmp (Vec. get heap i) (Vec.get heap (parent i))))
|
||||
&& heap_property cmp s (left i) && heap_property cmp s (right i))
|
||||
|
||||
|
||||
let heap_property cmp s = heap_property cmp s 1
|
||||
*)
|
||||
|
||||
let percolate_up cmp {heap=heap;indices=indices} i =
|
||||
|
||||
let percolate_up cmp {heap=heap;indices=indices} i =
|
||||
let x = Vec.get heap i in
|
||||
let pi = ref (parent i) in
|
||||
let i = ref i in
|
||||
|
|
@ -45,7 +45,7 @@ let percolate_up cmp {heap=heap;indices=indices} i =
|
|||
Vec.set heap !i x;
|
||||
Vec.set indices x !i
|
||||
|
||||
let percolate_down cmp {heap=heap;indices=indices} i =
|
||||
let percolate_down cmp {heap=heap;indices=indices} i =
|
||||
let x = Vec.get heap i in
|
||||
let sz = Vec.size heap in
|
||||
let li = ref (left i) in
|
||||
|
|
@ -53,9 +53,9 @@ let percolate_down cmp {heap=heap;indices=indices} i =
|
|||
let i = ref i in
|
||||
(try
|
||||
while !li < sz do
|
||||
let child =
|
||||
let child =
|
||||
if !ri < sz && cmp (Vec.get heap !ri) (Vec.get heap !li) then !ri
|
||||
else !li
|
||||
else !li
|
||||
in
|
||||
if not (cmp (Vec.get heap child) x) then raise Exit;
|
||||
Vec.set heap !i (Vec.get heap child);
|
||||
|
|
@ -70,13 +70,13 @@ let percolate_down cmp {heap=heap;indices=indices} i =
|
|||
|
||||
let in_heap s n = n < Vec.size s.indices && Vec.get s.indices n >= 0
|
||||
|
||||
let decrease cmp s n =
|
||||
let decrease cmp s n =
|
||||
assert (in_heap s n); percolate_up cmp s (Vec.get s.indices n)
|
||||
|
||||
let increase cmp s n =
|
||||
|
||||
let increase cmp s n =
|
||||
assert (in_heap s n); percolate_down cmp s (Vec.get s.indices n)
|
||||
|
||||
let filter s filt cmp =
|
||||
let filter s filt cmp =
|
||||
let j = ref 0 in
|
||||
let lim = Vec.size s.heap in
|
||||
for i = 0 to lim - 1 do
|
||||
|
|
@ -93,36 +93,36 @@ let filter s filt cmp =
|
|||
done
|
||||
|
||||
let size s = Vec.size s.heap
|
||||
|
||||
|
||||
let is_empty s = Vec.is_empty s.heap
|
||||
|
||||
|
||||
let insert cmp s n =
|
||||
if not (in_heap s n) then
|
||||
if not (in_heap s n) then
|
||||
begin
|
||||
Vec.set s.indices n (Vec.size s.heap);
|
||||
Vec.push s.heap n;
|
||||
percolate_up cmp s (Vec.get s.indices n)
|
||||
end
|
||||
|
||||
let grow_to_by_double s sz =
|
||||
let grow_to_by_double s sz =
|
||||
Vec.grow_to_by_double s.indices sz;
|
||||
Vec.grow_to_by_double s.heap sz
|
||||
|
||||
(*
|
||||
let update cmp s n =
|
||||
let update cmp s n =
|
||||
assert (heap_property cmp s);
|
||||
begin
|
||||
if in_heap s n then
|
||||
if in_heap s n then
|
||||
begin
|
||||
percolate_up cmp s (Vec.get s.indices n);
|
||||
percolate_down cmp s (Vec.get s.indices n)
|
||||
end
|
||||
end
|
||||
else insert cmp s n
|
||||
end;
|
||||
assert (heap_property cmp s)
|
||||
*)
|
||||
|
||||
let remove_min cmp ({heap=heap; indices=indices} as s) =
|
||||
let remove_min cmp ({heap=heap; indices=indices} as s) =
|
||||
let x = Vec.get heap 0 in
|
||||
Vec.set heap 0 (Vec.last heap); (*heap.last()*)
|
||||
Vec.set indices (Vec.get heap 0) 0;
|
||||
|
|
|
|||
|
|
@ -14,22 +14,22 @@
|
|||
module type S = sig
|
||||
val start : unit -> unit
|
||||
val pause : unit -> unit
|
||||
val get : unit -> float
|
||||
val get : unit -> float
|
||||
end
|
||||
|
||||
module Make (X : sig end) = struct
|
||||
|
||||
open Unix
|
||||
|
||||
|
||||
let u = ref 0.0
|
||||
|
||||
let cpt = ref 0.0
|
||||
|
||||
|
||||
let start () = u:=(times()).tms_utime
|
||||
|
||||
let pause () = cpt := !cpt +. ((times()).tms_utime -. !u)
|
||||
|
||||
let get () =
|
||||
let get () =
|
||||
!cpt
|
||||
|
||||
end
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@
|
|||
module type S = sig
|
||||
val start : unit -> unit
|
||||
val pause : unit -> unit
|
||||
val get : unit -> float
|
||||
val get : unit -> float
|
||||
end
|
||||
|
||||
module Make (X : sig end) : S
|
||||
|
|
|
|||
|
|
@ -12,20 +12,20 @@
|
|||
(**************************************************************************)
|
||||
|
||||
type 'a t = { mutable dummy: 'a; mutable data : 'a array; mutable sz : int }
|
||||
|
||||
|
||||
let make capa d = {data = Array.make capa d; sz = 0; dummy = d}
|
||||
|
||||
let init capa f d = {data = Array.init capa (fun i -> f i); sz = capa; dummy = d}
|
||||
|
||||
let from_array data sz d = {data = data; sz = sz; dummy = d}
|
||||
|
||||
let from_list l sz d =
|
||||
let from_list l sz d =
|
||||
let l = ref l in
|
||||
let f_init i = match !l with [] -> assert false | e::r -> l := r; e in
|
||||
{data = Array.init sz f_init; sz = sz; dummy = d}
|
||||
|
||||
let clear s = s.sz <- 0
|
||||
|
||||
|
||||
let shrink t i = assert (i >= 0 && i<=t.sz); t.sz <- t.sz - i
|
||||
|
||||
let pop t = assert (t.sz >=1); t.sz <- t.sz - 1
|
||||
|
|
@ -34,14 +34,14 @@ let size t = t.sz
|
|||
|
||||
let is_empty t = t.sz = 0
|
||||
|
||||
let grow_to t new_capa =
|
||||
let grow_to t new_capa =
|
||||
let data = t.data in
|
||||
let capa = Array.length data in
|
||||
t.data <- Array.init new_capa (fun i -> if i < capa then data.(i) else t.dummy)
|
||||
|
||||
let grow_to_double_size t = grow_to t (2* Array.length t.data)
|
||||
|
||||
let rec grow_to_by_double t new_capa =
|
||||
let rec grow_to_by_double t new_capa =
|
||||
let data = t.data in
|
||||
let capa = ref (Array.length data + 1) in
|
||||
while !capa < new_capa do capa := 2 * !capa done;
|
||||
|
|
@ -50,35 +50,35 @@ let rec grow_to_by_double t new_capa =
|
|||
|
||||
let is_full t = Array.length t.data = t.sz
|
||||
|
||||
let push t e =
|
||||
let push t e =
|
||||
(*Format.eprintf "push; sz = %d et capa=%d@." t.sz (Array.length t.data);*)
|
||||
if is_full t then grow_to_double_size t;
|
||||
t.data.(t.sz) <- e;
|
||||
t.sz <- t.sz + 1
|
||||
|
||||
let push_none t =
|
||||
let push_none t =
|
||||
if is_full t then grow_to_double_size t;
|
||||
t.data.(t.sz) <- t.dummy;
|
||||
t.sz <- t.sz + 1
|
||||
|
||||
let last t =
|
||||
|
||||
let last t =
|
||||
let e = t.data.(t.sz - 1) in
|
||||
assert (not (e == t.dummy));
|
||||
e
|
||||
|
||||
let get t i =
|
||||
let get t i =
|
||||
assert (i < t.sz);
|
||||
let e = t.data.(i) in
|
||||
if e == t.dummy then raise Not_found
|
||||
else e
|
||||
|
||||
let set t i v =
|
||||
|
||||
let set t i v =
|
||||
t.data.(i) <- v;
|
||||
t.sz <- max t.sz (i + 1)
|
||||
|
||||
let set_size t sz = t.sz <- sz
|
||||
|
||||
let copy t =
|
||||
let copy t =
|
||||
let data = t.data in
|
||||
let len = Array.length data in
|
||||
let data = Array.init len (fun i -> data.(i)) in
|
||||
|
|
@ -92,15 +92,15 @@ let move_to t t' =
|
|||
t'.sz <- t.sz
|
||||
|
||||
|
||||
let remove t e =
|
||||
let remove t e =
|
||||
let j = ref 0 in
|
||||
while (!j < t.sz && not (t.data.(!j) == e)) do incr j done;
|
||||
assert (!j < t.sz);
|
||||
for i = !j to t.sz - 2 do t.data.(i) <- t.data.(i+1) done;
|
||||
pop t
|
||||
|
||||
|
||||
let fast_remove t e =
|
||||
|
||||
let fast_remove t e =
|
||||
let j = ref 0 in
|
||||
while (!j < t.sz && not (t.data.(!j) == e)) do incr j done;
|
||||
assert (!j < t.sz);
|
||||
|
|
@ -108,7 +108,7 @@ let fast_remove t e =
|
|||
pop t
|
||||
|
||||
|
||||
let sort t f =
|
||||
let sort t f =
|
||||
let sub_arr = Array.sub t.data 0 t.sz in
|
||||
Array.fast_sort f sub_arr;
|
||||
t.data <- sub_arr
|
||||
|
|
|
|||
198
smt/arith.ml
198
smt/arith.ml
|
|
@ -19,7 +19,7 @@ module A = Literal
|
|||
module Sy = Symbols
|
||||
module T = Term
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
let ale = Hstring.make "<="
|
||||
let alt = Hstring.make "<"
|
||||
let is_le n = Hstring.compare n ale = 0
|
||||
let is_lt n = Hstring.compare n alt = 0
|
||||
|
|
@ -34,7 +34,7 @@ module Type (X:Sig.X) : Polynome.T with type r = X.r = struct
|
|||
|
||||
end
|
||||
|
||||
module Make
|
||||
module Make
|
||||
(X : Sig.X)
|
||||
(P : Polynome.T with type r = X.r)
|
||||
(C : Sig.C with type t = P.t and type r = X.r) = struct
|
||||
|
|
@ -42,56 +42,56 @@ module Make
|
|||
type t = P.t
|
||||
|
||||
type r = P.r
|
||||
|
||||
|
||||
let name = "arith"
|
||||
|
||||
let is_mine_a a =
|
||||
let is_mine_a a =
|
||||
match A.LT.view a with
|
||||
| A.Builtin (_,p,_) -> is_le p || is_lt p
|
||||
| _ -> false
|
||||
|
||||
let is_mine_symb = function
|
||||
| Sy.Int _ | Sy.Real _
|
||||
| Sy.Int _ | Sy.Real _
|
||||
| Sy.Op (Sy.Plus | Sy.Minus | Sy.Mult | Sy.Div | Sy.Modulo) -> true
|
||||
| _ -> false
|
||||
|
||||
let is_mine_type p =
|
||||
let ty = P.type_info p in
|
||||
let is_mine_type p =
|
||||
let ty = P.type_info p in
|
||||
ty = Ty.Tint || ty = Ty.Treal
|
||||
|
||||
let unsolvable _ = false
|
||||
|
||||
|
||||
let empty_polynome ty = P.create [] (Int 0) ty
|
||||
|
||||
let is_mine p = match P.is_monomial p with
|
||||
| Some (a,x,b) when a =/ (Int 1) && b =/ (Int 0) -> x
|
||||
| _ -> C.embed p
|
||||
|
||||
|
||||
let embed r = match C.extract r with
|
||||
| Some p -> p
|
||||
| _ -> P.create [Int 1, r] (Int 0) (X.type_info r)
|
||||
| _ -> P.create [Int 1, r] (Int 0) (X.type_info r)
|
||||
|
||||
let check_int exn p =
|
||||
let check_int exn p =
|
||||
if P.type_info p = Ty.Tint then
|
||||
let _, c = P.to_list p in
|
||||
let ppmc = P.ppmc_denominators p in
|
||||
if not (is_integer_num (ppmc */ c)) then raise exn
|
||||
|
||||
let fresh_string =
|
||||
|
||||
let fresh_string =
|
||||
let cpt = ref 0 in
|
||||
fun () ->
|
||||
incr cpt;
|
||||
"!k" ^ (string_of_int !cpt)
|
||||
|
||||
let fresh_name () =
|
||||
let fresh_name () =
|
||||
T.make (Sy.name (Hstring.make (fresh_string()))) [] Ty.Tint
|
||||
|
||||
(* t1 % t2 = md <->
|
||||
(* t1 % t2 = md <->
|
||||
c1. 0 <= md ;
|
||||
c2. md < t2 ;
|
||||
c3. exists k. t1 = t2 * k + t ;
|
||||
c4. t2 <> 0 (already checked) *)
|
||||
let mk_modulo md t1 t2 ctx =
|
||||
let mk_modulo md t1 t2 ctx =
|
||||
let zero = T.int "0" in
|
||||
let c1 = A.LT.make (A.Builtin(true, ale, [zero; md])) in
|
||||
let c2 = A.LT.make (A.Builtin(true, alt, [md; t2])) in
|
||||
|
|
@ -99,9 +99,9 @@ module Make
|
|||
let t3 = T.make (Sy.Op Sy.Mult) [t2;k] Ty.Tint in
|
||||
let t3 = T.make (Sy.Op Sy.Plus) [t3;md] Ty.Tint in
|
||||
let c3 = A.LT.make (A.Eq (t1, t3)) in
|
||||
c3 :: c2 :: c1 :: ctx
|
||||
c3 :: c2 :: c1 :: ctx
|
||||
|
||||
let mk_euc_division p p2 t1 t2 ctx =
|
||||
let mk_euc_division p p2 t1 t2 ctx =
|
||||
match P.to_list p2 with
|
||||
| [], coef_p2 ->
|
||||
let md = T.make (Sy.Op Sy.Modulo) [t1;t2] Ty.Tint in
|
||||
|
|
@ -113,7 +113,7 @@ module Make
|
|||
let rec mke coef p t ctx =
|
||||
let {T.f = sb ; xs = xs; ty = ty} = T.view t in
|
||||
match sb, xs with
|
||||
| (Sy.Int n | Sy.Real n), _ ->
|
||||
| (Sy.Int n | Sy.Real n), _ ->
|
||||
let c = coef */ (num_of_string (Hstring.view n)) in
|
||||
P.add (P.create [] c ty) p, ctx
|
||||
|
||||
|
|
@ -122,43 +122,43 @@ module Make
|
|||
let p2, ctx = mke (Int 1) (empty_polynome ty) t2 ctx in
|
||||
P.add p (P.mult p1 p2), ctx
|
||||
|
||||
| Sy.Op Sy.Div, [t1;t2] ->
|
||||
| Sy.Op Sy.Div, [t1;t2] ->
|
||||
let p1, ctx = mke coef (empty_polynome ty) t1 ctx in
|
||||
let p2, ctx = mke (Int 1) (empty_polynome ty) t2 ctx in
|
||||
let p3, ctx =
|
||||
try
|
||||
let p3, ctx =
|
||||
try
|
||||
let p, approx = P.div p1 p2 in
|
||||
if approx then mk_euc_division p p2 t1 t2 ctx
|
||||
else p, ctx
|
||||
with Division_by_zero | Polynome.Maybe_zero ->
|
||||
with Division_by_zero | Polynome.Maybe_zero ->
|
||||
P.create [coef, X.term_embed t] (Int 0) ty, ctx
|
||||
in
|
||||
P.add p p3, ctx
|
||||
|
||||
| Sy.Op Sy.Plus , [t1;t2] ->
|
||||
| Sy.Op Sy.Plus , [t1;t2] ->
|
||||
let p2, ctx = mke coef p t2 ctx in
|
||||
mke coef p2 t1 ctx
|
||||
|
||||
| Sy.Op Sy.Minus , [t1;t2] ->
|
||||
| Sy.Op Sy.Minus , [t1;t2] ->
|
||||
let p2, ctx = mke (minus_num coef) p t2 ctx in
|
||||
mke coef p2 t1 ctx
|
||||
|
||||
| Sy.Op Sy.Modulo , [t1;t2] ->
|
||||
| Sy.Op Sy.Modulo , [t1;t2] ->
|
||||
let p1, ctx = mke coef (empty_polynome ty) t1 ctx in
|
||||
let p2, ctx = mke (Int 1) (empty_polynome ty) t2 ctx in
|
||||
let p3, ctx =
|
||||
let p3, ctx =
|
||||
try P.modulo p1 p2, ctx
|
||||
with e ->
|
||||
let t = T.make mod_symb [t1; t2] Ty.Tint in
|
||||
let t = T.make mod_symb [t1; t2] Ty.Tint in
|
||||
let ctx = match e with
|
||||
| Division_by_zero | Polynome.Maybe_zero -> ctx
|
||||
| Polynome.Not_a_num -> mk_modulo t t1 t2 ctx
|
||||
| _ -> assert false
|
||||
in
|
||||
P.create [coef, X.term_embed t] (Int 0) ty, ctx
|
||||
in
|
||||
| _ -> assert false
|
||||
in
|
||||
P.create [coef, X.term_embed t] (Int 0) ty, ctx
|
||||
in
|
||||
P.add p p3, ctx
|
||||
|
||||
|
||||
| _ ->
|
||||
let a, ctx' = X.make t in
|
||||
let ctx = ctx' @ ctx in
|
||||
|
|
@ -173,8 +173,8 @@ module Make
|
|||
| [Int 1, x] , Int 0 -> p
|
||||
| l , c ->
|
||||
let ty = P.type_info p in
|
||||
let l =
|
||||
List.fold_left
|
||||
let l =
|
||||
List.fold_left
|
||||
(fun acc (coef,x) ->
|
||||
if coef =/ Int 0 then acc
|
||||
else if coef =/ Int 1 || coef =/ Int (-1) then (coef,x)::acc
|
||||
|
|
@ -182,14 +182,14 @@ module Make
|
|||
| Some ac when is_mult ac.h ->
|
||||
let unit_coef, abs_coef =
|
||||
if coef > Int 0 then Int 1, coef
|
||||
else Int (-1), minus_num coef
|
||||
else Int (-1), minus_num coef
|
||||
in
|
||||
let p_cst = is_mine (P.create [] abs_coef ty) in
|
||||
let ac = {ac with l = Ac.add ac.h (p_cst, 1) ac.l} in
|
||||
(unit_coef, X.ac_embed ac)::acc
|
||||
| _ -> (coef,x)::acc
|
||||
)[] l
|
||||
in
|
||||
)[] l
|
||||
in
|
||||
P.create l c ty
|
||||
*)
|
||||
let make t =
|
||||
|
|
@ -201,12 +201,12 @@ module Make
|
|||
assert (n >=0);
|
||||
if n = 0 then acc else expand p (n-1) (p::acc)
|
||||
|
||||
let rec number_of_vars l =
|
||||
List.fold_left (fun acc (r, n) -> acc + n * nb_vars_in_alien r) 0 l
|
||||
let rec number_of_vars l =
|
||||
List.fold_left (fun acc (r, n) -> acc + n * nb_vars_in_alien r) 0 l
|
||||
|
||||
and nb_vars_in_alien r =
|
||||
and nb_vars_in_alien r =
|
||||
match C.extract r with
|
||||
| Some p ->
|
||||
| Some p ->
|
||||
let l, _ = P.to_list p in
|
||||
List.fold_left (fun acc (a, x) -> max acc (nb_vars_in_alien x)) 0 l
|
||||
| None -> 1
|
||||
|
|
@ -223,23 +223,23 @@ module Make
|
|||
let is_int r = X.type_info r = Ty.Tint
|
||||
|
||||
module XS = Set.Make(struct type t = X.r let compare = X.compare end)
|
||||
|
||||
let xs_of_list =
|
||||
|
||||
let xs_of_list =
|
||||
List.fold_left (fun s x -> XS.add x s) XS.empty
|
||||
|
||||
let rec leaves p =
|
||||
let s =
|
||||
|
||||
let rec leaves p =
|
||||
let s =
|
||||
List.fold_left
|
||||
(fun s (_, a) -> XS.union (xs_of_list (X.leaves a)) s)
|
||||
XS.empty (fst (P.to_list p))
|
||||
in
|
||||
XS.elements s
|
||||
|
||||
let subst x t p =
|
||||
let subst x t p =
|
||||
let p = P.subst x (embed t) p in
|
||||
let ty = P.type_info p in
|
||||
let l, c = P.to_list p in
|
||||
let p =
|
||||
let p =
|
||||
List.fold_left
|
||||
(fun p (ai, xi) ->
|
||||
let xi' = X.subst x t xi in
|
||||
|
|
@ -249,7 +249,7 @@ module Make
|
|||
in
|
||||
P.add p p')
|
||||
(P.create [] c ty) l
|
||||
in
|
||||
in
|
||||
check_int (Exception.Unsolvable) p;
|
||||
is_mine p
|
||||
|
||||
|
|
@ -259,32 +259,32 @@ module Make
|
|||
let hash = P.hash
|
||||
|
||||
(* symmetric modulo p 131 *)
|
||||
let mod_sym a b =
|
||||
let m = mod_num a b in
|
||||
let m =
|
||||
let mod_sym a b =
|
||||
let m = mod_num a b in
|
||||
let m =
|
||||
if m </ Int 0 then
|
||||
if m >=/ minus_num b then m +/ b else assert false
|
||||
else
|
||||
else
|
||||
if m <=/ b then m else assert false
|
||||
|
||||
|
||||
in
|
||||
if m </ b // (Int 2) then m else m -/ b
|
||||
|
||||
let mult_const p c =
|
||||
P.mult p (P.create [] c (P.type_info p))
|
||||
|
||||
|
||||
let map_monomes f l ax =
|
||||
List.fold_left
|
||||
(fun acc (a,x) ->
|
||||
(fun acc (a,x) ->
|
||||
let a = f a in if a =/ Int 0 then acc else (a, x) :: acc)
|
||||
[ax] l
|
||||
[ax] l
|
||||
|
||||
let apply_subst sb v =
|
||||
let apply_subst sb v =
|
||||
is_mine (List.fold_left (fun v (x, p) -> embed (subst x p v)) v sb)
|
||||
|
||||
(* substituer toutes variables plus grandes que x *)
|
||||
let subst_bigger x l =
|
||||
List.fold_left
|
||||
let subst_bigger x l =
|
||||
List.fold_left
|
||||
(fun (l, sb) (b, y) ->
|
||||
if X.compare y x > 0 then
|
||||
let k = X.term_embed (fresh_name ()) in
|
||||
|
|
@ -293,43 +293,43 @@ module Make
|
|||
([], []) l
|
||||
|
||||
let is_mine_p = List.map (fun (x,p) -> x, is_mine p)
|
||||
|
||||
|
||||
let extract_min = function
|
||||
| [] -> assert false
|
||||
| [c] -> c, []
|
||||
| (a, x) :: s ->
|
||||
List.fold_left
|
||||
| (a, x) :: s ->
|
||||
List.fold_left
|
||||
(fun ((a, x), l) (b, y) ->
|
||||
if abs_num a <=/ abs_num b then
|
||||
(a, x), ((b, y) :: l)
|
||||
if abs_num a <=/ abs_num b then
|
||||
(a, x), ((b, y) :: l)
|
||||
else (b, y), ((a, x):: l)) ((a, x),[]) s
|
||||
|
||||
|
||||
|
||||
(* Decision Procedures. Page 131 *)
|
||||
let rec omega l b =
|
||||
|
||||
(* 1. choix d'une variable donc le |coef| est minimal *)
|
||||
let (a, x), l = extract_min l in
|
||||
let rec omega l b =
|
||||
|
||||
(* 2. substituer les aliens plus grand que x pour
|
||||
(* 1. choix d'une variable donc le |coef| est minimal *)
|
||||
let (a, x), l = extract_min l in
|
||||
|
||||
(* 2. substituer les aliens plus grand que x pour
|
||||
assurer l'invariant sur l'ordre AC *)
|
||||
let l, sbs = subst_bigger x l in
|
||||
let p = P.create l b Ty.Tint in
|
||||
match a with
|
||||
| Int 0 -> assert false
|
||||
| Int 1 ->
|
||||
| Int 1 ->
|
||||
(* 3.1. si a = 1 alors on a une substitution entiere pour x *)
|
||||
let p = mult_const p (Int (-1)) in
|
||||
let p = mult_const p (Int (-1)) in
|
||||
(x, is_mine p) :: (is_mine_p sbs)
|
||||
|
||||
| Int (-1) ->
|
||||
|
||||
| Int (-1) ->
|
||||
(* 3.2. si a = -1 alors on a une subst entiere pour x*)
|
||||
(x,is_mine p) :: (is_mine_p sbs)
|
||||
| _ ->
|
||||
| _ ->
|
||||
(* 4. sinon, (|a| <> 1) et a <> 0 *)
|
||||
(* 4.1. on rend le coef a positif s'il ne l'est pas deja *)
|
||||
let a, l, b =
|
||||
if compare_num a (Int 0) < 0 then
|
||||
let a, l, b =
|
||||
if compare_num a (Int 0) < 0 then
|
||||
(minus_num a,
|
||||
List.map (fun (a,x) -> minus_num a,x) l, (minus_num b))
|
||||
else (a, l, b)
|
||||
|
|
@ -338,28 +338,28 @@ module Make
|
|||
omega_sigma sbs a x l b
|
||||
|
||||
and omega_sigma sbs a x l b =
|
||||
|
||||
|
||||
(* 1. on definie m qui vaut a + 1 *)
|
||||
let m = a +/ Int 1 in
|
||||
|
||||
(* 2. on introduit une variable fraiche *)
|
||||
let sigma = X.term_embed (fresh_name ()) in
|
||||
|
||||
|
||||
(* 3. l'application de la formule (5.63) nous donne la valeur du pivot x*)
|
||||
let mm_sigma = (minus_num m, sigma) in
|
||||
let l_mod = map_monomes (fun a -> mod_sym a m) l mm_sigma in
|
||||
|
||||
(* 3.1. Attention au signe de b :
|
||||
(* 3.1. Attention au signe de b :
|
||||
on le passe a droite avant de faire mod_sym, d'ou minus_num *)
|
||||
let b_mod = minus_num (mod_sym (minus_num b) m) in
|
||||
let p = P.create l_mod b_mod Ty.Tint in
|
||||
|
||||
let sbs = (x, p) :: sbs in
|
||||
|
||||
(* 4. on substitue x par sa valeur dans l'equation de depart.
|
||||
|
||||
(* 4. on substitue x par sa valeur dans l'equation de depart.
|
||||
Voir la formule (5.64) *)
|
||||
let p' = P.add (P.mult_const a p) (P.create l b Ty.Tint) in
|
||||
|
||||
|
||||
(* 5. on resoud sur l'equation simplifiee *)
|
||||
let sbs2 = solve_int p' in
|
||||
|
||||
|
|
@ -370,7 +370,7 @@ module Make
|
|||
let sbs2 = List.filter (fun (y, _) -> y <> sigma) sbs2 in
|
||||
List.rev_append sbs sbs2
|
||||
|
||||
and solve_int p =
|
||||
and solve_int p =
|
||||
if P.is_empty p then raise Not_found;
|
||||
let pgcd = P.pgcd_numerators p in
|
||||
let ppmc = P.ppmc_denominators p in
|
||||
|
|
@ -379,29 +379,29 @@ module Make
|
|||
if not (is_integer_num b) then raise Exception.Unsolvable;
|
||||
omega l b
|
||||
|
||||
let is_null p =
|
||||
if snd (P.to_list p) <>/ (Int 0) then raise Exception.Unsolvable;
|
||||
let is_null p =
|
||||
if snd (P.to_list p) <>/ (Int 0) then raise Exception.Unsolvable;
|
||||
[]
|
||||
|
||||
let solve_int p =
|
||||
let solve_int p =
|
||||
try solve_int p with Not_found -> is_null p
|
||||
|
||||
let solve_real p =
|
||||
try
|
||||
let a, x = P.choose p in
|
||||
let p =
|
||||
P.mult
|
||||
let p =
|
||||
P.mult
|
||||
(P.create [] ((Int (-1)) // a) (P.type_info p))
|
||||
(P.remove x p)
|
||||
(P.remove x p)
|
||||
in
|
||||
[x, is_mine p]
|
||||
with Not_found -> is_null p
|
||||
|
||||
let safe_distribution p =
|
||||
|
||||
let safe_distribution p =
|
||||
let l, c = P.to_list p in
|
||||
let ty = P.type_info p in
|
||||
List.fold_left
|
||||
(fun p (coef, x) -> P.add p (P.create [coef,x] (Int 0) ty))
|
||||
(fun p (coef, x) -> P.add p (P.create [coef,x] (Int 0) ty))
|
||||
(P.create [] c ty) l
|
||||
|
||||
let solve_aux r1 r2 =
|
||||
|
|
@ -418,18 +418,18 @@ module Make
|
|||
|
||||
let print = P.print
|
||||
|
||||
let fully_interpreted sb =
|
||||
let fully_interpreted sb =
|
||||
match sb with
|
||||
| Sy.Op (Sy.Plus | Sy.Minus) -> true
|
||||
| _ -> false
|
||||
|
||||
let term_extract _ = None
|
||||
|
||||
module Rel = Fm.Make (X)
|
||||
module Rel = Fm.Make (X)
|
||||
(struct
|
||||
include P
|
||||
include P
|
||||
let poly_of = embed
|
||||
let alien_of = is_mine
|
||||
end)
|
||||
|
||||
|
||||
end
|
||||
|
|
|
|||
|
|
@ -14,8 +14,8 @@
|
|||
|
||||
module Type (X : Sig.X ): Polynome.T with type r = X.r
|
||||
|
||||
module Make
|
||||
module Make
|
||||
(X : Sig.X)
|
||||
(P : Polynome.T with type r = X.r)
|
||||
(C : Sig.C with type t = P.t and type r = X.r) : Sig.THEORY
|
||||
(C : Sig.C with type t = P.t and type r = X.r) : Sig.THEORY
|
||||
with type r = X.r and type t = P.t
|
||||
|
|
|
|||
190
smt/cc.ml
190
smt/cc.ml
|
|
@ -26,13 +26,13 @@ module type S = sig
|
|||
module TimerCC : Timer.S
|
||||
|
||||
val empty : unit -> t
|
||||
val assume : cs:bool ->
|
||||
val assume : cs:bool ->
|
||||
Literal.LT.t -> Explanation.t -> t -> t * Term.Set.t * int
|
||||
val query : Literal.LT.t -> t -> answer
|
||||
val class_of : t -> Term.t -> Term.t list
|
||||
end
|
||||
|
||||
module Make (X : Sig.X) = struct
|
||||
module Make (X : Sig.X) = struct
|
||||
|
||||
module TimerCC = Timer.Make(struct end)
|
||||
|
||||
|
|
@ -47,10 +47,10 @@ module Make (X : Sig.X) = struct
|
|||
module S = Symbols
|
||||
|
||||
module SetX = Set.Make(struct type t = X.r let compare = X.compare end)
|
||||
|
||||
|
||||
(* module Uf = Pptarjan.Uf *)
|
||||
|
||||
type env = {
|
||||
type env = {
|
||||
use : Use.t;
|
||||
uf : Uf.t ;
|
||||
relation : X.Rel.t
|
||||
|
|
@ -60,16 +60,16 @@ module Make (X : Sig.X) = struct
|
|||
| CPos of int (* The explication of this choice *)
|
||||
| CNeg (* The choice has been already negated *)
|
||||
|
||||
type t = {
|
||||
type t = {
|
||||
gamma : env;
|
||||
gamma_finite : env ;
|
||||
choices : (X.r A.view * Num.num * choice_sign * Ex.t) list;
|
||||
choices : (X.r A.view * Num.num * choice_sign * Ex.t) list;
|
||||
(** the choice, the size, choice_sign, the explication set,
|
||||
the explication for this choice. *)
|
||||
}
|
||||
|
||||
module Print = struct
|
||||
|
||||
|
||||
let begin_case_split () = ()
|
||||
|
||||
let end_case_split () = ()
|
||||
|
|
@ -101,12 +101,12 @@ module Make (X : Sig.X) = struct
|
|||
let query a = ()
|
||||
|
||||
end
|
||||
|
||||
|
||||
let bottom = Hstring.make "@bottom"
|
||||
let one, _ = X.make (Term.make (S.name bottom) [] Ty.Tint)
|
||||
|
||||
let concat_leaves uf l =
|
||||
let rec concat_rec acc t =
|
||||
let concat_leaves uf l =
|
||||
let rec concat_rec acc t =
|
||||
match X.leaves (fst (Uf.find uf t)) , acc with
|
||||
[] , _ -> one::acc
|
||||
| res, [] -> res
|
||||
|
|
@ -116,18 +116,18 @@ module Make (X : Sig.X) = struct
|
|||
[] -> [one]
|
||||
| res -> res
|
||||
|
||||
let are_equal env ex t1 t2 =
|
||||
let are_equal env ex t1 t2 =
|
||||
if T.equal t1 t2 then ex
|
||||
else match Uf.are_equal env.uf t1 t2 with
|
||||
| Yes dep -> Ex.union ex dep
|
||||
| No -> raise Exit
|
||||
|
||||
let equal_only_by_congruence env ex t1 t2 acc =
|
||||
let equal_only_by_congruence env ex t1 t2 acc =
|
||||
if T.equal t1 t2 then acc
|
||||
else
|
||||
let {T.f=f1; xs=xs1; ty=ty1} = T.view t1 in
|
||||
if X.fully_interpreted f1 then acc
|
||||
else
|
||||
else
|
||||
let {T.f=f2; xs=xs2; ty=ty2} = T.view t2 in
|
||||
if Symbols.equal f1 f2 && Ty.equal ty1 ty2 then
|
||||
try
|
||||
|
|
@ -138,47 +138,47 @@ module Make (X : Sig.X) = struct
|
|||
with Exit -> acc
|
||||
else acc
|
||||
|
||||
let congruents env t1 s acc ex =
|
||||
let congruents env t1 s acc ex =
|
||||
SetT.fold (equal_only_by_congruence env ex t1) s acc
|
||||
|
||||
let fold_find_with_explanation find ex l =
|
||||
List.fold_left
|
||||
let fold_find_with_explanation find ex l =
|
||||
List.fold_left
|
||||
(fun (lr, ex) t -> let r, ex_r = find t in r::lr, Ex.union ex_r ex)
|
||||
([], ex) l
|
||||
|
||||
let view find va ex_a =
|
||||
let view find va ex_a =
|
||||
match va with
|
||||
| A.Eq (t1, t2) ->
|
||||
let r1, ex1 = find t1 in
|
||||
let r2, ex2 = find t2 in
|
||||
let ex = Ex.union (Ex.union ex1 ex2) ex_a in
|
||||
A.Eq(r1, r2), ex
|
||||
| A.Distinct (b, lt) ->
|
||||
let lr, ex = fold_find_with_explanation find ex_a lt in
|
||||
| A.Distinct (b, lt) ->
|
||||
let lr, ex = fold_find_with_explanation find ex_a lt in
|
||||
A.Distinct (b, lr), ex
|
||||
| A.Builtin(b, s, l) ->
|
||||
| A.Builtin(b, s, l) ->
|
||||
let lr, ex = fold_find_with_explanation find ex_a l in
|
||||
A.Builtin(b, s, List.rev lr), ex
|
||||
|
||||
let term_canonical_view env a ex_a =
|
||||
let term_canonical_view env a ex_a =
|
||||
view (Uf.find env.uf) (A.LT.view a) ex_a
|
||||
|
||||
let canonical_view env a ex_a = view (Uf.find_r env.uf) a ex_a
|
||||
|
||||
let new_facts_by_contra_congruence env r bol ex =
|
||||
let new_facts_by_contra_congruence env r bol ex =
|
||||
match X.term_extract r with
|
||||
| None -> []
|
||||
| Some t1 ->
|
||||
| Some t1 ->
|
||||
match T.view t1 with
|
||||
| {T.f=f1 ; xs=[x]} ->
|
||||
List.fold_left
|
||||
| {T.f=f1 ; xs=[x]} ->
|
||||
List.fold_left
|
||||
(fun acc t2 ->
|
||||
match T.view t2 with
|
||||
| {T.f=f2 ; xs=[y]} when S.equal f1 f2 ->
|
||||
let a = A.LT.make (A.Distinct (false, [x; y])) in
|
||||
let dist = LTerm a in
|
||||
begin match Uf.are_distinct env.uf t1 t2 with
|
||||
| Yes ex' ->
|
||||
| Yes ex' ->
|
||||
let ex_r = Ex.union ex ex' in
|
||||
Print.contra_congruence a ex_r;
|
||||
(dist, ex_r) :: acc
|
||||
|
|
@ -188,25 +188,25 @@ module Make (X : Sig.X) = struct
|
|||
) [] (Uf.class_of env.uf bol)
|
||||
| _ -> []
|
||||
|
||||
let contra_congruence =
|
||||
let contra_congruence =
|
||||
let vrai,_ = X.make T.vrai in
|
||||
let faux, _ = X.make T.faux in
|
||||
fun env r ex ->
|
||||
fun env r ex ->
|
||||
if X.equal (fst (Uf.find_r env.uf r)) vrai then
|
||||
new_facts_by_contra_congruence env r T.faux ex
|
||||
else if X.equal (fst (Uf.find_r env.uf r)) faux then
|
||||
new_facts_by_contra_congruence env r T.vrai ex
|
||||
else []
|
||||
|
||||
let clean_use =
|
||||
List.fold_left
|
||||
(fun env (a, ex) ->
|
||||
match a with
|
||||
let clean_use =
|
||||
List.fold_left
|
||||
(fun env (a, ex) ->
|
||||
match a with
|
||||
| LSem _ -> assert false
|
||||
| LTerm t ->
|
||||
| LTerm t ->
|
||||
begin
|
||||
match A.LT.view t with
|
||||
| A.Distinct (_, lt)
|
||||
| A.Distinct (_, lt)
|
||||
| A.Builtin (_, _, lt) ->
|
||||
let lvs = concat_leaves env.uf lt in
|
||||
List.fold_left
|
||||
|
|
@ -216,40 +216,40 @@ module Make (X : Sig.X) = struct
|
|||
{ env with use = Use.add rx (st,sa) env.use }
|
||||
) env lvs
|
||||
| _ -> assert false
|
||||
end)
|
||||
end)
|
||||
|
||||
let rec congruence_closure env r1 r2 ex =
|
||||
let rec congruence_closure env r1 r2 ex =
|
||||
Print.cc r1 r2;
|
||||
let uf, res = Uf.union env.uf r1 r2 ex in
|
||||
List.fold_left
|
||||
List.fold_left
|
||||
(fun (env, l) (p, touched, v) ->
|
||||
(* we look for use(p) *)
|
||||
let p_t, p_a = Use.find p env.use in
|
||||
|
||||
|
||||
(* we compute terms and atoms to consider for congruence *)
|
||||
let repr_touched = List.map (fun (_,a,_) -> a) touched in
|
||||
let st_others, sa_others = Use.congr_close_up env.use p repr_touched in
|
||||
|
||||
|
||||
(* we update use *)
|
||||
let nuse = Use.up_close_up env.use p v in
|
||||
Use.print nuse;
|
||||
|
||||
|
||||
(* we check the congruence of the terms. *)
|
||||
let env = {env with use=nuse} in
|
||||
let new_eqs =
|
||||
let new_eqs =
|
||||
SetT.fold (fun t l -> congruents env t st_others l ex) p_t l in
|
||||
let touched_atoms =
|
||||
List.map (fun (x,y,e)-> (LSem(A.Eq(x, y)), e)) touched
|
||||
let touched_atoms =
|
||||
List.map (fun (x,y,e)-> (LSem(A.Eq(x, y)), e)) touched
|
||||
in
|
||||
let touched_atoms = SetA.fold (fun (a, ex) acc ->
|
||||
(LTerm a, ex)::acc) p_a touched_atoms in
|
||||
let touched_atoms = SetA.fold (fun (a, ex) acc ->
|
||||
(LTerm a, ex)::acc) sa_others touched_atoms in
|
||||
env, new_eqs @ touched_atoms
|
||||
|
||||
env, new_eqs @ touched_atoms
|
||||
|
||||
) ({env with uf=uf}, []) res
|
||||
|
||||
let replay_atom env sa =
|
||||
let replay_atom env sa =
|
||||
let relation, result = X.Rel.assume env.relation sa in
|
||||
let env = { env with relation = relation } in
|
||||
let env = clean_use env result.remove in
|
||||
|
|
@ -262,19 +262,19 @@ module Make (X : Sig.X) = struct
|
|||
Print.add_to_use t;
|
||||
(* we add t's arguments in env *)
|
||||
let {T.f = f; xs = xs} = T.view t in
|
||||
let env, choices =
|
||||
let env, choices =
|
||||
List.fold_left (fun (env, ch) t -> add_term env ch t ex)
|
||||
(env, choices) xs
|
||||
(env, choices) xs
|
||||
in
|
||||
(* we update uf and use *)
|
||||
let nuf, ctx = Uf.add env.uf t in
|
||||
let nuf, ctx = Uf.add env.uf t in
|
||||
Print.make_cst t ctx;
|
||||
let rt, _ = Uf.find nuf t in (* XXX : ctx only in terms *)
|
||||
|
||||
if !cc_active then
|
||||
let lvs = concat_leaves nuf xs in
|
||||
let nuse = Use.up_add env.use t rt lvs in
|
||||
|
||||
|
||||
(* If finitetest is used we add the term to the relation *)
|
||||
let rel = X.Rel.add env.relation rt in
|
||||
Use.print nuse;
|
||||
|
|
@ -282,42 +282,42 @@ module Make (X : Sig.X) = struct
|
|||
(* we compute terms to consider for congruence *)
|
||||
(* we do this only for non-atomic terms with uninterpreted head-symbol *)
|
||||
let st_uset = Use.congr_add nuse lvs in
|
||||
|
||||
|
||||
(* we check the congruence of each term *)
|
||||
let env = {uf = nuf; use = nuse; relation = rel} in
|
||||
let env = {uf = nuf; use = nuse; relation = rel} in
|
||||
let ct = congruents env t st_uset [] ex in
|
||||
let ct = (List.map (fun lt -> LTerm lt, ex) ctx) @ ct in
|
||||
assume_literal env choices ct
|
||||
else
|
||||
let rel = X.Rel.add env.relation rt in
|
||||
let env = {env with uf = nuf; relation = rel} in
|
||||
let env = {env with uf = nuf; relation = rel} in
|
||||
env, choices
|
||||
end
|
||||
|
||||
and add env choices a ex =
|
||||
match A.LT.view a with
|
||||
| A.Eq (t1, t2) ->
|
||||
| A.Eq (t1, t2) ->
|
||||
let env, choices = add_term env choices t1 ex in
|
||||
add_term env choices t2 ex
|
||||
| A.Distinct (_, lt)
|
||||
| A.Distinct (_, lt)
|
||||
| A.Builtin (_, _, lt) ->
|
||||
let env, choices = List.fold_left
|
||||
let env, choices = List.fold_left
|
||||
(fun (env, ch) t-> add_term env ch t ex) (env, choices) lt in
|
||||
let lvs = concat_leaves env.uf lt in (* A verifier *)
|
||||
let env = List.fold_left
|
||||
(fun env rx ->
|
||||
let st, sa = Use.find rx env.use in
|
||||
{ env with
|
||||
{ env with
|
||||
use = Use.add rx (st,SetA.add (a, ex) sa) env.use }
|
||||
) env lvs
|
||||
in
|
||||
env, choices
|
||||
|
||||
and semantic_view env choices la =
|
||||
List.fold_left
|
||||
and semantic_view env choices la =
|
||||
List.fold_left
|
||||
(fun (env, choices, lsa) (a, ex) ->
|
||||
match a with
|
||||
| LTerm a ->
|
||||
match a with
|
||||
| LTerm a ->
|
||||
let env, choices = add env choices a ex in
|
||||
let sa, ex = term_canonical_view env a ex in
|
||||
env, choices, (sa, Some a, ex)::lsa
|
||||
|
|
@ -334,7 +334,7 @@ module Make (X : Sig.X) = struct
|
|||
|
||||
and assume_literal env choices la =
|
||||
if la = [] then env, choices
|
||||
else
|
||||
else
|
||||
let env, choices, lsa = semantic_view env choices la in
|
||||
let env, choices =
|
||||
List.fold_left
|
||||
|
|
@ -363,15 +363,15 @@ module Make (X : Sig.X) = struct
|
|||
assume_literal env (choices@l) l
|
||||
|
||||
let look_for_sat ?(bad_last=No) ch t base_env l =
|
||||
let rec aux ch bad_last dl base_env li =
|
||||
let rec aux ch bad_last dl base_env li =
|
||||
match li, bad_last with
|
||||
| [], _ ->
|
||||
| [], _ ->
|
||||
begin
|
||||
match X.Rel.case_split base_env.relation with
|
||||
| [] ->
|
||||
| [] ->
|
||||
{ t with gamma_finite = base_env; choices = List.rev dl }, ch
|
||||
| l ->
|
||||
let l =
|
||||
let l =
|
||||
List.map
|
||||
(fun (c, ex_c, size) ->
|
||||
let exp = Ex.fresh_exp () in
|
||||
|
|
@ -420,13 +420,13 @@ module Make (X : Sig.X) = struct
|
|||
let try_it f t =
|
||||
Print.begin_case_split ();
|
||||
let r =
|
||||
try
|
||||
try
|
||||
if t.choices = [] then look_for_sat [] t t.gamma []
|
||||
else
|
||||
try
|
||||
let env, lt = f t.gamma_finite in
|
||||
look_for_sat lt t env []
|
||||
with Exception.Inconsistent dep ->
|
||||
with Exception.Inconsistent dep ->
|
||||
look_for_sat ~bad_last:(Yes dep)
|
||||
[] { t with choices = []} t.gamma t.choices
|
||||
with Exception.Inconsistent d ->
|
||||
|
|
@ -437,37 +437,37 @@ module Make (X : Sig.X) = struct
|
|||
|
||||
let extract_from_semvalues =
|
||||
List.fold_left
|
||||
(fun acc r ->
|
||||
match X.term_extract r with Some t -> SetT.add t acc | _ -> acc)
|
||||
|
||||
let extract_terms_from_choices =
|
||||
List.fold_left
|
||||
(fun acc (a, _, _, _) ->
|
||||
(fun acc r ->
|
||||
match X.term_extract r with Some t -> SetT.add t acc | _ -> acc)
|
||||
|
||||
let extract_terms_from_choices =
|
||||
List.fold_left
|
||||
(fun acc (a, _, _, _) ->
|
||||
match a with
|
||||
| A.Eq(r1, r2) -> extract_from_semvalues acc [r1; r2]
|
||||
| A.Distinct (_, l) -> extract_from_semvalues acc l
|
||||
| _ -> acc)
|
||||
| _ -> acc)
|
||||
|
||||
let extract_terms_from_assumed =
|
||||
List.fold_left
|
||||
(fun acc (a, _) ->
|
||||
let extract_terms_from_assumed =
|
||||
List.fold_left
|
||||
(fun acc (a, _) ->
|
||||
match a with
|
||||
| LTerm r -> begin
|
||||
match Literal.LT.view r with
|
||||
| Literal.Eq (t1, t2) ->
|
||||
match Literal.LT.view r with
|
||||
| Literal.Eq (t1, t2) ->
|
||||
SetT.add t1 (SetT.add t2 acc)
|
||||
| Literal.Distinct (_, l) | Literal.Builtin (_, _, l) ->
|
||||
| Literal.Distinct (_, l) | Literal.Builtin (_, _, l) ->
|
||||
List.fold_right SetT.add l acc
|
||||
end
|
||||
| _ -> acc)
|
||||
|
||||
let assume ~cs a ex t =
|
||||
let assume ~cs a ex t =
|
||||
let a = LTerm a in
|
||||
let gamma, ch = assume_literal t.gamma [] [a, ex] in
|
||||
let t = { t with gamma = gamma } in
|
||||
let t, ch =
|
||||
let t, ch =
|
||||
if cs then try_it (fun env -> assume_literal env ch [a, ex] ) t
|
||||
else t, ch
|
||||
else t, ch
|
||||
in
|
||||
let choices = extract_terms_from_choices SetT.empty t.choices in
|
||||
let all_terms = extract_terms_from_assumed choices ch in
|
||||
|
|
@ -476,13 +476,13 @@ module Make (X : Sig.X) = struct
|
|||
let class_of t term = Uf.class_of t.gamma.uf term
|
||||
|
||||
let add_and_process a t =
|
||||
let aux a ex env =
|
||||
let aux a ex env =
|
||||
let gamma, l = add env [] a ex in assume_literal gamma [] l
|
||||
in
|
||||
let gamma, _ = aux a Ex.empty t.gamma in
|
||||
let t = { t with gamma = gamma } in
|
||||
let t, _ = try_it (aux a Ex.empty) t in
|
||||
Use.print t.gamma.use; t
|
||||
Use.print t.gamma.use; t
|
||||
|
||||
let query a t =
|
||||
Print.query a;
|
||||
|
|
@ -492,15 +492,15 @@ module Make (X : Sig.X) = struct
|
|||
let t = add_and_process a t in
|
||||
Uf.are_equal t.gamma.uf t1 t2
|
||||
|
||||
| A.Distinct (false, [t1; t2]) ->
|
||||
| A.Distinct (false, [t1; t2]) ->
|
||||
let na = A.LT.neg a in
|
||||
let t = add_and_process na t in (* na ? *)
|
||||
Uf.are_distinct t.gamma.uf t1 t2
|
||||
|
||||
| A.Distinct _ ->
|
||||
| A.Distinct _ ->
|
||||
assert false (* devrait etre capture par une analyse statique *)
|
||||
|
||||
| _ ->
|
||||
| _ ->
|
||||
let na = A.LT.neg a in
|
||||
let t = add_and_process na t in
|
||||
let env = t.gamma in
|
||||
|
|
@ -508,16 +508,16 @@ module Make (X : Sig.X) = struct
|
|||
X.Rel.query env.relation (rna, Some na, ex_rna)
|
||||
with Exception.Inconsistent d -> Yes d
|
||||
|
||||
let empty () =
|
||||
let env = {
|
||||
use = Use.empty ;
|
||||
uf = Uf.empty ;
|
||||
let empty () =
|
||||
let env = {
|
||||
use = Use.empty ;
|
||||
uf = Uf.empty ;
|
||||
relation = X.Rel.empty ();
|
||||
}
|
||||
in
|
||||
let t = { gamma = env; gamma_finite = env; choices = [] } in
|
||||
let t, _, _ =
|
||||
assume ~cs:false
|
||||
let t, _, _ =
|
||||
assume ~cs:false
|
||||
(A.LT.make (A.Distinct (false, [T.vrai; T.faux]))) Ex.empty t
|
||||
in t
|
||||
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ module type S = sig
|
|||
module TimerCC : Timer.S
|
||||
|
||||
val empty : unit -> t
|
||||
val assume : cs:bool ->
|
||||
val assume : cs:bool ->
|
||||
Literal.LT.t -> Explanation.t -> t -> t * Term.Set.t * int
|
||||
val query : Literal.LT.t -> t -> Sig.answer
|
||||
val class_of : t -> Term.t -> Term.t list
|
||||
|
|
|
|||
124
smt/combine.ml
124
smt/combine.ml
|
|
@ -28,31 +28,31 @@ struct
|
|||
|
||||
type r =
|
||||
| Term of Term.t
|
||||
| X1 of X1.t
|
||||
| X5 of X5.t
|
||||
|
||||
| X1 of X1.t
|
||||
| X5 of X5.t
|
||||
|
||||
let extract1 = function X1 r -> Some r | _ -> None
|
||||
let extract5 = function X5 r -> Some r | _ -> None
|
||||
|
||||
|
||||
let embed1 x = X1 x
|
||||
let embed5 x = X5 x
|
||||
|
||||
let is_int v =
|
||||
let is_int v =
|
||||
let ty = match v with
|
||||
| X1 x -> X1.type_info x
|
||||
| X5 x -> X5.type_info x
|
||||
| Term t -> (Term.view t).Term.ty
|
||||
in
|
||||
in
|
||||
ty = Ty.Tint
|
||||
|
||||
let rec compare a b =
|
||||
let c = compare_tag a b in
|
||||
|
||||
let rec compare a b =
|
||||
let c = compare_tag a b in
|
||||
if c = 0 then comparei a b else c
|
||||
|
||||
and compare_tag a b =
|
||||
and compare_tag a b =
|
||||
Pervasives.compare (theory_num a) (theory_num b)
|
||||
|
||||
and comparei a b =
|
||||
|
||||
and comparei a b =
|
||||
match a, b with
|
||||
| X1 x, X1 y -> X1.compare x y
|
||||
| X5 x, X5 y -> X5.compare x y
|
||||
|
|
@ -64,47 +64,47 @@ struct
|
|||
let equal a b = compare a b = 0
|
||||
|
||||
let hash = function
|
||||
| Term t -> Term.hash t
|
||||
| Term t -> Term.hash t
|
||||
| X1 x -> X1.hash x
|
||||
| X5 x -> X5.hash x
|
||||
|
||||
module MR = Map.Make(struct type t = r let compare = compare end)
|
||||
|
||||
let print fmt r =
|
||||
|
||||
let print fmt r =
|
||||
match r with
|
||||
| X1 t -> fprintf fmt "%a" X1.print t
|
||||
| X5 t -> fprintf fmt "%a" X5.print t
|
||||
| Term t -> fprintf fmt "%a" Term.print t
|
||||
|
||||
let leaves r =
|
||||
match r with
|
||||
| X1 t -> X1.leaves t
|
||||
| X5 t -> X5.leaves t
|
||||
|
||||
let leaves r =
|
||||
match r with
|
||||
| X1 t -> X1.leaves t
|
||||
| X5 t -> X5.leaves t
|
||||
| Term _ -> [r]
|
||||
|
||||
let term_embed t = Term t
|
||||
|
||||
let term_extract r =
|
||||
match r with
|
||||
| X1 _ -> X1.term_extract r
|
||||
| X5 _ -> X5.term_extract r
|
||||
let term_extract r =
|
||||
match r with
|
||||
| X1 _ -> X1.term_extract r
|
||||
| X5 _ -> X5.term_extract r
|
||||
| Term t -> Some t
|
||||
|
||||
let subst p v r =
|
||||
if equal p v then r
|
||||
let subst p v r =
|
||||
if equal p v then r
|
||||
else match r with
|
||||
| X1 t -> X1.subst p v t
|
||||
| X5 t -> X5.subst p v t
|
||||
| Term _ -> if equal p r then v else r
|
||||
|
||||
let make t =
|
||||
let make t =
|
||||
let {Term.f=sb} = Term.view t in
|
||||
match X1.is_mine_symb sb, X5.is_mine_symb sb with
|
||||
| true, false -> X1.make t
|
||||
| false, true -> X5.make t
|
||||
| false, false -> Term t, []
|
||||
| _ -> assert false
|
||||
|
||||
|
||||
let fully_interpreted sb =
|
||||
match X1.is_mine_symb sb, X5.is_mine_symb sb with
|
||||
| true, false -> X1.fully_interpreted sb
|
||||
|
|
@ -113,38 +113,38 @@ struct
|
|||
| _ -> assert false
|
||||
|
||||
let add_mr =
|
||||
List.fold_left
|
||||
(fun solved (p,v) ->
|
||||
List.fold_left
|
||||
(fun solved (p,v) ->
|
||||
MR.add p (v::(try MR.find p solved with Not_found -> [])) solved)
|
||||
|
||||
let unsolvable = function
|
||||
| X1 x -> X1.unsolvable x
|
||||
| X5 x -> X5.unsolvable x
|
||||
| X5 x -> X5.unsolvable x
|
||||
| Term _ -> true
|
||||
|
||||
let partition tag =
|
||||
List.partition
|
||||
(fun (u,t) ->
|
||||
(theory_num u = tag || unsolvable u) &&
|
||||
let partition tag =
|
||||
List.partition
|
||||
(fun (u,t) ->
|
||||
(theory_num u = tag || unsolvable u) &&
|
||||
(theory_num t = tag || unsolvable t))
|
||||
|
||||
let rec solve_list solved l =
|
||||
List.fold_left
|
||||
(fun solved (a,b) ->
|
||||
(fun solved (a,b) ->
|
||||
let cmp = compare a b in
|
||||
if cmp = 0 then solved else
|
||||
match a , b with
|
||||
(* both sides are empty *)
|
||||
| Term _ , Term _ ->
|
||||
| Term _ , Term _ ->
|
||||
add_mr solved (unsolvable_values cmp a b)
|
||||
|
||||
|
||||
(* only one side is empty *)
|
||||
| (a, b)
|
||||
| (a, b)
|
||||
when unsolvable a || unsolvable b || compare_tag a b = 0 ->
|
||||
let a,b = if unsolvable a then b,a else a,b in
|
||||
let cp , sol = partition (theory_num a) (solvei b a) in
|
||||
solve_list (add_mr solved cp) sol
|
||||
|
||||
|
||||
(* both sides are not empty *)
|
||||
| a , b -> solve_theoryj solved a b
|
||||
) solved l
|
||||
|
|
@ -153,7 +153,7 @@ struct
|
|||
match a, b with
|
||||
(* Clash entre theories: On peut avoir ces pbs ? *)
|
||||
| X1 _, X5 _
|
||||
| X5 _, X1 _
|
||||
| X5 _, X1 _
|
||||
-> assert false
|
||||
|
||||
(* theorie d'un cote, vide de l'autre *)
|
||||
|
|
@ -171,23 +171,23 @@ struct
|
|||
| X5 _ -> X5.solve a b
|
||||
| Term _ -> assert false
|
||||
|
||||
let rec solve_rec mt ab =
|
||||
let rec solve_rec mt ab =
|
||||
let mr = solve_list mt ab in
|
||||
let mr , ab =
|
||||
MR.fold
|
||||
let mr , ab =
|
||||
MR.fold
|
||||
(fun p lr ((mt,ab) as acc) -> match lr with
|
||||
[] -> assert false
|
||||
| [_] -> acc
|
||||
| x::lx ->
|
||||
MR.add p [x] mr , List.rev_map (fun y-> (x,y)) lx)
|
||||
| x::lx ->
|
||||
MR.add p [x] mr , List.rev_map (fun y-> (x,y)) lx)
|
||||
mr (mr,[])
|
||||
in
|
||||
in
|
||||
if ab = [] then mr else solve_rec mr ab
|
||||
|
||||
|
||||
let solve a b =
|
||||
MR.fold
|
||||
(fun p lr ret ->
|
||||
match lr with [r] -> (p ,r)::ret | _ -> assert false)
|
||||
MR.fold
|
||||
(fun p lr ret ->
|
||||
match lr with [r] -> (p ,r)::ret | _ -> assert false)
|
||||
(solve_rec MR.empty [a,b]) []
|
||||
|
||||
let rec type_info = function
|
||||
|
|
@ -199,28 +199,28 @@ struct
|
|||
type elt = r
|
||||
type r = elt
|
||||
|
||||
type t = {
|
||||
r1: X1.Rel.t;
|
||||
r5: X5.Rel.t;
|
||||
type t = {
|
||||
r1: X1.Rel.t;
|
||||
r5: X5.Rel.t;
|
||||
}
|
||||
|
||||
let empty _ = {
|
||||
r1=X1.Rel.empty ();
|
||||
r1=X1.Rel.empty ();
|
||||
r5=X5.Rel.empty ();
|
||||
}
|
||||
|
||||
let assume env sa =
|
||||
|
||||
let assume env sa =
|
||||
let env1, { assume = a1; remove = rm1} = X1.Rel.assume env.r1 sa in
|
||||
let env5, { assume = a5; remove = rm5} = X5.Rel.assume env.r5 sa in
|
||||
{r1=env1; r5=env5},
|
||||
{r1=env1; r5=env5},
|
||||
{ assume = a1@a5; remove = rm1@rm5;}
|
||||
|
||||
let query env a =
|
||||
let query env a =
|
||||
match X1.Rel.query env.r1 a with
|
||||
| Yes _ as ans -> ans
|
||||
| No -> X5.Rel.query env.r5 a
|
||||
|
||||
let case_split env =
|
||||
|
||||
let case_split env =
|
||||
let seq1 = X1.Rel.case_split env.r1 in
|
||||
let seq5 = X5.Rel.case_split env.r5 in
|
||||
seq1 @ seq5
|
||||
|
|
@ -241,7 +241,7 @@ and X1 : Sig.THEORY with type t = TX1.t and type r = CX.r =
|
|||
type r = CX.r
|
||||
let extract = CX.extract1
|
||||
let embed = CX.embed1
|
||||
let assume env _ _ = env, {Sig.assume = []; remove = []}
|
||||
let assume env _ _ = env, {Sig.assume = []; remove = []}
|
||||
end)
|
||||
|
||||
and X5 : Sig.THEORY with type r = CX.r and type t = CX.r Sum.abstract =
|
||||
|
|
|
|||
|
|
@ -12,14 +12,14 @@
|
|||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
open Solver_types
|
||||
open Solver_types
|
||||
open Format
|
||||
|
||||
type exp = Atom of Solver_types.atom | Fresh of int
|
||||
|
||||
module S =
|
||||
module S =
|
||||
Set.Make
|
||||
(struct
|
||||
(struct
|
||||
type t = exp
|
||||
let compare a b = match a,b with
|
||||
| Atom _, Fresh _ -> -1
|
||||
|
|
@ -27,25 +27,25 @@ module S =
|
|||
| Fresh i1, Fresh i2 -> i1 - i2
|
||||
| Atom a, Atom b -> a.aid - b.aid
|
||||
end)
|
||||
|
||||
|
||||
type t = S.t
|
||||
|
||||
let singleton e = S.singleton (Atom e)
|
||||
|
||||
|
||||
let empty = S.empty
|
||||
|
||||
let union s1 s2 = S.union s1 s2
|
||||
|
||||
let iter_atoms f s =
|
||||
let iter_atoms f s =
|
||||
S.iter (fun e -> match e with
|
||||
| Fresh _ -> ()
|
||||
| Atom a -> f a) s
|
||||
|
||||
let fold_atoms f s acc =
|
||||
let fold_atoms f s acc =
|
||||
S.fold (fun e acc -> match e with
|
||||
| Fresh _ -> acc
|
||||
| Atom a -> f a acc) s acc
|
||||
|
||||
|
||||
let merge e1 e2 = e1
|
||||
|
||||
|
||||
|
|
@ -61,9 +61,9 @@ let remove_fresh i s =
|
|||
let add_fresh i = S.add (Fresh i)
|
||||
|
||||
|
||||
let print fmt ex =
|
||||
let print fmt ex =
|
||||
fprintf fmt "{";
|
||||
S.iter (function
|
||||
S.iter (function
|
||||
| Atom a -> fprintf fmt "%a, " Debug.atom a
|
||||
| Fresh i -> fprintf fmt "Fresh%d " i) ex;
|
||||
| Fresh i -> fprintf fmt "Fresh%d " i) ex;
|
||||
fprintf fmt "}"
|
||||
|
|
|
|||
308
smt/fm.ml
308
smt/fm.ml
|
|
@ -15,7 +15,7 @@ open Num
|
|||
open Format
|
||||
open Sig
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
let ale = Hstring.make "<="
|
||||
let alt = Hstring.make "<"
|
||||
let is_le n = Hstring.compare n ale = 0
|
||||
let is_lt n = Hstring.compare n alt = 0
|
||||
|
|
@ -24,7 +24,7 @@ let (-@) l1 l2 = List.rev_append l1 l2
|
|||
|
||||
module L = Literal
|
||||
module Sy = Symbols
|
||||
|
||||
|
||||
exception NotConsistent of Literal.LT.Set.t
|
||||
|
||||
module type EXTENDED_Polynome = sig
|
||||
|
|
@ -33,7 +33,7 @@ module type EXTENDED_Polynome = sig
|
|||
val alien_of : t -> r
|
||||
end
|
||||
|
||||
module Make
|
||||
module Make
|
||||
(X : Sig.X)
|
||||
(P : EXTENDED_Polynome with type r = X.r) = struct
|
||||
|
||||
|
|
@ -41,22 +41,22 @@ module Make
|
|||
module SP = Set.Make(P)
|
||||
module SX = Set.Make(struct type t = X.r include X end)
|
||||
module MX = Map.Make(struct type t = X.r include X end)
|
||||
|
||||
|
||||
type r = P.r
|
||||
|
||||
module LR = Literal.Make(struct type t = X.r include X end)
|
||||
|
||||
module Seq =
|
||||
module Seq =
|
||||
Set.Make
|
||||
(struct
|
||||
type t = r L.view * L.LT.t option * Explanation.t
|
||||
let compare (a, _, _) (b, _, _) =
|
||||
let compare (a, _, _) (b, _, _) =
|
||||
LR.compare (LR.make a) (LR.make b)
|
||||
end)
|
||||
|
||||
|
||||
module Inequation = struct
|
||||
type t = {
|
||||
ple0 : P.t;
|
||||
type t = {
|
||||
ple0 : P.t;
|
||||
is_le : bool;
|
||||
dep : (Literal.LT.t * num * P.t * bool) list;
|
||||
expl : Explanation.t
|
||||
|
|
@ -65,7 +65,7 @@ module Make
|
|||
let print fmt ineq = fprintf fmt "%a %s 0" P.print ineq.ple0
|
||||
(if ineq.is_le then "<=" else "<")
|
||||
|
||||
let create p1 p2 is_le a expl =
|
||||
let create p1 p2 is_le a expl =
|
||||
let p = P.add p1 (P.mult (P.create [] (Int (-1)) (P.type_info p1)) p2) in
|
||||
{ ple0 = p; is_le = is_le; dep = [a, Int 1, p, is_le]; expl = expl }
|
||||
|
||||
|
|
@ -75,18 +75,18 @@ module Make
|
|||
|
||||
let is_monomial ineq = P.is_monomial ineq.ple0
|
||||
|
||||
let pos_neg mx { ple0 = p } =
|
||||
let pos_neg mx { ple0 = p } =
|
||||
List.fold_left (fun m (c,x) ->
|
||||
let cmp = compare_num c (Int 0) in
|
||||
if cmp = 0 then m
|
||||
else
|
||||
else
|
||||
let (pos, neg) = try MX.find x m with Not_found -> (0,0) in
|
||||
if cmp > 0 then MX.add x (pos+1, neg) m
|
||||
if cmp > 0 then MX.add x (pos+1, neg) m
|
||||
else MX.add x (pos, neg+1) m ) mx (fst (P.to_list p))
|
||||
|
||||
|
||||
end
|
||||
|
||||
type t = {
|
||||
type t = {
|
||||
inequations : (Literal.LT.t * Inequation.t) list ;
|
||||
monomes: (Intervals.t * SX.t) MX.t;
|
||||
polynomes : Intervals.t MP.t;
|
||||
|
|
@ -95,30 +95,30 @@ module Make
|
|||
}
|
||||
|
||||
module Debug = struct
|
||||
|
||||
|
||||
let list_of_ineqs fmt = List.iter (fprintf fmt "%a " Inequation.print)
|
||||
|
||||
let assume a = ()
|
||||
|
||||
let cross x cpos cneg others ninqs = ()
|
||||
|
||||
let print_use fmt use =
|
||||
let print_use fmt use =
|
||||
SX.iter (fprintf fmt "%a, " X.print) use
|
||||
|
||||
let env env = ()
|
||||
|
||||
let implied_equalities l = ()
|
||||
end
|
||||
|
||||
let empty _ = {
|
||||
inequations = [] ;
|
||||
monomes = MX.empty ;
|
||||
polynomes = MP.empty ;
|
||||
known_eqs = SX.empty ;
|
||||
improved = SP.empty ;
|
||||
|
||||
let empty _ = {
|
||||
inequations = [] ;
|
||||
monomes = MX.empty ;
|
||||
polynomes = MP.empty ;
|
||||
known_eqs = SX.empty ;
|
||||
improved = SP.empty ;
|
||||
}
|
||||
|
||||
let replace_inequation env x ineq =
|
||||
let replace_inequation env x ineq =
|
||||
{ env with
|
||||
inequations = (x, ineq)::(List.remove_assoc x env.inequations) }
|
||||
|
||||
|
|
@ -127,13 +127,13 @@ module Make
|
|||
if Intervals.is_strict_smaller newi oldi then
|
||||
{ env with improved = SP.add p env.improved }
|
||||
else env
|
||||
|
||||
|
||||
(*
|
||||
let oldify_inequations env =
|
||||
{ env with
|
||||
inequations = env.inequations@env.new_inequations;
|
||||
new_inequations = [] } *)
|
||||
|
||||
|
||||
let mult_bornes_vars vars monomes ty=
|
||||
List.fold_left
|
||||
(fun ui (y,n) ->
|
||||
|
|
@ -142,7 +142,7 @@ module Make
|
|||
with Not_found -> Intervals.undefined ty
|
||||
in
|
||||
Intervals.mult ui (Intervals.power n ui')
|
||||
) (Intervals.point (Int 1) ty Explanation.empty) vars
|
||||
) (Intervals.point (Int 1) ty Explanation.empty) vars
|
||||
|
||||
|
||||
let intervals_from_monomes env p =
|
||||
|
|
@ -154,13 +154,13 @@ module Make
|
|||
) (Intervals.point v (P.type_info p) Explanation.empty) pl
|
||||
|
||||
let rec add_monome expl use_x env x =
|
||||
try
|
||||
try
|
||||
let u, old_use_x = MX.find x env.monomes in
|
||||
{ env with monomes = MX.add x (u, SX.union old_use_x use_x) env.monomes }
|
||||
with Not_found ->
|
||||
with Not_found ->
|
||||
update_monome expl use_x env x
|
||||
|
||||
and init_monomes env p use_p expl =
|
||||
and init_monomes env p use_p expl =
|
||||
List.fold_left
|
||||
(fun env (_, x) -> add_monome expl use_p env x)
|
||||
env (fst (P.to_list p))
|
||||
|
|
@ -168,8 +168,8 @@ module Make
|
|||
and init_alien expl p (normal_p, c, d) ty use_x env =
|
||||
let env = init_monomes env p use_x expl in
|
||||
let i = intervals_from_monomes env p in
|
||||
let i =
|
||||
try
|
||||
let i =
|
||||
try
|
||||
let old_i = MP.find normal_p env.polynomes in
|
||||
let old_i = Intervals.scale d
|
||||
(Intervals.add old_i (Intervals.point c ty Explanation.empty)) in
|
||||
|
|
@ -178,11 +178,11 @@ module Make
|
|||
in
|
||||
env, i
|
||||
|
||||
|
||||
|
||||
|
||||
and update_monome expl use_x env x =
|
||||
let ty = X.type_info x in
|
||||
let ui, env =
|
||||
let ui, env =
|
||||
match X.term_extract x with
|
||||
| Some t ->
|
||||
let use_x = SX.singleton x in
|
||||
|
|
@ -196,7 +196,7 @@ module Make
|
|||
let env, ia = init_alien expl pa npa ty use_x env in
|
||||
let env, ib = init_alien expl pb npb ty use_x env in
|
||||
let ia, ib = match Intervals.doesnt_contain_0 ib with
|
||||
| Yes ex when Num.compare_num ca cb = 0
|
||||
| Yes ex when Num.compare_num ca cb = 0
|
||||
&& P.compare pa' pb' = 0 ->
|
||||
let expl = Explanation.union ex expl in
|
||||
Intervals.point da ty expl, Intervals.point db ty expl
|
||||
|
|
@ -212,13 +212,13 @@ module Make
|
|||
with Not_found -> Intervals.undefined (X.type_info x), use_x in
|
||||
let ui = Intervals.intersect ui u in
|
||||
{ env with monomes = MX.add x (ui, (SX.union use_x use_x')) env.monomes }
|
||||
|
||||
|
||||
and tighten_div x env expl = env
|
||||
|
||||
and tighten_non_lin x use_x env expl =
|
||||
let env = tighten_div x env expl in
|
||||
SX.fold
|
||||
(fun x acc ->
|
||||
SX.fold
|
||||
(fun x acc ->
|
||||
let _, use = MX.find x acc.monomes in
|
||||
update_monome expl use acc x)
|
||||
use_x env
|
||||
|
|
@ -229,14 +229,14 @@ module Make
|
|||
List.fold_left (fun monomes (a,x) ->
|
||||
let np = P.remove x p in
|
||||
let (np,c,d) = P.normal_form_pos np in
|
||||
try
|
||||
try
|
||||
let inp = MP.find np polynomes in
|
||||
let new_ix =
|
||||
Intervals.scale
|
||||
Intervals.scale
|
||||
((Int 1) // a)
|
||||
(Intervals.add i
|
||||
(Intervals.scale (minus_num d)
|
||||
(Intervals.add inp
|
||||
(Intervals.add inp
|
||||
(Intervals.point c ty Explanation.empty)))) in
|
||||
let old_ix, ux = MX.find x monomes in
|
||||
let ix = Intervals.intersect old_ix new_ix in
|
||||
|
|
@ -261,7 +261,7 @@ module Make
|
|||
let find_one_eq x u =
|
||||
match Intervals.is_point u with
|
||||
| Some (v, ex) when X.type_info x <> Ty.Tint || is_integer_num v ->
|
||||
let eq =
|
||||
let eq =
|
||||
L.Eq (x,(P.alien_of (P.create [] v (X.type_info x)))) in
|
||||
Some (eq, None, ex)
|
||||
| _ -> None
|
||||
|
|
@ -271,29 +271,29 @@ module Make
|
|||
| None -> eqs
|
||||
| Some eq1 -> eq1::eqs
|
||||
|
||||
type ineq_status =
|
||||
type ineq_status =
|
||||
| Trivial_eq
|
||||
| Trivial_ineq of num
|
||||
| Bottom
|
||||
| Monome of num * P.r * num
|
||||
| Other
|
||||
|
||||
let ineq_status ({Inequation.ple0 = p ; is_le = is_le} as ineq) =
|
||||
let ineq_status ({Inequation.ple0 = p ; is_le = is_le} as ineq) =
|
||||
match Inequation.is_monomial ineq with
|
||||
Some (a, x, v) -> Monome (a, x, v)
|
||||
| None ->
|
||||
| None ->
|
||||
if P.is_empty p then
|
||||
let _, v = P.to_list p in
|
||||
let _, v = P.to_list p in
|
||||
let c = compare_num v (Int 0) in
|
||||
if c > 0 || (c >=0 && not is_le) then Bottom
|
||||
else
|
||||
else
|
||||
if c = 0 && is_le then Trivial_eq
|
||||
else Trivial_ineq v
|
||||
else Other
|
||||
|
||||
|
||||
(*let ineqs_from_dep dep borne_inf is_le =
|
||||
List.map
|
||||
(fun {poly_orig = p; coef = c} ->
|
||||
(fun {poly_orig = p; coef = c} ->
|
||||
let (m,v,ty) = P.mult_const minusone p in
|
||||
(* quelle valeur pour le ?????? *)
|
||||
{ ple0 = {poly = (m, v +/ (borne_inf // c), ty); le = is_le} ;
|
||||
|
|
@ -308,7 +308,7 @@ module Make
|
|||
let fm_equalities env eqs { Inequation.ple0 = p; dep = dep; expl = ex } =
|
||||
let inqs, eqs =
|
||||
List.fold_left
|
||||
(fun (inqs, eqs) (a, _, p, _) ->
|
||||
(fun (inqs, eqs) (a, _, p, _) ->
|
||||
List.remove_assoc a inqs, (mk_equality p, Some a, ex) :: eqs
|
||||
) (env.inequations, eqs) dep
|
||||
in
|
||||
|
|
@ -320,15 +320,15 @@ module Make
|
|||
let u =
|
||||
if a >/ (Int 0) then
|
||||
Intervals.new_borne_sup expl b is_le uints
|
||||
else
|
||||
else
|
||||
Intervals.new_borne_inf expl b is_le uints in
|
||||
let env = { env with monomes = MX.add x (u, use_x) env.monomes } in
|
||||
let env = tighten_non_lin x use_x env expl in
|
||||
env, (find_eq eqs x u env)
|
||||
|
||||
|
||||
let update_ple0 env p0 is_le expl =
|
||||
if P.is_empty p0 then env
|
||||
else
|
||||
else
|
||||
let ty = P.type_info p0 in
|
||||
let a, _ = P.choose p0 in
|
||||
let p, change =
|
||||
|
|
@ -343,20 +343,20 @@ module Make
|
|||
else
|
||||
Intervals.new_borne_sup expl c is_le (Intervals.undefined ty) in
|
||||
let u, pu =
|
||||
try
|
||||
try
|
||||
let pu = MP.find p env.polynomes in
|
||||
let i = Intervals.intersect u pu in
|
||||
i, pu
|
||||
with Not_found -> u, Intervals.undefined ty
|
||||
in
|
||||
let env =
|
||||
let env =
|
||||
if Intervals.is_strict_smaller u pu then
|
||||
let polynomes = MP.add p u env.polynomes in
|
||||
let monomes = update_monomes_from_poly p u polynomes env.monomes in
|
||||
let improved = SP.add p env.improved in
|
||||
{ env with
|
||||
polynomes = polynomes;
|
||||
monomes = monomes;
|
||||
{ env with
|
||||
polynomes = polynomes;
|
||||
monomes = monomes;
|
||||
improved = improved }
|
||||
else env
|
||||
in
|
||||
|
|
@ -364,41 +364,41 @@ module Make
|
|||
| [a,x], v -> fst(update_intervals env [] expl (a, x, v) is_le)
|
||||
| _ -> env
|
||||
|
||||
let add_inequations acc lin expl =
|
||||
let add_inequations acc lin expl =
|
||||
List.fold_left
|
||||
(fun (env, eqs) ineq ->
|
||||
(* let expl = List.fold_left
|
||||
(fun expl (l,_,_,_) ->
|
||||
(* let expl = List.fold_left
|
||||
(fun expl (l,_,_,_) ->
|
||||
Explanation.union (*Explanation.everything*)
|
||||
(Explanation.singleton (Formula.mk_lit l))
|
||||
expl
|
||||
) expl ineq.Inequation.dep
|
||||
) expl ineq.Inequation.dep
|
||||
in *)
|
||||
let expl = Explanation.union ineq.Inequation.expl expl in
|
||||
match ineq_status ineq with
|
||||
| Bottom ->
|
||||
raise (Exception.Inconsistent expl)
|
||||
|
||||
| Trivial_eq ->
|
||||
|
||||
| Trivial_eq ->
|
||||
fm_equalities env eqs ineq
|
||||
|
||||
|
||||
| Trivial_ineq c ->
|
||||
let n, pp =
|
||||
List.fold_left
|
||||
(fun ((n, pp) as acc) (_, _, p, is_le) ->
|
||||
if is_le then acc else
|
||||
let n, pp =
|
||||
List.fold_left
|
||||
(fun ((n, pp) as acc) (_, _, p, is_le) ->
|
||||
if is_le then acc else
|
||||
match pp with
|
||||
| Some _ -> n+1, None
|
||||
| None when n=0 -> 1, Some p
|
||||
| _ -> n+1, None) (0,None) ineq.Inequation.dep
|
||||
in
|
||||
let env =
|
||||
let env =
|
||||
List.fold_left
|
||||
(fun env (_, coef, p, is_le) ->
|
||||
let ty = P.type_info p in
|
||||
let is_le =
|
||||
match pp with
|
||||
Some x -> P.compare x p = 0 | _ -> is_le && n=0
|
||||
let is_le =
|
||||
match pp with
|
||||
Some x -> P.compare x p = 0 | _ -> is_le && n=0
|
||||
in
|
||||
let p' = P.sub (P.create [] (c // coef) ty) p in
|
||||
update_ple0 env p' is_le expl
|
||||
|
|
@ -407,24 +407,24 @@ module Make
|
|||
env, eqs
|
||||
|
||||
| Monome (a, x, v) ->
|
||||
let env, eqs =
|
||||
let env, eqs =
|
||||
update_intervals env eqs expl (a, x, v) ineq.Inequation.is_le
|
||||
in
|
||||
|
||||
|
||||
(*let env,eqs = update_bornes env eqs ((a,x),c) ineq.ple0.le in
|
||||
let env,eqs = update_polynomes env eqs ineq in
|
||||
env, pers_ineqs, eqs*)
|
||||
env, eqs
|
||||
|
||||
| Other ->
|
||||
| Other ->
|
||||
env, eqs
|
||||
(*t env,eqs = update_polynomes env eqs ineq in
|
||||
env, pers_ineqs, eqs*)
|
||||
|
||||
|
||||
|
||||
) acc lin
|
||||
|
||||
let mult_list c =
|
||||
let mult_list c =
|
||||
List.map (fun (a, coef, p, is_le) -> (a, coef */ c, p, is_le))
|
||||
|
||||
let div_by_pgcd (a, b) ty =
|
||||
|
|
@ -436,14 +436,14 @@ module Make
|
|||
else a, b
|
||||
with Failure "big_int_of_ratio" -> a, b
|
||||
|
||||
let cross x cpos cneg =
|
||||
let rec cross_rec acc = function
|
||||
let cross x cpos cneg =
|
||||
let rec cross_rec acc = function
|
||||
| [] -> acc
|
||||
| { Inequation.ple0 = p1; is_le = k1; dep = d1; expl = ex1 } :: l ->
|
||||
let n1 = abs_num (P.find x p1) in
|
||||
(* let ty = P.type_info p1 in *)
|
||||
let acc =
|
||||
List.fold_left
|
||||
let acc =
|
||||
List.fold_left
|
||||
(fun acc {Inequation.ple0 = p2; is_le = k2; dep=d2; expl = ex2} ->
|
||||
let n2 = abs_num (P.find x p2) in
|
||||
(* let n1, n2 = div_by_pgcd (n1, n2) ty in *)
|
||||
|
|
@ -452,36 +452,36 @@ module Make
|
|||
(P.mult (P.create [] n1 (P.type_info p1)) p2) in
|
||||
let d1 = mult_list n2 d1 in
|
||||
let d2 = mult_list n1 d2 in
|
||||
let ni =
|
||||
let ni =
|
||||
{ Inequation.ple0 = p; is_le = k1&&k2; dep = d1 -@ d2;
|
||||
expl = Explanation.union ex1 ex2 }
|
||||
in
|
||||
in
|
||||
ni::acc
|
||||
) acc cpos
|
||||
in
|
||||
in
|
||||
cross_rec acc l
|
||||
in
|
||||
cross_rec [] cneg
|
||||
|
||||
let split x l =
|
||||
let split x l =
|
||||
let rec split_rec (cp, cn, co) ineq =
|
||||
try
|
||||
let a = Inequation.find x ineq in
|
||||
if a >/ (Int 0) then ineq::cp, cn, co
|
||||
if a >/ (Int 0) then ineq::cp, cn, co
|
||||
else cp, ineq::cn, co
|
||||
with Not_found -> cp, cn, ineq::co
|
||||
in
|
||||
in
|
||||
List.fold_left split_rec ([], [], []) l
|
||||
|
||||
let length s = SX.fold (fun _ acc -> acc+1) s 0
|
||||
let length s = SX.fold (fun _ acc -> acc+1) s 0
|
||||
|
||||
let choose_var l =
|
||||
let choose_var l =
|
||||
let pos_neg = List.fold_left Inequation.pos_neg MX.empty l in
|
||||
let xopt = MX.fold (fun x (pos, neg) acc ->
|
||||
match acc with
|
||||
| None -> Some (x, pos * neg)
|
||||
| Some (y, c') ->
|
||||
let c = pos * neg in
|
||||
| Some (y, c') ->
|
||||
let c = pos * neg in
|
||||
if c < c' then Some (x, c) else acc
|
||||
) pos_neg None in
|
||||
match xopt with
|
||||
|
|
@ -504,16 +504,16 @@ module Make
|
|||
with Not_found -> add_inequations acc l expl
|
||||
|
||||
(*
|
||||
let fm env eqs expl =
|
||||
let fm env eqs expl =
|
||||
fourier (env, eqs)
|
||||
(List.map snd env.inequations)
|
||||
(List.map snd env.new_inequations) expl
|
||||
*)
|
||||
|
||||
let fm env eqs expl =
|
||||
let fm env eqs expl =
|
||||
fourier (env, eqs) (List.map snd env.inequations) expl
|
||||
|
||||
let is_num r =
|
||||
let is_num r =
|
||||
let ty = X.type_info r in ty = Ty.Tint || ty = Ty.Treal
|
||||
|
||||
let add_disequality env eqs p expl =
|
||||
|
|
@ -523,12 +523,12 @@ module Make
|
|||
raise (Exception.Inconsistent expl)
|
||||
| ([], v) ->
|
||||
env, eqs
|
||||
| ([a, x], v) ->
|
||||
| ([a, x], v) ->
|
||||
let b = (minus_num v) // a in
|
||||
let i1 = Intervals.point b ty expl in
|
||||
let i2, use2 =
|
||||
try
|
||||
MX.find x env.monomes
|
||||
let i2, use2 =
|
||||
try
|
||||
MX.find x env.monomes
|
||||
with Not_found -> Intervals.undefined ty, SX.empty
|
||||
in
|
||||
let i = Intervals.exclude i1 i2 in
|
||||
|
|
@ -541,37 +541,37 @@ module Make
|
|||
else P.mult (P.create [] (Int (-1)) ty) p in
|
||||
let p, c, _ = P.normal_form p in
|
||||
let i1 = Intervals.point (minus_num c) ty expl in
|
||||
let i2 =
|
||||
try
|
||||
MP.find p env.polynomes
|
||||
let i2 =
|
||||
try
|
||||
MP.find p env.polynomes
|
||||
with Not_found -> Intervals.undefined ty
|
||||
in
|
||||
let i = Intervals.exclude i1 i2 in
|
||||
let env =
|
||||
let env =
|
||||
if Intervals.is_strict_smaller i i2 then
|
||||
let polynomes = MP.add p i env.polynomes in
|
||||
let monomes = update_monomes_from_poly p i polynomes env.monomes
|
||||
in
|
||||
let improved = SP.add p env.improved in
|
||||
{ env with
|
||||
{ env with
|
||||
polynomes = polynomes;
|
||||
monomes = monomes;
|
||||
improved = improved}
|
||||
else env
|
||||
in
|
||||
env, eqs
|
||||
|
||||
|
||||
let add_equality env eqs p expl =
|
||||
let ty = P.type_info p in
|
||||
match P.to_list p with
|
||||
| ([], Int 0) -> env, eqs
|
||||
| ([], v) ->
|
||||
raise (Exception.Inconsistent expl)
|
||||
| ([a, x], v) ->
|
||||
| ([a, x], v) ->
|
||||
let b = (minus_num v) // a in
|
||||
let i = Intervals.point b ty expl in
|
||||
let i, use =
|
||||
try
|
||||
let i, use =
|
||||
try
|
||||
let i', use' = MX.find x env.monomes in
|
||||
Intervals.intersect i i', use'
|
||||
with Not_found -> i, SX.empty
|
||||
|
|
@ -585,26 +585,26 @@ module Make
|
|||
else P.mult (P.create [] (Int (-1)) ty) p in
|
||||
let p, c, _ = P.normal_form p in
|
||||
let i = Intervals.point (minus_num c) ty expl in
|
||||
let i, ip =
|
||||
let i, ip =
|
||||
try
|
||||
let ip = MP.find p env.polynomes in
|
||||
Intervals.intersect i ip, ip
|
||||
with Not_found -> i, Intervals.undefined ty
|
||||
in
|
||||
let env =
|
||||
let env =
|
||||
if Intervals.is_strict_smaller i ip then
|
||||
let polynomes = MP.add p i env.polynomes in
|
||||
let monomes = update_monomes_from_poly p i polynomes env.monomes
|
||||
in
|
||||
let improved = SP.add p env.improved in
|
||||
{ env with
|
||||
{ env with
|
||||
polynomes = polynomes;
|
||||
monomes = monomes;
|
||||
improved = improved }
|
||||
else env
|
||||
in
|
||||
let env =
|
||||
{ env with
|
||||
let env =
|
||||
{ env with
|
||||
known_eqs = SX.add (P.alien_of p) env.known_eqs
|
||||
} in
|
||||
env, eqs
|
||||
|
|
@ -614,33 +614,33 @@ module Make
|
|||
let pred_r1 = P.sub (P.poly_of r1) (P.create [] (Int 1) Ty.Tint) in
|
||||
L.Builtin (true, n, [r2; P.alien_of pred_r1])
|
||||
|
||||
| L.Builtin (true, n, [r1; r2]) when
|
||||
| L.Builtin (true, n, [r1; r2]) when
|
||||
not (is_le n) && X.type_info r1 = Ty.Tint ->
|
||||
let pred_r2 = P.sub (P.poly_of r2) (P.create [] (Int 1) Ty.Tint) in
|
||||
L.Builtin (true, ale, [r1; P.alien_of pred_r2])
|
||||
|
||||
| L.Builtin (false, n, [r1; r2]) when is_le n ->
|
||||
| L.Builtin (false, n, [r1; r2]) when is_le n ->
|
||||
L.Builtin (true, alt, [r2; r1])
|
||||
|
||||
| L.Builtin (false, n, [r1; r2]) when is_lt n ->
|
||||
L.Builtin (true, ale, [r2; r1])
|
||||
|
||||
| _ -> a
|
||||
|
||||
|
||||
let remove_trivial_eqs eqs la =
|
||||
let set_of l =
|
||||
List.fold_left (fun s e -> Seq.add e s) Seq.empty l
|
||||
in
|
||||
Seq.elements (Seq.diff (set_of eqs) (set_of la))
|
||||
|
||||
|
||||
|
||||
let equalities_from_polynomes env eqs =
|
||||
let known, eqs =
|
||||
let known, eqs =
|
||||
MP.fold
|
||||
(fun p i (knw, eqs) ->
|
||||
let xp = P.alien_of p in
|
||||
if SX.mem xp knw then knw, eqs
|
||||
else
|
||||
else
|
||||
match Intervals.is_point i with
|
||||
| Some (num, ex) ->
|
||||
let r2 = P.alien_of (P.create [] num (P.type_info p)) in
|
||||
|
|
@ -652,11 +652,11 @@ module Make
|
|||
|
||||
|
||||
let equalities_from_monomes env eqs =
|
||||
let known, eqs =
|
||||
let known, eqs =
|
||||
MX.fold
|
||||
(fun x (i,_) (knw, eqs) ->
|
||||
if SX.mem x knw then knw, eqs
|
||||
else
|
||||
else
|
||||
match Intervals.is_point i with
|
||||
| Some (num, ex) ->
|
||||
let r2 = P.alien_of (P.create [] num (X.type_info x)) in
|
||||
|
|
@ -692,29 +692,29 @@ module Make
|
|||
let env = replace_inequation env root ineq in
|
||||
env, eqs, true, expl
|
||||
|
||||
| L.Distinct (false, [r1; r2]) when is_num r1 && is_num r2 ->
|
||||
| L.Distinct (false, [r1; r2]) when is_num r1 && is_num r2 ->
|
||||
let p = P.sub (P.poly_of r1) (P.poly_of r2) in
|
||||
let env = init_monomes env p SX.empty expl in
|
||||
let env, eqs = add_disequality env eqs p expl in
|
||||
env, eqs, new_ineqs, expl
|
||||
|
||||
| L.Eq(r1, r2) when is_num r1 && is_num r2 ->
|
||||
|
||||
| L.Eq(r1, r2) when is_num r1 && is_num r2 ->
|
||||
let p = P.sub (P.poly_of r1) (P.poly_of r2) in
|
||||
let env = init_monomes env p SX.empty expl in
|
||||
let env, eqs = add_equality env eqs p expl in
|
||||
env, eqs, new_ineqs, expl
|
||||
|
||||
| _ -> (env, eqs, new_ineqs, expl)
|
||||
|
||||
| _ -> (env, eqs, new_ineqs, expl)
|
||||
|
||||
with Intervals.NotConsistent expl ->
|
||||
raise (Exception.Inconsistent expl)
|
||||
)
|
||||
(env, [], false, Explanation.empty) la
|
||||
(env, [], false, Explanation.empty) la
|
||||
|
||||
in
|
||||
if new_ineqs then
|
||||
if false then
|
||||
();
|
||||
if new_ineqs then
|
||||
if false then
|
||||
();
|
||||
try
|
||||
(* we only call fm when new ineqs are assumed *)
|
||||
let env, eqs = if new_ineqs then fm env eqs expl else env, eqs in
|
||||
|
|
@ -724,13 +724,13 @@ module Make
|
|||
Debug.env env;
|
||||
let eqs = remove_trivial_eqs eqs la in
|
||||
Debug.implied_equalities eqs;
|
||||
let result =
|
||||
List.fold_left
|
||||
(fun r (a_sem, a_term, ex) ->
|
||||
{ assume = (LSem(a_sem), ex) :: r.assume;
|
||||
remove =
|
||||
match a_term with
|
||||
| None -> r.remove
|
||||
let result =
|
||||
List.fold_left
|
||||
(fun r (a_sem, a_term, ex) ->
|
||||
{ assume = (LSem(a_sem), ex) :: r.assume;
|
||||
remove =
|
||||
match a_term with
|
||||
| None -> r.remove
|
||||
| Some t -> (LTerm(t), ex)::r.remove
|
||||
} ) { assume = []; remove = [] } eqs
|
||||
in
|
||||
|
|
@ -738,14 +738,14 @@ module Make
|
|||
|
||||
with Intervals.NotConsistent expl ->
|
||||
raise (Exception.Inconsistent expl)
|
||||
|
||||
|
||||
let query env a_ex =
|
||||
try
|
||||
ignore(assume env [a_ex]);
|
||||
try
|
||||
ignore(assume env [a_ex]);
|
||||
No
|
||||
with Exception.Inconsistent expl -> Yes expl
|
||||
|
||||
let case_split_polynomes env =
|
||||
let case_split_polynomes env =
|
||||
let o = MP.fold
|
||||
(fun p i o ->
|
||||
match Intervals.finite_size i with
|
||||
|
|
@ -753,21 +753,21 @@ module Make
|
|||
begin
|
||||
match o with
|
||||
| Some (s', _, _, _) when s' <=/ s -> o
|
||||
| _ ->
|
||||
| _ ->
|
||||
let n, ex = Intervals.borne_inf i in
|
||||
Some (s, p, n, ex)
|
||||
end
|
||||
| _ -> o
|
||||
) env.polynomes None in
|
||||
match o with
|
||||
| Some (s, p, n, ex) ->
|
||||
match o with
|
||||
| Some (s, p, n, ex) ->
|
||||
let r1 = P.alien_of p in
|
||||
let r2 = P.alien_of (P.create [] n (P.type_info p)) in
|
||||
[L.Eq(r1, r2), ex, s]
|
||||
| None ->
|
||||
| None ->
|
||||
[]
|
||||
|
||||
let case_split_monomes env =
|
||||
let case_split_monomes env =
|
||||
let o = MX.fold
|
||||
(fun x (i,_) o ->
|
||||
match Intervals.finite_size i with
|
||||
|
|
@ -775,26 +775,26 @@ module Make
|
|||
begin
|
||||
match o with
|
||||
| Some (s', _, _, _) when s' <=/ s -> o
|
||||
| _ ->
|
||||
| _ ->
|
||||
let n, ex = Intervals.borne_inf i in
|
||||
Some (s, x, n, ex)
|
||||
end
|
||||
| _ -> o
|
||||
) env.monomes None in
|
||||
match o with
|
||||
| Some (s,x,n,ex) ->
|
||||
match o with
|
||||
| Some (s,x,n,ex) ->
|
||||
let ty = X.type_info x in
|
||||
let r1 = x in
|
||||
let r2 = P.alien_of (P.create [] n ty) in
|
||||
[L.Eq(r1, r2), ex, s]
|
||||
| None ->
|
||||
| None ->
|
||||
[]
|
||||
|
||||
let case_split env =
|
||||
|
||||
let case_split env =
|
||||
match case_split_polynomes env with
|
||||
| [] -> case_split_monomes env
|
||||
| choices -> choices
|
||||
|
||||
|
||||
let add env _ = env
|
||||
|
||||
let extract_improved env =
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ module type EXTENDED_Polynome = sig
|
|||
val alien_of : t -> r
|
||||
end
|
||||
|
||||
module Make
|
||||
module Make
|
||||
(X : Sig.X)
|
||||
(P : EXTENDED_Polynome with type r = X.r)
|
||||
(P : EXTENDED_Polynome with type r = X.r)
|
||||
: Sig.RELATION with type r = X.r
|
||||
|
|
|
|||
198
smt/intervals.ml
198
smt/intervals.ml
|
|
@ -16,9 +16,9 @@ open Format
|
|||
|
||||
module Ex = Explanation
|
||||
|
||||
type borne =
|
||||
| Strict of (num * Ex.t)
|
||||
| Large of (num * Ex.t)
|
||||
type borne =
|
||||
| Strict of (num * Ex.t)
|
||||
| Large of (num * Ex.t)
|
||||
| Pinfty | Minfty
|
||||
|
||||
let compare_bornes b1 b2 =
|
||||
|
|
@ -26,33 +26,33 @@ let compare_bornes b1 b2 =
|
|||
| Minfty, Minfty | Pinfty, Pinfty -> 0
|
||||
| Minfty, _ | _, Pinfty -> -1
|
||||
| Pinfty, _ | _, Minfty -> 1
|
||||
| Strict (v1, _), Strict (v2, _) | Large (v1, _), Large (v2, _)
|
||||
| Strict (v1, _), Large (v2, _) | Large (v1, _), Strict (v2, _) ->
|
||||
| Strict (v1, _), Strict (v2, _) | Large (v1, _), Large (v2, _)
|
||||
| Strict (v1, _), Large (v2, _) | Large (v1, _), Strict (v2, _) ->
|
||||
compare_num v1 v2
|
||||
|
||||
let compare_bu_bl b1 b2 =
|
||||
match b1, b2 with
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| Strict (v1, _), Large (v2, _) | Large (v1, _), Strict (v2, _) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c = 0 then -1 else c
|
||||
|
||||
|
||||
let compare_bl_bu b1 b2 =
|
||||
match b1, b2 with
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| Strict (v1, _), Large (v2, _) | Large (v1, _), Strict (v2, _) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c = 0 then 1 else c
|
||||
|
||||
let compare_bl_bl b1 b2 =
|
||||
match b1, b2 with
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
let compare_bl_bl b1 b2 =
|
||||
match b1, b2 with
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| Strict (v1, _), Large (v2, _) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c = 0 then 1 else c
|
||||
|
|
@ -62,9 +62,9 @@ let compare_bl_bl b1 b2 =
|
|||
|
||||
let compare_bu_bu b1 b2 =
|
||||
match b1, b2 with
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| (Minfty | Pinfty), _ | _,(Minfty | Pinfty)
|
||||
| Strict _, Strict _ | Large _, Large _ ->
|
||||
compare_bornes b1 b2
|
||||
| Strict (v1, _), Large (v2, _) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c = 0 then -1 else c
|
||||
|
|
@ -72,7 +72,7 @@ let compare_bu_bu b1 b2 =
|
|||
let c = compare_num v1 v2 in
|
||||
if c = 0 then 1 else c
|
||||
|
||||
type t = {
|
||||
type t = {
|
||||
ints : (borne * borne) list;
|
||||
is_int : bool;
|
||||
expl: Ex.t
|
||||
|
|
@ -83,23 +83,23 @@ exception NotConsistent of Ex.t
|
|||
exception Not_a_float
|
||||
|
||||
let print_borne fmt = function
|
||||
| Minfty -> fprintf fmt "-inf"
|
||||
| Minfty -> fprintf fmt "-inf"
|
||||
| Pinfty -> fprintf fmt "+inf"
|
||||
| Strict (v, e) | Large (v, e) ->
|
||||
fprintf fmt "%s" (string_of_num v)
|
||||
|
||||
|
||||
let print_interval fmt (b1,b2) =
|
||||
let c1, c2 = match b1, b2 with
|
||||
| Large _, Large _ -> '[', ']'
|
||||
| Large _, _ -> '[', '['
|
||||
| _, Large _ -> ']', ']'
|
||||
| _, _ -> ']', '['
|
||||
in
|
||||
in
|
||||
fprintf fmt "%c%a;%a%c" c1 print_borne b1 print_borne b2 c2
|
||||
|
||||
let print fmt {ints = ints; is_int = b; expl = e } =
|
||||
|
||||
let print fmt {ints = ints; is_int = b; expl = e } =
|
||||
List.iter (fun i -> fprintf fmt "%a" print_interval i) ints
|
||||
|
||||
|
||||
|
||||
let undefined ty = {
|
||||
ints = [Minfty, Pinfty];
|
||||
|
|
@ -108,7 +108,7 @@ let undefined ty = {
|
|||
}
|
||||
|
||||
let point b ty e = {
|
||||
ints = [Large (b, e), Large (b, e)];
|
||||
ints = [Large (b, e), Large (b, e)];
|
||||
is_int = ty = Ty.Tint;
|
||||
expl = Ex.empty
|
||||
}
|
||||
|
|
@ -132,7 +132,7 @@ let is_point { ints = l; expl = e } =
|
|||
| _ -> None
|
||||
|
||||
let add_expl_zero i expl =
|
||||
let res = List.map (fun x ->
|
||||
let res = List.map (fun x ->
|
||||
match x with
|
||||
| (Large ((Num.Int 0), e1) , Large ((Num.Int 0), e2)) ->
|
||||
(Large ((Num.Int 0), Ex.union e1 expl),
|
||||
|
|
@ -143,10 +143,10 @@ let add_expl_zero i expl =
|
|||
let check_one_interval b1 b2 is_int =
|
||||
match b1, b2 with
|
||||
| Pinfty, _ | _, Minfty -> raise (EmptyInterval Ex.empty)
|
||||
| (Strict (v1, e1) | Large (v1,e1)),
|
||||
| (Strict (v1, e1) | Large (v1,e1)),
|
||||
(Strict (v2, e2) | Large (v2, e2)) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c > 0 then raise
|
||||
let c = compare_num v1 v2 in
|
||||
if c > 0 then raise
|
||||
(EmptyInterval (Ex.union e2 e1));
|
||||
if c = 0 then begin
|
||||
match b1, b2 with
|
||||
|
|
@ -156,7 +156,7 @@ let check_one_interval b1 b2 is_int =
|
|||
end
|
||||
| _ -> ()
|
||||
|
||||
let min_borne b1 b2 =
|
||||
let min_borne b1 b2 =
|
||||
match b1, b2 with
|
||||
| Minfty , _ | _ , Minfty -> Minfty
|
||||
| b , Pinfty | Pinfty, b -> b
|
||||
|
|
@ -164,31 +164,31 @@ let min_borne b1 b2 =
|
|||
let c = compare_num v1 v2 in
|
||||
if c < 0 then b1
|
||||
else if c > 0 then b2
|
||||
else match b1, b2 with
|
||||
else match b1, b2 with
|
||||
| (Strict _ as b) , _ | _, (Strict _ as b) -> b
|
||||
| _, _ -> b1
|
||||
|
||||
let max_borne b1 b2 =
|
||||
|
||||
let max_borne b1 b2 =
|
||||
match b1, b2 with
|
||||
| Pinfty , _ | _ , Pinfty -> Pinfty
|
||||
| b , Minfty | Minfty, b -> b
|
||||
| (Strict (v1, _) | Large (v1, _)) , (Strict (v2, _) | Large (v2, _)) ->
|
||||
| (Strict (v1, _) | Large (v1, _)) , (Strict (v2, _) | Large (v2, _)) ->
|
||||
let c = compare_num v1 v2 in
|
||||
if c > 0 then b1
|
||||
else if c < 0 then b2
|
||||
else match b1, b2 with
|
||||
else match b1, b2 with
|
||||
| (Strict _ as b) , _ | _, (Strict _ as b) -> b
|
||||
| _, _ -> b1
|
||||
|
||||
let pos_borne b1 =
|
||||
compare_bornes b1 (borne_of true Ex.empty (Int 0)) >= 0
|
||||
let pos_borne_strict b1 =
|
||||
let pos_borne_strict b1 =
|
||||
compare_bornes b1 (borne_of true Ex.empty (Int 0)) > 0
|
||||
let neg_borne b1 =
|
||||
let neg_borne b1 =
|
||||
compare_bornes b1 (borne_of true Ex.empty (Int 0)) <= 0
|
||||
let neg_borne_strict b1 =
|
||||
let neg_borne_strict b1 =
|
||||
compare_bornes b1 (borne_of true Ex.empty (Int 0)) < 0
|
||||
let zero_borne b1 =
|
||||
let zero_borne b1 =
|
||||
compare_bornes b1 (borne_of true Ex.empty (Int 0)) = 0
|
||||
|
||||
exception Found of Sig.answer
|
||||
|
|
@ -196,12 +196,12 @@ exception Found of Sig.answer
|
|||
let doesnt_contain_0 {ints=l} =
|
||||
try
|
||||
let max = List.fold_left
|
||||
(fun old_u (l, u) ->
|
||||
(fun old_u (l, u) ->
|
||||
if neg_borne l && pos_borne u then raise (Found Sig.No);
|
||||
if neg_borne_strict old_u && pos_borne_strict l then
|
||||
raise (Found
|
||||
(Sig.Yes
|
||||
(Ex.union
|
||||
if neg_borne_strict old_u && pos_borne_strict l then
|
||||
raise (Found
|
||||
(Sig.Yes
|
||||
(Ex.union
|
||||
(explain_borne old_u) (explain_borne l))));
|
||||
u) Minfty l in
|
||||
if neg_borne_strict max then Sig.Yes (explain_borne max)
|
||||
|
|
@ -219,11 +219,11 @@ let is_strict_smaller i1 i2 =
|
|||
then raise Exit
|
||||
) i1 i2;
|
||||
false
|
||||
with
|
||||
with
|
||||
| Exit -> true
|
||||
| Invalid_argument _ -> List.length i1 > List.length i2
|
||||
|
||||
let is_strict_smaller {ints=i1} {ints=i2} =
|
||||
let is_strict_smaller {ints=i1} {ints=i2} =
|
||||
is_strict_smaller i1 i2
|
||||
|
||||
|
||||
|
|
@ -247,7 +247,7 @@ let add_borne b1 b2 =
|
|||
| Minfty, Pinfty | Pinfty, Minfty -> assert false
|
||||
| Minfty, _ | _, Minfty -> Minfty
|
||||
| Pinfty, _ | _, Pinfty -> Pinfty
|
||||
| Large (v1, e1), Large (v2, e2) ->
|
||||
| Large (v1, e1), Large (v2, e2) ->
|
||||
Large (v1 +/ v2, Ex.union e1 e2)
|
||||
| (Large (v1, e1) | Strict (v1, e1)), (Large (v2, e2) | Strict (v2, e2)) ->
|
||||
Strict (v1 +/ v2, Ex.union e1 e2)
|
||||
|
|
@ -260,9 +260,9 @@ let add_interval l (b1,b2) =
|
|||
) l []
|
||||
|
||||
let add {ints = l1; is_int = is_int; expl = e1} {ints = l2; expl = e2}=
|
||||
let l =
|
||||
let l =
|
||||
List.fold_left
|
||||
(fun l bs -> let i = add_interval l1 bs in i@l) [] l2
|
||||
(fun l bs -> let i = add_interval l1 bs in i@l) [] l2
|
||||
in
|
||||
union { ints = l ; is_int = is_int; expl = Ex.union e1 e2 }
|
||||
|
||||
|
|
@ -274,7 +274,7 @@ let minus_borne = function
|
|||
|
||||
let scale_borne n b =
|
||||
assert (n >=/ Int 0);
|
||||
if n =/ Int 0 then
|
||||
if n =/ Int 0 then
|
||||
match b with
|
||||
| Pinfty | Minfty -> Large (Int 0, Ex.empty)
|
||||
| Large (_, e) | Strict (_, e) -> Large (Int 0, e)
|
||||
|
|
@ -293,24 +293,24 @@ let scale_interval n (b1,b2) =
|
|||
let scale n uints =
|
||||
let l = List.map (scale_interval n) uints.ints in
|
||||
union { uints with ints = l; expl = uints.expl }
|
||||
|
||||
|
||||
let mult_borne b1 b2 =
|
||||
match b1,b2 with
|
||||
| Minfty, Pinfty | Pinfty, Minfty -> assert false
|
||||
| Minfty, b | b, Minfty ->
|
||||
if compare_bornes b (borne_of true Ex.empty (Int 0)) = 0
|
||||
if compare_bornes b (borne_of true Ex.empty (Int 0)) = 0
|
||||
then b
|
||||
else if pos_borne b then Minfty
|
||||
else Pinfty
|
||||
| Pinfty, b | b, Pinfty ->
|
||||
if compare_bornes b (borne_of true Ex.empty (Int 0)) = 0
|
||||
if compare_bornes b (borne_of true Ex.empty (Int 0)) = 0
|
||||
then b
|
||||
else if pos_borne b then Pinfty
|
||||
else Minfty
|
||||
| Strict (v1, e1), Strict (v2, e2) | Strict (v1, e1), Large (v2, e2)
|
||||
| Large (v1, e1), Strict (v2, e2) ->
|
||||
| Large (v1, e1), Strict (v2, e2) ->
|
||||
Strict (v1 */ v2, Ex.union e1 e2)
|
||||
| Large (v1, e1), Large (v2, e2) ->
|
||||
| Large (v1, e1), Large (v2, e2) ->
|
||||
Large (v1 */ v2, Ex.union e1 e2)
|
||||
|
||||
let mult_borne_inf b1 b2 =
|
||||
|
|
@ -323,10 +323,10 @@ let mult_borne_sup b1 b2 =
|
|||
| Minfty, Pinfty | Pinfty, Minfty -> Pinfty
|
||||
| _, _ -> mult_borne b1 b2
|
||||
|
||||
type interval_class =
|
||||
| P of Ex.t
|
||||
| M of Ex.t
|
||||
| N of Ex.t
|
||||
type interval_class =
|
||||
| P of Ex.t
|
||||
| M of Ex.t
|
||||
| N of Ex.t
|
||||
| Z
|
||||
|
||||
let class_of (l,u) =
|
||||
|
|
@ -338,17 +338,17 @@ let class_of (l,u) =
|
|||
let mult_bornes (a,b) (c,d) =
|
||||
(* see util/intervals_mult.png *)
|
||||
match class_of (a,b), class_of (c,d) with
|
||||
| P e1, P e2 ->
|
||||
| P e1, P e2 ->
|
||||
mult_borne_inf a c, mult_borne_sup b d, Ex.union e1 e2
|
||||
| P e1, M e2 ->
|
||||
| P e1, M e2 ->
|
||||
mult_borne_inf b c, mult_borne_sup b d, Ex.union e1 e2
|
||||
| P e1, N e2 ->
|
||||
| P e1, N e2 ->
|
||||
mult_borne_inf b c, mult_borne_sup a d, Ex.union e1 e2
|
||||
| M e1, P e2 ->
|
||||
| M e1, P e2 ->
|
||||
mult_borne_inf a d, mult_borne_sup b d, Ex.union e1 e2
|
||||
| M e1, M e2 ->
|
||||
| M e1, M e2 ->
|
||||
min_borne (mult_borne_inf a d) (mult_borne_inf b c),
|
||||
max_borne (mult_borne_sup a c) (mult_borne_sup b d),
|
||||
max_borne (mult_borne_sup a c) (mult_borne_sup b d),
|
||||
Ex.union e1 e2
|
||||
| M e1, N e2 ->
|
||||
mult_borne_inf b c, mult_borne_sup a c, Ex.union e1 e2
|
||||
|
|
@ -360,7 +360,7 @@ let mult_bornes (a,b) (c,d) =
|
|||
mult_borne_inf b d, mult_borne_sup a c, Ex.union e1 e2
|
||||
| Z, (P _ | M _ | N _ | Z) -> (a, b, Ex.empty)
|
||||
| (P _ | M _ | N _ ), Z -> (c, d, Ex.empty)
|
||||
|
||||
|
||||
let rec power_borne_inf p b =
|
||||
match p with
|
||||
| 1 -> b
|
||||
|
|
@ -396,14 +396,14 @@ let power_bornes p (b1,b2) =
|
|||
| p when p mod 2 = 0 -> (power_borne_inf p b2, power_borne_sup p b1)
|
||||
| _ -> (power_borne_inf p b1, power_borne_sup p b2)
|
||||
else assert false
|
||||
|
||||
|
||||
let int_of_borne_inf b =
|
||||
match b with
|
||||
| Minfty | Pinfty -> b
|
||||
| Large (v, e) -> Large (ceiling_num v, e)
|
||||
| Strict (v, e) ->
|
||||
let v' = ceiling_num v in
|
||||
if v' >/ v then Large (v', e) else Large (v +/ (Int 1), e)
|
||||
if v' >/ v then Large (v', e) else Large (v +/ (Int 1), e)
|
||||
|
||||
let int_of_borne_sup b =
|
||||
match b with
|
||||
|
|
@ -411,7 +411,7 @@ let int_of_borne_sup b =
|
|||
| Large (v, e) -> Large (floor_num v, e)
|
||||
| Strict (v, e) ->
|
||||
let v' = floor_num v in
|
||||
if v' </ v then Large (v', e) else Large (v -/ (Int 1), e)
|
||||
if v' </ v then Large (v', e) else Large (v -/ (Int 1), e)
|
||||
|
||||
let int_div_of_borne_inf b =
|
||||
match b with
|
||||
|
|
@ -419,7 +419,7 @@ let int_div_of_borne_inf b =
|
|||
| Large (v, e) -> Large (floor_num v, e)
|
||||
| Strict (v, e) ->
|
||||
let v' = floor_num v in
|
||||
if v' >/ v then Large (v', e) else Large (v +/ (Int 1), e)
|
||||
if v' >/ v then Large (v', e) else Large (v +/ (Int 1), e)
|
||||
|
||||
let int_div_of_borne_sup b =
|
||||
match b with
|
||||
|
|
@ -429,10 +429,10 @@ let int_div_of_borne_sup b =
|
|||
let v' = floor_num v in
|
||||
if v' </ v then Large (v', e) else Large (v -/ (Int 1), e)
|
||||
|
||||
let int_bornes l u =
|
||||
let int_bornes l u =
|
||||
int_of_borne_inf l, int_of_borne_sup u
|
||||
|
||||
let int_div_bornes l u =
|
||||
let int_div_bornes l u =
|
||||
int_div_of_borne_inf l, int_div_of_borne_sup u
|
||||
|
||||
|
||||
|
|
@ -442,7 +442,7 @@ let intersect ({ints=l1; expl=e1; is_int=is_int} as uints1)
|
|||
let rec step (l1,l2) acc expl =
|
||||
match l1, l2 with
|
||||
| (lo1,up1)::r1, (lo2,up2)::r2 ->
|
||||
let (lo1,up1), (lo2,up2) =
|
||||
let (lo1,up1), (lo2,up2) =
|
||||
if is_int then (int_bornes lo1 up1), (int_bornes lo2 up2)
|
||||
else (lo1,up1), (lo2,up2) in
|
||||
let cll = compare_bl_bl lo1 lo2 in
|
||||
|
|
@ -457,7 +457,7 @@ let intersect ({ints=l1; expl=e1; is_int=is_int} as uints1)
|
|||
let lor1 = add_expl_to_borne lor1 nexpl in
|
||||
let r1 = (lor1,upr1)::rr1 in
|
||||
step (r1, l2) acc expl
|
||||
else if clu > 0 then
|
||||
else if clu > 0 then
|
||||
let nexpl = Ex.union (explain_borne up2) (explain_borne lo1) in
|
||||
match r2 with
|
||||
| [] -> step (l1, r2) acc (Ex.union nexpl expl)
|
||||
|
|
@ -465,15 +465,15 @@ let intersect ({ints=l1; expl=e1; is_int=is_int} as uints1)
|
|||
let lor2 = add_expl_to_borne lor2 nexpl in
|
||||
let r2 = (lor2,upr2)::rr2 in
|
||||
step (l1, r2) acc expl
|
||||
else if cll = 0 && cuu = 0 then
|
||||
else if cll = 0 && cuu = 0 then
|
||||
step (r1, r2) ((lo1,up1)::acc) expl
|
||||
else if cll <= 0 && cuu >= 0 then
|
||||
else if cll <= 0 && cuu >= 0 then
|
||||
step (l1, r2) ((lo2,up2)::acc) expl
|
||||
else if cll >= 0 && cuu <= 0 then
|
||||
else if cll >= 0 && cuu <= 0 then
|
||||
step (r1, l2) ((lo1,up1)::acc) expl
|
||||
else if cll <= 0 && cuu <= 0 && cul >= 0 then
|
||||
else if cll <= 0 && cuu <= 0 && cul >= 0 then
|
||||
step (r1, l2) ((lo2,up1)::acc) expl
|
||||
else if cll >= 0 && cuu >= 0 && clu <= 0 then
|
||||
else if cll >= 0 && cuu >= 0 && clu <= 0 then
|
||||
step (l1, r2) ((lo1,up2)::acc) expl
|
||||
else assert false
|
||||
| [], _ | _, [] -> List.rev acc, expl
|
||||
|
|
@ -484,13 +484,13 @@ let intersect ({ints=l1; expl=e1; is_int=is_int} as uints1)
|
|||
|
||||
|
||||
let new_borne_sup expl b ~is_le uints =
|
||||
intersect
|
||||
intersect
|
||||
{ ints = [Minfty, (borne_of is_le expl b)];
|
||||
is_int = uints.is_int;
|
||||
expl = Ex.empty } uints
|
||||
|
||||
let new_borne_inf expl b ~is_le uints =
|
||||
intersect
|
||||
intersect
|
||||
{ ints = [(borne_of is_le expl b), Pinfty];
|
||||
is_int = uints.is_int;
|
||||
expl = Ex.empty } uints
|
||||
|
|
@ -509,28 +509,28 @@ let complement ({ints=l; expl=e} as uints) =
|
|||
| _ -> b2 in
|
||||
if bu = Minfty then step r bl acc
|
||||
else step r bl ((prev, bu)::acc)
|
||||
| [] ->
|
||||
| [] ->
|
||||
if prev = Pinfty then List.rev acc
|
||||
else List.rev ((prev, Pinfty)::acc)
|
||||
in
|
||||
{ uints with ints = step l Minfty [] }
|
||||
|
||||
|
||||
|
||||
let exclude uints1 uints2 =
|
||||
intersect (complement uints1) uints2
|
||||
intersect (complement uints1) uints2
|
||||
|
||||
let mult u1 u2 =
|
||||
let resl, expl =
|
||||
let resl, expl =
|
||||
List.fold_left
|
||||
(fun (l', expl) b1 ->
|
||||
List.fold_left
|
||||
List.fold_left
|
||||
(fun (l, ex) b2 ->
|
||||
let bl, bu, ex' = mult_bornes b1 b2 in
|
||||
(bl, bu)::l, Ex.union ex ex') (l', expl) u2.ints)
|
||||
([], Ex.empty) u1.ints
|
||||
in
|
||||
union { ints=resl; is_int = u1.is_int;
|
||||
expl = Ex.union expl
|
||||
expl = Ex.union expl
|
||||
(Ex.union u1.expl u2.expl) }
|
||||
|
||||
let power n u =
|
||||
|
|
@ -553,7 +553,7 @@ let num_of_float x =
|
|||
let factor = (Int 2) **/ (Int (n - 52)) in
|
||||
(Big_int z) */ factor
|
||||
|
||||
let root_num a n =
|
||||
let root_num a n =
|
||||
if a </ (Int 0) then assert false
|
||||
else if a =/ (Int 0) then (Int 0)
|
||||
else if n = 2 then num_of_float (sqrt (float_of_num a))
|
||||
|
|
@ -629,7 +629,7 @@ let rec root n ({ints = l; is_int = is_int; expl = e} as u) =
|
|||
(root_interval is_int bs n)@l'
|
||||
) [] l in
|
||||
union { ints = l; is_int = is_int; expl = e }
|
||||
|
||||
|
||||
let finite_size {ints = l; is_int = is_int} =
|
||||
if (not is_int) then None
|
||||
else
|
||||
|
|
@ -644,7 +644,7 @@ let finite_size {ints = l; is_int = is_int} =
|
|||
) (Int 0) l in
|
||||
Some n
|
||||
with Exit -> None
|
||||
|
||||
|
||||
let borne_inf = function
|
||||
| {ints = (Large (v, ex), _)::_} -> v, ex
|
||||
| _ -> invalid_arg "Intervals.borne_inf : No finite lower bound"
|
||||
|
|
@ -655,7 +655,7 @@ let inv_borne_inf b is_int ~other =
|
|||
match b with
|
||||
| Pinfty -> assert false
|
||||
| Minfty ->
|
||||
if is_int then Large (Int 0, explain_borne other)
|
||||
if is_int then Large (Int 0, explain_borne other)
|
||||
else Strict (Int 0, explain_borne other)
|
||||
| Strict (Int 0, e) | Large (Int 0, e) -> Pinfty
|
||||
| Strict (v, e) -> Strict (Int 1 // v, e)
|
||||
|
|
@ -677,10 +677,10 @@ let inv_bornes (l, u) is_int =
|
|||
|
||||
let inv ({ints=l; is_int=is_int} as u) =
|
||||
try
|
||||
let l' = List.fold_left
|
||||
let l' = List.fold_left
|
||||
(fun acc (l,u) ->
|
||||
if (pos_borne_strict l && pos_borne_strict u)
|
||||
|| (neg_borne_strict l && neg_borne_strict u) then
|
||||
if (pos_borne_strict l && pos_borne_strict u)
|
||||
|| (neg_borne_strict l && neg_borne_strict u) then
|
||||
(inv_bornes (l, u) is_int) :: acc
|
||||
else raise Exit
|
||||
) [] l in
|
||||
|
|
@ -696,8 +696,8 @@ let div i1 i2 =
|
|||
| Sig.No -> i1
|
||||
in
|
||||
let ({ints=l; is_int=is_int} as i) = mult i1 inv_i2 in
|
||||
let l =
|
||||
if is_int then
|
||||
let l =
|
||||
if is_int then
|
||||
List.map (fun (l,u) -> int_div_bornes l u) l
|
||||
else l in
|
||||
{ i with ints = l }
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ val power : int -> t -> t
|
|||
|
||||
val sqrt : t -> t
|
||||
|
||||
val root : int -> t -> t
|
||||
val root : int -> t -> t
|
||||
|
||||
val add : t -> t -> t
|
||||
|
||||
|
|
|
|||
|
|
@ -13,8 +13,8 @@
|
|||
|
||||
open Hashcons
|
||||
|
||||
type 'a view =
|
||||
| Eq of 'a * 'a
|
||||
type 'a view =
|
||||
| Eq of 'a * 'a
|
||||
| Distinct of bool * 'a list
|
||||
| Builtin of bool * Hstring.t * 'a list
|
||||
|
||||
|
|
@ -45,7 +45,7 @@ module type S = sig
|
|||
|
||||
module Map : Map.S with type key = t
|
||||
module Set : Set.S with type elt = t
|
||||
|
||||
|
||||
end
|
||||
|
||||
module Make (X : OrderedType) : S with type elt = X.t = struct
|
||||
|
|
@ -53,36 +53,36 @@ module Make (X : OrderedType) : S with type elt = X.t = struct
|
|||
type elt = X.t
|
||||
type t = (X.t view) hash_consed
|
||||
|
||||
module V = struct
|
||||
type t = X.t view
|
||||
module V = struct
|
||||
type t = X.t view
|
||||
|
||||
let equal a1 a2 =
|
||||
let equal a1 a2 =
|
||||
match a1, a2 with
|
||||
| Eq(t1, t2), Eq(u1, u2) ->
|
||||
| Eq(t1, t2), Eq(u1, u2) ->
|
||||
(X.compare t1 u1 = 0 && X.compare t2 u2 = 0) ||
|
||||
(X.compare t1 u2 = 0 && X.compare t2 u1 = 0)
|
||||
| Distinct (b1,lt1), Distinct (b2,lt2) ->
|
||||
(try
|
||||
b1 = b2 &&
|
||||
(try
|
||||
b1 = b2 &&
|
||||
List.for_all2 (fun x y -> X.compare x y = 0) lt1 lt2
|
||||
with Invalid_argument _ -> false)
|
||||
| Builtin(b1, n1, l1), Builtin(b2, n2, l2) ->
|
||||
(try
|
||||
b1 = b2 && Hstring.equal n1 n2
|
||||
&&
|
||||
| Builtin(b1, n1, l1), Builtin(b2, n2, l2) ->
|
||||
(try
|
||||
b1 = b2 && Hstring.equal n1 n2
|
||||
&&
|
||||
List.for_all2 (fun x y -> X.compare x y = 0) l1 l2
|
||||
with Invalid_argument _ -> false)
|
||||
| _ -> false
|
||||
|
||||
|
||||
let hash a = match a with
|
||||
| Eq(t1, t2) -> abs (19 * (X.hash t1 + X.hash t2))
|
||||
| Distinct (b,lt) ->
|
||||
let x = if b then 7 else 23 in
|
||||
abs (17 * List.fold_left (fun acc t -> (X.hash t) + acc ) x lt)
|
||||
| Builtin(b, n, l) ->
|
||||
| Builtin(b, n, l) ->
|
||||
let x = if b then 7 else 23 in
|
||||
abs
|
||||
(List.fold_left
|
||||
abs
|
||||
(List.fold_left
|
||||
(fun acc t-> acc*13 + X.hash t) (Hstring.hash n+x) l)
|
||||
end
|
||||
|
||||
|
|
@ -92,9 +92,9 @@ module Make (X : OrderedType) : S with type elt = X.t = struct
|
|||
let equal a1 a2 = a1 == a2
|
||||
let hash a1 = a1.tag
|
||||
|
||||
module T = struct
|
||||
type t' = t
|
||||
type t = t'
|
||||
module T = struct
|
||||
type t' = t
|
||||
type t = t'
|
||||
let compare=compare
|
||||
let equal = equal
|
||||
let hash = hash
|
||||
|
|
@ -112,11 +112,11 @@ module Make (X : OrderedType) : S with type elt = X.t = struct
|
|||
| Builtin(b, n, l) -> make (Builtin (not b, n, l))
|
||||
|
||||
module Labels = Hashtbl.Make(T)
|
||||
|
||||
|
||||
let labels = Labels.create 100007
|
||||
|
||||
|
||||
let add_label lbl t = Labels.replace labels t lbl
|
||||
|
||||
|
||||
let label t = try Labels.find labels t with Not_found -> Hstring.empty
|
||||
|
||||
let print_list fmt = function
|
||||
|
|
@ -124,18 +124,18 @@ module Make (X : OrderedType) : S with type elt = X.t = struct
|
|||
| z :: l ->
|
||||
Format.fprintf fmt "%a" X.print z;
|
||||
List.iter (Format.fprintf fmt ", %a" X.print) l
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
let alt = Hstring.make "<"
|
||||
|
||||
let print fmt a =
|
||||
let print fmt a =
|
||||
let lbl = Hstring.view (label a) in
|
||||
let lbl = if lbl = "" then lbl else lbl^":" in
|
||||
match view a with
|
||||
| Eq (z1, z2) ->
|
||||
| Eq (z1, z2) ->
|
||||
if equal z1 z2 then Format.fprintf fmt "True"
|
||||
else Format.fprintf fmt "%s%a=%a" lbl X.print z1 X.print z2
|
||||
| Distinct (b,(z::l)) ->
|
||||
| Distinct (b,(z::l)) ->
|
||||
let b = if b then "~" else "" in
|
||||
Format.fprintf fmt "%s%s%a" lbl b X.print z;
|
||||
List.iter (fun x -> Format.fprintf fmt "<>%a" X.print x) l
|
||||
|
|
@ -156,7 +156,7 @@ module Make (X : OrderedType) : S with type elt = X.t = struct
|
|||
let b = if b then "" else "~" in
|
||||
Format.fprintf fmt "%s%s%s(%a)" lbl b (Hstring.view n) print_list l
|
||||
| _ -> assert false
|
||||
|
||||
|
||||
module Set = Set.Make(T)
|
||||
module Map = Map.Make(T)
|
||||
|
||||
|
|
@ -182,28 +182,28 @@ module LT : S_Term = struct
|
|||
module L = Make(Term)
|
||||
include L
|
||||
|
||||
let mk_pred t = make (Eq (t, Term.vrai) )
|
||||
|
||||
let mk_pred t = make (Eq (t, Term.vrai) )
|
||||
|
||||
let vrai = mk_pred Term.vrai
|
||||
let faux = mk_pred Term.faux
|
||||
|
||||
let neg a = match view a with
|
||||
| Eq(t1, t2) when Term.equal t2 Term.faux ->
|
||||
| Eq(t1, t2) when Term.equal t2 Term.faux ->
|
||||
make (Eq (t1, Term.vrai))
|
||||
| Eq(t1, t2) when Term.equal t2 Term.vrai ->
|
||||
| Eq(t1, t2) when Term.equal t2 Term.vrai ->
|
||||
make (Eq (t1, Term.faux))
|
||||
| _ -> L.neg a
|
||||
|
||||
(* let terms_of a =
|
||||
let l = match view a with
|
||||
| Eq (t1, t2) -> [t1; t2]
|
||||
| Distinct (_, l) | Builtin (_, _, l) -> l
|
||||
(* let terms_of a =
|
||||
let l = match view a with
|
||||
| Eq (t1, t2) -> [t1; t2]
|
||||
| Distinct (_, l) | Builtin (_, _, l) -> l
|
||||
in
|
||||
List.fold_left Term.subterms Term.Set.empty l
|
||||
*)
|
||||
|
||||
module SS = Symbols.Set
|
||||
(* let vars_of a =
|
||||
module SS = Symbols.Set
|
||||
(* let vars_of a =
|
||||
Term.Set.fold (fun t -> SS.union (Term.vars_of t)) (terms_of a) SS.empty
|
||||
*)
|
||||
end
|
||||
|
|
|
|||
|
|
@ -18,8 +18,8 @@ module type OrderedType = sig
|
|||
val print : Format.formatter -> t -> unit
|
||||
end
|
||||
|
||||
type 'a view =
|
||||
| Eq of 'a * 'a
|
||||
type 'a view =
|
||||
| Eq of 'a * 'a
|
||||
| Distinct of bool * 'a list
|
||||
| Builtin of bool * Hstring.t * 'a list
|
||||
|
||||
|
|
|
|||
100
smt/polynome.ml
100
smt/polynome.ml
|
|
@ -47,7 +47,7 @@ module type T = sig
|
|||
val subst : r -> t -> t -> t
|
||||
val remove : r -> t -> t
|
||||
val to_list : t -> (num * r) list * num
|
||||
|
||||
|
||||
val print : Format.formatter -> t -> unit
|
||||
val type_info : t -> Ty.t
|
||||
val is_monomial : t -> (num * r * num) option
|
||||
|
|
@ -61,41 +61,41 @@ end
|
|||
module Make (X : S) = struct
|
||||
|
||||
type r = X.r
|
||||
|
||||
module M : Map.S with type key = r =
|
||||
|
||||
module M : Map.S with type key = r =
|
||||
Map.Make(struct type t = r let compare x y = X.compare y x end)
|
||||
|
||||
|
||||
type t = { m : num M.t; c : num; ty : Ty.t }
|
||||
|
||||
let compare p1 p2 =
|
||||
let compare p1 p2 =
|
||||
let c = Ty.compare p1.ty p2.ty in
|
||||
if c <> 0 then c
|
||||
else
|
||||
let c = compare_num p1.c p2.c in
|
||||
if c = 0 then M.compare compare_num p1.m p2.m else c
|
||||
|
||||
let hash p =
|
||||
let hash p =
|
||||
abs (Hashtbl.hash p.m + 19*Hashtbl.hash p.c + 17 * Ty.hash p.ty)
|
||||
|
||||
|
||||
let pprint fmt p =
|
||||
M.iter
|
||||
(fun x n ->
|
||||
let s, n, op = match n with
|
||||
| Int 1 -> "+", "", ""
|
||||
| Int -1 -> "-", "", ""
|
||||
| n ->
|
||||
if n >/ Int 0 then "+", string_of_num n, "*"
|
||||
else "-", string_of_num (minus_num n), "*"
|
||||
| n ->
|
||||
if n >/ Int 0 then "+", string_of_num n, "*"
|
||||
else "-", string_of_num (minus_num n), "*"
|
||||
in
|
||||
fprintf fmt "%s%s%s%a" s n op X.print x
|
||||
)p.m;
|
||||
let s, n = if p.c >=/ Int 0 then "+", string_of_num p.c
|
||||
let s, n = if p.c >=/ Int 0 then "+", string_of_num p.c
|
||||
else "-", string_of_num (minus_num p.c) in
|
||||
fprintf fmt "%s%s" s n
|
||||
|
||||
|
||||
let print fmt p =
|
||||
M.iter
|
||||
M.iter
|
||||
(fun t n -> fprintf fmt "%s*%a " (string_of_num n) X.print t) p.m;
|
||||
fprintf fmt "%s" (string_of_num p.c);
|
||||
fprintf fmt " [%a]" Ty.print p.ty
|
||||
|
|
@ -104,38 +104,38 @@ module Make (X : S) = struct
|
|||
|
||||
let find x m = try M.find x m with Not_found -> Int 0
|
||||
|
||||
let create l c ty =
|
||||
let m =
|
||||
List.fold_left
|
||||
(fun m (n, x) ->
|
||||
let create l c ty =
|
||||
let m =
|
||||
List.fold_left
|
||||
(fun m (n, x) ->
|
||||
let n' = n +/ (find x m) in
|
||||
if n' =/ (Int 0) then M.remove x m else M.add x n' m) M.empty l
|
||||
in
|
||||
{ m = m; c = c; ty = ty }
|
||||
|
||||
let add p1 p2 =
|
||||
let m =
|
||||
M.fold
|
||||
(fun x a m ->
|
||||
|
||||
let add p1 p2 =
|
||||
let m =
|
||||
M.fold
|
||||
(fun x a m ->
|
||||
let a' = (find x m) +/ a in
|
||||
if a' =/ (Int 0) then M.remove x m else M.add x a' m)
|
||||
p2.m p1.m
|
||||
in
|
||||
in
|
||||
{ m = m; c = p1.c +/ p2.c; ty = p1.ty }
|
||||
|
||||
let mult_const n p =
|
||||
let mult_const n p =
|
||||
if n =/ (Int 0) then { m = M.empty; c = Int 0; ty = p.ty }
|
||||
else { p with m = M.map (mult_num n) p.m; c = n */ p.c }
|
||||
|
||||
let mult_monome a x p =
|
||||
let mult_monome a x p =
|
||||
let ax = { m = M.add x a M.empty; c = (Int 0); ty = p.ty} in
|
||||
let acx = mult_const p.c ax in
|
||||
let m =
|
||||
let m =
|
||||
M.fold
|
||||
(fun xi ai m -> M.add (X.mult x xi) (a */ ai) m) p.m acx.m
|
||||
in
|
||||
(fun xi ai m -> M.add (X.mult x xi) (a */ ai) m) p.m acx.m
|
||||
in
|
||||
{ acx with m = m}
|
||||
|
||||
|
||||
let mult p1 p2 =
|
||||
let p = mult_const p1.c p2 in
|
||||
M.fold (fun x a p -> add (mult_monome a x p2) p) p1.m p
|
||||
|
|
@ -146,10 +146,10 @@ module Make (X : S) = struct
|
|||
let div p1 p2 =
|
||||
if M.is_empty p2.m then
|
||||
if p2.c =/ Int 0 then raise Division_by_zero
|
||||
else
|
||||
else
|
||||
let p = mult_const ((Int 1) // p2.c) p1 in
|
||||
match M.is_empty p.m, p.ty with
|
||||
| true, Ty.Tint -> {p with c = floor_num p.c}, false
|
||||
| true, Ty.Tint -> {p with c = floor_num p.c}, false
|
||||
| true, Ty.Treal -> p, false
|
||||
| false, Ty.Tint -> p, true
|
||||
| false, Ty.Treal -> p, false
|
||||
|
|
@ -160,11 +160,11 @@ module Make (X : S) = struct
|
|||
let modulo p1 p2 =
|
||||
if M.is_empty p2.m then
|
||||
if p2.c =/ Int 0 then raise Division_by_zero
|
||||
else
|
||||
else
|
||||
if M.is_empty p1.m then { p1 with c = mod_num p1.c p2.c }
|
||||
else raise Not_a_num
|
||||
else raise Maybe_zero
|
||||
|
||||
|
||||
let find x p = M.find x p.m
|
||||
|
||||
let is_empty p = M.is_empty p.m
|
||||
|
|
@ -174,7 +174,7 @@ module Make (X : S) = struct
|
|||
(*version I : prend le premier element de la table*)
|
||||
(try M.iter
|
||||
(fun x a -> tn := Some (a, x); raise Exit) p.m with Exit -> ());
|
||||
(*version II : prend le dernier element de la table i.e. le plus grand
|
||||
(*version II : prend le dernier element de la table i.e. le plus grand
|
||||
M.iter (fun x a -> tn := Some (a, x)) p.m;*)
|
||||
match !tn with Some p -> p | _ -> raise Not_found
|
||||
|
||||
|
|
@ -183,19 +183,19 @@ module Make (X : S) = struct
|
|||
let a = M.find x p2.m in
|
||||
add (mult_const a p1) { p2 with m = M.remove x p2.m}
|
||||
with Not_found -> p2
|
||||
|
||||
|
||||
let remove x p = { p with m = M.remove x p.m }
|
||||
|
||||
let to_list p =
|
||||
|
||||
let to_list p =
|
||||
let l = M.fold (fun x a aliens -> (a, x)::aliens ) p.m [] in
|
||||
List.rev l, p.c
|
||||
|
||||
let type_info p = p.ty
|
||||
|
||||
let is_monomial p =
|
||||
try
|
||||
let is_monomial p =
|
||||
try
|
||||
M.fold
|
||||
(fun x a r ->
|
||||
(fun x a r ->
|
||||
match r with
|
||||
| None -> Some (a, x, p.c)
|
||||
| _ -> raise Exit)
|
||||
|
|
@ -207,37 +207,37 @@ module Make (X : S) = struct
|
|||
| Num.Ratio rat -> Ratio.denominator_ratio rat
|
||||
|
||||
let numerator = function
|
||||
| Num.Int i -> Big_int.big_int_of_int i
|
||||
| Num.Int i -> Big_int.big_int_of_int i
|
||||
| Num.Big_int b -> b
|
||||
| Num.Ratio rat -> Ratio.numerator_ratio rat
|
||||
|
||||
let pgcd_bi a b = Big_int.gcd_big_int a b
|
||||
|
||||
|
||||
let ppmc_bi a b = Big_int.div_big_int (Big_int.mult_big_int a b) (pgcd_bi a b)
|
||||
|
||||
|
||||
let abs_big_int_to_num b =
|
||||
let b =
|
||||
try Int (Big_int.int_of_big_int b)
|
||||
let b =
|
||||
try Int (Big_int.int_of_big_int b)
|
||||
with Failure "int_of_big_int" -> Big_int b
|
||||
in
|
||||
abs_num b
|
||||
|
||||
let ppmc_denominators {m=m} =
|
||||
let res =
|
||||
|
||||
let ppmc_denominators {m=m} =
|
||||
let res =
|
||||
M.fold
|
||||
(fun k c acc -> ppmc_bi (denominator c) acc)
|
||||
m Big_int.unit_big_int in
|
||||
abs_num (num_of_big_int res)
|
||||
|
||||
let pgcd_numerators {m=m} =
|
||||
let res =
|
||||
let pgcd_numerators {m=m} =
|
||||
let res =
|
||||
M.fold
|
||||
(fun k c acc -> pgcd_bi (numerator c) acc)
|
||||
m Big_int.zero_big_int in
|
||||
abs_num (num_of_big_int res)
|
||||
|
||||
let normal_form ({ m = m; c = c } as p) =
|
||||
if M.is_empty m then
|
||||
if M.is_empty m then
|
||||
{ p with c = Int 0 }, p.c, (Int 1)
|
||||
else
|
||||
let ppcm = ppmc_denominators p in
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ exception Not_a_num
|
|||
exception Maybe_zero
|
||||
|
||||
module type S = sig
|
||||
type r
|
||||
type r
|
||||
val compare : r -> r-> int
|
||||
val term_embed : Term.t -> r
|
||||
val mult : r -> r -> r
|
||||
|
|
@ -27,9 +27,9 @@ end
|
|||
|
||||
module type T = sig
|
||||
|
||||
type r
|
||||
type r
|
||||
type t
|
||||
|
||||
|
||||
val compare : t -> t -> int
|
||||
val hash : t -> int
|
||||
|
||||
|
|
@ -47,7 +47,7 @@ module type T = sig
|
|||
val subst : r -> t -> t -> t
|
||||
val remove : r -> t -> t
|
||||
val to_list : t -> (num * r) list * num
|
||||
|
||||
|
||||
val print : Format.formatter -> t -> unit
|
||||
val type_info : t -> Ty.t
|
||||
val is_monomial : t -> (num * r * num) option
|
||||
|
|
@ -56,7 +56,7 @@ module type T = sig
|
|||
val ppmc_denominators : t -> num
|
||||
(* PGCD des numerateurs des coefficients excepte la constante *)
|
||||
val pgcd_numerators : t -> num
|
||||
(* retourne un polynome sans constante et sa constante
|
||||
(* retourne un polynome sans constante et sa constante
|
||||
et la constante multiplicative:
|
||||
normal_form p = (p',c,d) <=> p = (p' + c) * d *)
|
||||
val normal_form : t -> t * num * num
|
||||
|
|
|
|||
34
smt/sig.mli
34
smt/sig.mli
|
|
@ -15,11 +15,11 @@ type answer = Yes of Explanation.t | No
|
|||
|
||||
type 'a literal = LSem of 'a Literal.view | LTerm of Literal.LT.t
|
||||
|
||||
type 'a input =
|
||||
type 'a input =
|
||||
'a Literal.view * Literal.LT.t option * Explanation.t
|
||||
|
||||
type 'a result = {
|
||||
assume : ('a literal * Explanation.t) list;
|
||||
type 'a result = {
|
||||
assume : ('a literal * Explanation.t) list;
|
||||
remove: ('a literal * Explanation.t) list;
|
||||
}
|
||||
|
||||
|
|
@ -28,14 +28,14 @@ module type RELATION = sig
|
|||
type r
|
||||
|
||||
val empty : unit -> t
|
||||
|
||||
|
||||
val assume : t -> (r input) list -> t * r result
|
||||
|
||||
val query : t -> r input -> answer
|
||||
|
||||
val case_split : t -> (r Literal.view * Explanation.t * Num.num) list
|
||||
(** case_split env returns a list of equalities *)
|
||||
|
||||
|
||||
val add : t -> r -> t
|
||||
(** add a representant to take into account *)
|
||||
|
||||
|
|
@ -64,7 +64,7 @@ module type THEORY = sig
|
|||
val term_extract : r -> Term.t option
|
||||
|
||||
val type_info : t -> Ty.t
|
||||
|
||||
|
||||
val embed : r -> t
|
||||
|
||||
(** Give the leaves of a term of the theory *)
|
||||
|
|
@ -108,31 +108,31 @@ module type X = sig
|
|||
type r
|
||||
|
||||
val make : Term.t -> r * Literal.LT.t list
|
||||
|
||||
|
||||
val type_info : r -> Ty.t
|
||||
|
||||
|
||||
val compare : r -> r -> int
|
||||
|
||||
|
||||
val equal : r -> r -> bool
|
||||
|
||||
val hash : r -> int
|
||||
|
||||
|
||||
val leaves : r -> r list
|
||||
|
||||
|
||||
val subst : r -> r -> r -> r
|
||||
|
||||
|
||||
val solve : r -> r -> (r * r) list
|
||||
|
||||
|
||||
val term_embed : Term.t -> r
|
||||
|
||||
val term_extract : r -> Term.t option
|
||||
|
||||
val term_extract : r -> Term.t option
|
||||
|
||||
val unsolvable : r -> bool
|
||||
|
||||
val fully_interpreted : Symbols.t -> bool
|
||||
|
||||
|
||||
val print : Format.formatter -> r -> unit
|
||||
|
||||
|
||||
module Rel : RELATION with type r = r
|
||||
|
||||
end
|
||||
|
|
|
|||
270
smt/smt.ml
270
smt/smt.ml
|
|
@ -12,7 +12,7 @@
|
|||
|
||||
open Format
|
||||
|
||||
type error =
|
||||
type error =
|
||||
| DuplicateTypeName of Hstring.t
|
||||
| DuplicateSymb of Hstring.t
|
||||
| UnknownType of Hstring.t
|
||||
|
|
@ -36,37 +36,37 @@ module Type = struct
|
|||
|
||||
let equal = Hstring.equal
|
||||
|
||||
let type_int =
|
||||
let type_int =
|
||||
let tint = Hstring.make "int" in
|
||||
H.add decl_types tint Ty.Tint;
|
||||
tint
|
||||
|
||||
let type_real =
|
||||
let type_real =
|
||||
let treal = Hstring.make "real" in
|
||||
H.add decl_types treal Ty.Treal;
|
||||
treal
|
||||
|
||||
let type_bool =
|
||||
let type_bool =
|
||||
let tbool = Hstring.make "bool" in
|
||||
H.add decl_types tbool Ty.Tbool;
|
||||
tbool
|
||||
|
||||
let type_proc =
|
||||
let type_proc =
|
||||
let tproc = Hstring.make "proc" in
|
||||
H.add decl_types tproc Ty.Tint;
|
||||
tproc
|
||||
|
||||
let declare_constructor ty c =
|
||||
let declare_constructor ty c =
|
||||
if H.mem decl_symbs c then raise (Error (DuplicateSymb c));
|
||||
H.add decl_symbs c
|
||||
H.add decl_symbs c
|
||||
(Symbols.name ~kind:Symbols.Constructor c, [], ty)
|
||||
|
||||
let declare t constrs =
|
||||
let declare t constrs =
|
||||
if H.mem decl_types t then raise (Error (DuplicateTypeName t));
|
||||
match constrs with
|
||||
| [] ->
|
||||
| [] ->
|
||||
H.add decl_types t (Ty.Tabstract t)
|
||||
| _ ->
|
||||
| _ ->
|
||||
let ty = Ty.Tsum (t, constrs) in
|
||||
H.add decl_types t ty;
|
||||
List.iter (fun c -> declare_constructor t c) constrs
|
||||
|
|
@ -82,29 +82,29 @@ module Type = struct
|
|||
else match H.find decl_types ty with
|
||||
| Ty.Tsum (_ , cstrs) -> cstrs
|
||||
| _ -> raise Not_found
|
||||
|
||||
|
||||
end
|
||||
|
||||
module Symbol = struct
|
||||
|
||||
|
||||
type t = Hstring.t
|
||||
|
||||
let declare f args ret =
|
||||
let declare f args ret =
|
||||
if H.mem decl_symbs f then raise (Error (DuplicateTypeName f));
|
||||
List.iter
|
||||
(fun t ->
|
||||
List.iter
|
||||
(fun t ->
|
||||
if not (H.mem decl_types t) then raise (Error (UnknownType t)) )
|
||||
(ret::args);
|
||||
H.add decl_symbs f (Symbols.name f, args, ret)
|
||||
|
||||
let type_of s = let _, args, ret = H.find decl_symbs s in args, ret
|
||||
|
||||
let declared s =
|
||||
let declared s =
|
||||
let res = H.mem decl_symbs s in
|
||||
if not res then begin
|
||||
if not res then begin
|
||||
eprintf "Not declared : %a in@." Hstring.print s;
|
||||
H.iter (fun hs (sy, _, _) ->
|
||||
eprintf "%a (=?%b) -> %a@." Hstring.print hs
|
||||
eprintf "%a (=?%b) -> %a@." Hstring.print hs
|
||||
(Hstring.compare hs s = 0)
|
||||
Symbols.print sy)
|
||||
decl_symbs;
|
||||
|
|
@ -114,49 +114,49 @@ module Symbol = struct
|
|||
let not_builtin ty = Hstring.equal ty Type.type_proc ||
|
||||
not (Hstring.equal ty Type.type_int || Hstring.equal ty Type.type_real ||
|
||||
Hstring.equal ty Type.type_bool || Hstring.equal ty Type.type_proc)
|
||||
|
||||
|
||||
let has_abstract_type s =
|
||||
let _, ret = type_of s in
|
||||
match H.find decl_types ret with
|
||||
| Ty.Tabstract _ -> true
|
||||
| _ -> false
|
||||
|
||||
|
||||
let has_type_proc s =
|
||||
Hstring.equal (snd (type_of s)) Type.type_proc
|
||||
|
||||
let _ =
|
||||
|
||||
let _ =
|
||||
H.add decl_symbs htrue (Symbols.True, [], Type.type_bool);
|
||||
H.add decl_symbs hfalse (Symbols.False, [], Type.type_bool);
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
module Variant = struct
|
||||
|
||||
|
||||
let constructors = H.create 17
|
||||
let assignments = H.create 17
|
||||
|
||||
let find t x = try H.find t x with Not_found -> HSet.empty
|
||||
|
||||
let add t x v =
|
||||
|
||||
let add t x v =
|
||||
let s = find t x in
|
||||
H.replace t x (HSet.add v s)
|
||||
|
||||
|
||||
let assign_constr = add constructors
|
||||
|
||||
let assign_var x y =
|
||||
|
||||
let assign_var x y =
|
||||
if not (Hstring.equal x y) then
|
||||
add assignments x y
|
||||
|
||||
let rec compute () =
|
||||
let rec compute () =
|
||||
let flag = ref false in
|
||||
let visited = ref HSet.empty in
|
||||
let rec dfs x s =
|
||||
let rec dfs x s =
|
||||
if not (HSet.mem x !visited) then
|
||||
begin
|
||||
visited := HSet.add x !visited;
|
||||
HSet.iter
|
||||
(fun y ->
|
||||
HSet.iter
|
||||
(fun y ->
|
||||
let c_x = find constructors x in
|
||||
let c_y = find constructors y in
|
||||
let c = HSet.union c_x c_y in
|
||||
|
|
@ -171,25 +171,25 @@ module Variant = struct
|
|||
in
|
||||
H.iter dfs assignments;
|
||||
if !flag then compute ()
|
||||
|
||||
let hset_print fmt s =
|
||||
|
||||
let hset_print fmt s =
|
||||
HSet.iter (fun c -> Format.eprintf "%a, " Hstring.print c) s
|
||||
|
||||
let print () =
|
||||
H.iter
|
||||
(fun x c ->
|
||||
Format.eprintf "%a = {%a}@." Hstring.print x hset_print c)
|
||||
|
||||
let print () =
|
||||
H.iter
|
||||
(fun x c ->
|
||||
Format.eprintf "%a = {%a}@." Hstring.print x hset_print c)
|
||||
constructors
|
||||
|
||||
|
||||
let get_variants = H.find constructors
|
||||
|
||||
let set_of_list = List.fold_left (fun s x -> HSet.add x s) HSet.empty
|
||||
|
||||
let init l =
|
||||
|
||||
let set_of_list = List.fold_left (fun s x -> HSet.add x s) HSet.empty
|
||||
|
||||
let init l =
|
||||
compute ();
|
||||
List.iter
|
||||
(fun (x, nty) ->
|
||||
List.iter
|
||||
(fun (x, nty) ->
|
||||
if not (H.mem constructors x) then
|
||||
let ty = H.find decl_types nty in
|
||||
match ty with
|
||||
|
|
@ -198,30 +198,30 @@ module Variant = struct
|
|||
| _ -> ()) l;
|
||||
H.clear assignments
|
||||
|
||||
let update_decl_types s =
|
||||
let update_decl_types s =
|
||||
let nty = ref "" in
|
||||
let l = ref [] in
|
||||
HSet.iter
|
||||
(fun x ->
|
||||
l := x :: !l;
|
||||
let vx = Hstring.view x in
|
||||
HSet.iter
|
||||
(fun x ->
|
||||
l := x :: !l;
|
||||
let vx = Hstring.view x in
|
||||
nty := if !nty = "" then vx else !nty ^ "|" ^ vx) s;
|
||||
let nty = Hstring.make !nty in
|
||||
let ty = Ty.Tsum (nty, List.rev !l) in
|
||||
H.replace decl_types nty ty;
|
||||
nty
|
||||
|
||||
let close () =
|
||||
let close () =
|
||||
compute ();
|
||||
H.iter
|
||||
(fun x s ->
|
||||
H.iter
|
||||
(fun x s ->
|
||||
let nty = update_decl_types s in
|
||||
let sy, args, _ = H.find decl_symbs x in
|
||||
H.replace decl_symbs x (sy, args, nty))
|
||||
constructors
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
module rec Term : sig
|
||||
|
||||
|
|
@ -253,17 +253,17 @@ end
|
|||
let rec first_ite = function
|
||||
| [] -> raise Not_found
|
||||
| Tite (c, t1, t2) :: l -> [], (c, t1, t2), l
|
||||
| x :: l ->
|
||||
| x :: l ->
|
||||
let left, triplet, right = first_ite l in
|
||||
x::left, triplet, right
|
||||
|
||||
let rec lift_ite sb l ty =
|
||||
let rec lift_ite sb l ty =
|
||||
try
|
||||
let left, (c, t1, t2), right = first_ite l in
|
||||
let l = lift_ite sb (left@(t1::right)) ty in
|
||||
let r = lift_ite sb (left@(t2::right)) ty in
|
||||
Tite (c, l, r)
|
||||
with Not_found ->
|
||||
with Not_found ->
|
||||
let l = List.map (function T x -> x | _ -> assert false) l in
|
||||
T (AETerm.make sb l ty)
|
||||
|
||||
|
|
@ -285,8 +285,8 @@ end
|
|||
| T t -> AETerm.is_real t
|
||||
| Tite(_, t1, t2) -> is_real t1 && is_real t2
|
||||
|
||||
let make_arith op t1 t2 =
|
||||
let op =
|
||||
let make_arith op t1 t2 =
|
||||
let op =
|
||||
match op with
|
||||
| Plus -> Symbols.Plus
|
||||
| Minus -> Symbols.Minus
|
||||
|
|
@ -294,7 +294,7 @@ end
|
|||
| Div -> Symbols.Div
|
||||
| Modulo -> Symbols.Modulo
|
||||
in
|
||||
let ty =
|
||||
let ty =
|
||||
if is_int t1 && is_int t2 then Ty.Tint
|
||||
else if is_real t1 && is_real t2 then Ty.Treal
|
||||
else assert false
|
||||
|
|
@ -308,10 +308,10 @@ end
|
|||
|
||||
and Formula : sig
|
||||
|
||||
type comparator = Eq | Neq | Le | Lt
|
||||
type comparator = Eq | Neq | Le | Lt
|
||||
type combinator = And | Or | Imp | Not
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
| Comb of combinator * t list
|
||||
|
||||
val f_true : t
|
||||
|
|
@ -337,7 +337,7 @@ and Formula : sig
|
|||
val print_list : string -> Format.formatter -> t list -> unit
|
||||
val print : Format.formatter -> t -> unit
|
||||
|
||||
module Tseitin (Dymmy : sig end) :
|
||||
module Tseitin (Dymmy : sig end) :
|
||||
sig val make_cnf : t -> Literal.LT.t list list end
|
||||
|
||||
end
|
||||
|
|
@ -346,18 +346,18 @@ end
|
|||
type comparator = Eq | Neq | Le | Lt
|
||||
type combinator = And | Or | Imp | Not
|
||||
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
| Comb of combinator * t list
|
||||
|
||||
let rec print fmt phi =
|
||||
let rec print fmt phi =
|
||||
match phi with
|
||||
| Lit a -> Literal.LT.print fmt a
|
||||
| Comb (Not, [f]) ->
|
||||
| Comb (Not, [f]) ->
|
||||
fprintf fmt "not (%a)" print f
|
||||
| Comb (And, l) -> fprintf fmt "(%a)" (print_list "and") l
|
||||
| Comb (Or, l) -> fprintf fmt "(%a)" (print_list "or") l
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
fprintf fmt "(%a => %a)" print f1 print f2
|
||||
| _ -> assert false
|
||||
and print_list sep fmt = function
|
||||
|
|
@ -370,38 +370,38 @@ end
|
|||
|
||||
let make comb l = Comb (comb, l)
|
||||
|
||||
let value env c =
|
||||
let value env c =
|
||||
if List.mem c env then Some true
|
||||
else if List.mem (make Not [c]) env then Some false
|
||||
else None
|
||||
|
||||
let rec lift_ite env op l =
|
||||
let rec lift_ite env op l =
|
||||
try
|
||||
let left, (c, t1, t2), right = Term.first_ite l in
|
||||
begin
|
||||
match value env c with
|
||||
| Some true ->
|
||||
| Some true ->
|
||||
lift_ite (c::env) op (left@(t1::right))
|
||||
| Some false ->
|
||||
| Some false ->
|
||||
lift_ite ((make Not [c])::env) op (left@(t2::right))
|
||||
| None ->
|
||||
Comb
|
||||
(And,
|
||||
[Comb
|
||||
Comb
|
||||
(And,
|
||||
[Comb
|
||||
(Imp, [c; lift_ite (c::env) op (left@(t1::right))]);
|
||||
Comb (Imp,
|
||||
[(make Not [c]);
|
||||
lift_ite
|
||||
Comb (Imp,
|
||||
[(make Not [c]);
|
||||
lift_ite
|
||||
((make Not [c])::env) op (left@(t2::right))])])
|
||||
end
|
||||
with Not_found ->
|
||||
with Not_found ->
|
||||
begin
|
||||
let lit =
|
||||
match op, l with
|
||||
| Eq, [Term.T t1; Term.T t2] ->
|
||||
| Eq, [Term.T t1; Term.T t2] ->
|
||||
Literal.Eq (t1, t2)
|
||||
| Neq, ts ->
|
||||
let ts =
|
||||
| Neq, ts ->
|
||||
let ts =
|
||||
List.rev_map (function Term.T x -> x | _ -> assert false) ts in
|
||||
Literal.Distinct (false, ts)
|
||||
| Le, [Term.T t1; Term.T t2] ->
|
||||
|
|
@ -440,16 +440,16 @@ end
|
|||
| Comb (Not, [Comb (Or, l)]) ->
|
||||
let nl = List.rev_map (fun a -> sform (Comb (Not, [a]))) l in
|
||||
Comb (And, nl)
|
||||
| Comb (Not, [Comb (And, l)]) ->
|
||||
| Comb (Not, [Comb (And, l)]) ->
|
||||
let nl = List.rev_map (fun a -> sform (Comb (Not, [a]))) l in
|
||||
Comb (Or, nl)
|
||||
| Comb (Not, [Comb (Imp, [f1; f2])]) ->
|
||||
| Comb (Not, [Comb (Imp, [f1; f2])]) ->
|
||||
Comb (And, [sform f1; sform (Comb (Not, [f2]))])
|
||||
| Comb (And, l) ->
|
||||
| Comb (And, l) ->
|
||||
Comb (And, List.rev_map sform l)
|
||||
| Comb (Or, l) ->
|
||||
| Comb (Or, l) ->
|
||||
Comb (Or, List.rev_map sform l)
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
Comb (Or, [sform (Comb (Not, [f1])); sform f2])
|
||||
| Comb ((Imp | Not), _) -> assert false
|
||||
| Lit _ as f -> f
|
||||
|
|
@ -463,17 +463,17 @@ end
|
|||
| [a] -> a
|
||||
| l -> Comb (Or, l)
|
||||
|
||||
let distrib l_and l_or =
|
||||
let l =
|
||||
let distrib l_and l_or =
|
||||
let l =
|
||||
if l_or = [] then l_and
|
||||
else
|
||||
List.rev_map
|
||||
(fun x ->
|
||||
match x with
|
||||
(fun x ->
|
||||
match x with
|
||||
| Lit _ -> Comb (Or, x::l_or)
|
||||
| Comb (Or, l) -> Comb (Or, l @@ l_or)
|
||||
| _ -> assert false
|
||||
) l_and
|
||||
) l_and
|
||||
in
|
||||
Comb (And, l)
|
||||
|
||||
|
|
@ -482,22 +482,22 @@ end
|
|||
| Comb (Or, l)::r -> l @@ (flatten_or r)
|
||||
| Lit a :: r -> (Lit a)::(flatten_or r)
|
||||
| _ -> assert false
|
||||
|
||||
|
||||
let rec flatten_and = function
|
||||
| [] -> []
|
||||
| Comb (And, l)::r -> l @@ (flatten_and r)
|
||||
| a :: r -> a::(flatten_and r)
|
||||
|
||||
|
||||
let rec cnf f =
|
||||
|
||||
let rec cnf f =
|
||||
match f with
|
||||
| Comb (Or, l) ->
|
||||
| Comb (Or, l) ->
|
||||
begin
|
||||
let l = List.rev_map cnf l in
|
||||
let l_and, l_or =
|
||||
let l_and, l_or =
|
||||
List.partition (function Comb(And,_) -> true | _ -> false) l in
|
||||
match l_and with
|
||||
| [ Comb(And, l_conj) ] ->
|
||||
| [ Comb(And, l_conj) ] ->
|
||||
let u = flatten_or l_or in
|
||||
distrib l_conj u
|
||||
|
||||
|
|
@ -505,7 +505,7 @@ end
|
|||
let u = flatten_or l_or in
|
||||
cnf (Comb(Or, (distrib l_conj u)::r))
|
||||
|
||||
| _ ->
|
||||
| _ ->
|
||||
begin
|
||||
match flatten_or l_or with
|
||||
| [] -> assert false
|
||||
|
|
@ -513,9 +513,9 @@ end
|
|||
| v -> Comb (Or, v)
|
||||
end
|
||||
end
|
||||
| Comb (And, l) ->
|
||||
| Comb (And, l) ->
|
||||
Comb (And, List.rev_map cnf l)
|
||||
| f -> f
|
||||
| f -> f
|
||||
|
||||
let rec mk_cnf = function
|
||||
| Comb (And, l) ->
|
||||
|
|
@ -524,13 +524,13 @@ end
|
|||
| Comb (Or, [f1;f2]) ->
|
||||
let ll1 = mk_cnf f1 in
|
||||
let ll2 = mk_cnf f2 in
|
||||
List.fold_left
|
||||
List.fold_left
|
||||
(fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1
|
||||
|
||||
| Comb (Or, f1 :: l) ->
|
||||
let ll1 = mk_cnf f1 in
|
||||
let ll2 = mk_cnf (Comb (Or, l)) in
|
||||
List.fold_left
|
||||
List.fold_left
|
||||
(fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1
|
||||
|
||||
| Lit a -> [[a]]
|
||||
|
|
@ -538,18 +538,18 @@ end
|
|||
| _ -> assert false
|
||||
|
||||
|
||||
let rec unfold mono f =
|
||||
let rec unfold mono f =
|
||||
match f with
|
||||
| Lit a -> a::mono
|
||||
| Comb (Not, [Lit a]) ->
|
||||
| Lit a -> a::mono
|
||||
| Comb (Not, [Lit a]) ->
|
||||
(Literal.LT.neg a)::mono
|
||||
| Comb (Or, l) ->
|
||||
| Comb (Or, l) ->
|
||||
List.fold_left unfold mono l
|
||||
| _ -> assert false
|
||||
|
||||
let rec init monos f =
|
||||
|
||||
let rec init monos f =
|
||||
match f with
|
||||
| Comb (And, l) ->
|
||||
| Comb (And, l) ->
|
||||
List.fold_left init monos l
|
||||
| f -> (unfold [] f)::monos
|
||||
|
||||
|
|
@ -557,10 +557,10 @@ end
|
|||
let sfnc = cnf (sform f) in
|
||||
init [] sfnc
|
||||
|
||||
let mk_proxy =
|
||||
let mk_proxy =
|
||||
let cpt = ref 0 in
|
||||
fun () ->
|
||||
let t = AETerm.make
|
||||
fun () ->
|
||||
let t = AETerm.make
|
||||
(Symbols.name (Hstring.make ("PROXY__"^(string_of_int !cpt))))
|
||||
[] Ty.Tbool
|
||||
in
|
||||
|
|
@ -615,9 +615,9 @@ end
|
|||
| None, l -> Some Or, l @@ acc
|
||||
| _ -> assert false
|
||||
) (None, []) l
|
||||
|
||||
|
||||
| _ -> assert false
|
||||
|
||||
|
||||
let cnf f =
|
||||
let acc = match f with
|
||||
| Comb (And, l) -> List.rev_map (fun f -> snd(cnf f)) l
|
||||
|
|
@ -702,47 +702,47 @@ module Make (Dummy : sig end) = struct
|
|||
|
||||
let check_unsatcore uc =
|
||||
eprintf "Unsat Core : @.";
|
||||
List.iter
|
||||
(fun c ->
|
||||
eprintf "%a@." (Formula.print_list "or")
|
||||
List.iter
|
||||
(fun c ->
|
||||
eprintf "%a@." (Formula.print_list "or")
|
||||
(List.rev_map (fun x -> Formula.Lit x) c)) uc;
|
||||
eprintf "@.";
|
||||
try
|
||||
try
|
||||
clear ();
|
||||
CSolver.assume uc 0;
|
||||
CSolver.solve ();
|
||||
eprintf "Not an unsat core !!!@.";
|
||||
assert false
|
||||
with
|
||||
with
|
||||
| Solver.Unsat _ -> ();
|
||||
| Solver.Sat ->
|
||||
| Solver.Sat ->
|
||||
eprintf "Sat: Not an unsat core !!!@.";
|
||||
assert false
|
||||
|
||||
let export_unsatcore cl =
|
||||
let export_unsatcore cl =
|
||||
let uc = List.rev_map (fun {Solver_types.atoms=atoms} ->
|
||||
let l = ref [] in
|
||||
for i = 0 to Vec.size atoms - 1 do
|
||||
l := (Vec.get atoms i).Solver_types.lit :: !l
|
||||
done;
|
||||
done;
|
||||
!l) cl
|
||||
in (* check_unsatcore uc; *)
|
||||
uc
|
||||
|
||||
module SInt =
|
||||
module SInt =
|
||||
Set.Make (struct type t = int let compare = Pervasives.compare end)
|
||||
|
||||
let export_unsatcore2 cl =
|
||||
let s =
|
||||
List.fold_left
|
||||
let s =
|
||||
List.fold_left
|
||||
(fun s {Solver_types.name = n} ->
|
||||
try SInt.add (int_of_string n) s with _ -> s) SInt.empty cl
|
||||
in
|
||||
in
|
||||
SInt.elements s
|
||||
|
||||
let assume ?(profiling = false) ~id f =
|
||||
let assume ?(profiling = false) ~id f =
|
||||
if profiling then Time.start ();
|
||||
try
|
||||
try
|
||||
CSolver.assume (Tseitin.make_cnf f) id;
|
||||
if profiling then Time.pause ()
|
||||
with Solver.Unsat ex ->
|
||||
|
|
@ -752,12 +752,12 @@ module Make (Dummy : sig end) = struct
|
|||
let check ?(profiling = false) () =
|
||||
incr calls;
|
||||
if profiling then Time.start ();
|
||||
try
|
||||
try
|
||||
CSolver.solve ();
|
||||
if profiling then Time.pause ()
|
||||
with
|
||||
| Solver.Sat -> if profiling then Time.pause ()
|
||||
| Solver.Unsat ex ->
|
||||
| Solver.Unsat ex ->
|
||||
if profiling then Time.pause ();
|
||||
raise (Unsat (export_unsatcore2 ex))
|
||||
|
||||
|
|
@ -777,7 +777,7 @@ module Make (Dummy : sig end) = struct
|
|||
|
||||
let entails ?(profiling=false) ~id f =
|
||||
let st = save_state () in
|
||||
let ans =
|
||||
let ans =
|
||||
try
|
||||
assume ~profiling ~id (Formula.make Formula.Not [f]) ;
|
||||
check ~profiling ();
|
||||
|
|
|
|||
46
smt/smt.mli
46
smt/smt.mli
|
|
@ -74,31 +74,31 @@ end
|
|||
|
||||
(** {3 Function symbols} *)
|
||||
module Symbol : sig
|
||||
|
||||
|
||||
type t = Hstring.t
|
||||
(** The type of function symbols *)
|
||||
|
||||
|
||||
val declare : Hstring.t -> Type.t list -> Type.t -> unit
|
||||
(** [declare s [arg_1; ... ; arg_n] out] declares a new function
|
||||
symbol with type [ (arg_1, ... , arg_n) -> out] *)
|
||||
|
||||
|
||||
val type_of : t -> Type.t list * Type.t
|
||||
(** [type_of x] returns the type of x. *)
|
||||
|
||||
|
||||
val has_abstract_type : t -> bool
|
||||
(** [has_abstract_type x] is [true] if the type of x is abstract. *)
|
||||
|
||||
|
||||
val has_type_proc : t -> bool
|
||||
(** [has_type_proc x] is [true] if x has the type of a process
|
||||
identifier. *)
|
||||
|
||||
|
||||
val declared : t -> bool
|
||||
(** [declared x] is [true] if [x] is already declared. *)
|
||||
|
||||
|
||||
end
|
||||
|
||||
(** {3 Variants}
|
||||
|
||||
|
||||
The types of symbols (when they are enumerated data types) can be refined
|
||||
to substypes of their original type (i.e. a subset of their constructors).
|
||||
*)
|
||||
|
|
@ -107,7 +107,7 @@ module Variant : sig
|
|||
val init : (Symbol.t * Type.t) list -> unit
|
||||
(** [init l] where [l] is a list of pairs [(s, ty)] initializes the
|
||||
type (and associated constructors) of each [s] to its original type [ty].
|
||||
|
||||
|
||||
This function must be called with a list of all symbols before
|
||||
attempting to refine the types. *)
|
||||
|
||||
|
|
@ -117,12 +117,12 @@ module Variant : sig
|
|||
This function must be called when all information has been added.*)
|
||||
|
||||
val assign_constr : Symbol.t -> Hstring.t -> unit
|
||||
(** [assign_constr s cstr] will add the constraint that the constructor
|
||||
(** [assign_constr s cstr] will add the constraint that the constructor
|
||||
[cstr] must be in the type of [s] *)
|
||||
|
||||
val assign_var : Symbol.t -> Symbol.t -> unit
|
||||
(** [assign_var x y] will add the constraint that the type of [y] is a
|
||||
subtype of [x] (use this function when [x := y] appear in your
|
||||
subtype of [x] (use this function when [x := y] appear in your
|
||||
program *)
|
||||
|
||||
val print : unit -> unit
|
||||
|
|
@ -143,10 +143,10 @@ module rec Term : sig
|
|||
(** The type of terms *)
|
||||
|
||||
(** The type of operators *)
|
||||
type operator =
|
||||
type operator =
|
||||
| Plus (** [+] *)
|
||||
| Minus (** [-] *)
|
||||
| Mult (** [*] *)
|
||||
| Mult (** [*] *)
|
||||
| Div (** [/] *)
|
||||
| Modulo (** [mod] *)
|
||||
|
||||
|
|
@ -186,22 +186,22 @@ end
|
|||
and Formula : sig
|
||||
|
||||
(** The type of comparators: *)
|
||||
type comparator =
|
||||
type comparator =
|
||||
| Eq (** equality ([=]) *)
|
||||
| Neq (** disequality ([<>]) *)
|
||||
| Le (** inequality ([<=]) *)
|
||||
| Lt (** strict inequality ([<]) *)
|
||||
|
||||
(** The type of operators *)
|
||||
type combinator =
|
||||
type combinator =
|
||||
| And (** conjunction *)
|
||||
| Or (** disjunction *)
|
||||
| Imp (** implication *)
|
||||
| Not (** negation *)
|
||||
|
||||
(** The type of ground formulas *)
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
type t =
|
||||
| Lit of Literal.LT.t
|
||||
| Comb of combinator * t list
|
||||
|
||||
val f_true : t
|
||||
|
|
@ -267,11 +267,11 @@ module type Solver = sig
|
|||
assume f_n;
|
||||
check ();]}
|
||||
*)
|
||||
|
||||
|
||||
type state
|
||||
(** The type of the internal state of the solver (see {!save_state} and
|
||||
{!restore_state}).*)
|
||||
|
||||
|
||||
|
||||
(** {2 Profiling functions} *)
|
||||
|
||||
|
|
@ -292,20 +292,20 @@ module type Solver = sig
|
|||
(** [assume ~profiling:b f id] adds the formula [f] to the context of the
|
||||
solver with identifier [id].
|
||||
This function only performs unit propagation.
|
||||
|
||||
|
||||
@param profiling if set to [true] then profiling information (time) will
|
||||
be computed (expensive because of system calls).
|
||||
|
||||
|
||||
{b Raises} {! Unsat} if the context becomes inconsistent after unit
|
||||
propagation. *)
|
||||
|
||||
val check : ?profiling:bool -> unit -> unit
|
||||
(** [check ()] runs Alt-Ergo Zero on its context. If [()] is
|
||||
returned then the context is satifiable.
|
||||
|
||||
|
||||
@param profiling if set to [true] then profiling information (time) will
|
||||
be computed (expensive because of system calls).
|
||||
|
||||
|
||||
{b Raises} {! Unsat} [[id_1; ...; id_n]] if the context is unsatisfiable.
|
||||
[id_1, ..., id_n] is the unsat core (returned as the identifiers of the
|
||||
formulas given to the solver). *)
|
||||
|
|
|
|||
266
smt/solver.ml
266
smt/solver.ml
|
|
@ -22,8 +22,8 @@ exception Restart
|
|||
|
||||
|
||||
|
||||
type env =
|
||||
{
|
||||
type env =
|
||||
{
|
||||
(* si vrai, les contraintes sont deja fausses *)
|
||||
mutable is_unsat : bool;
|
||||
|
||||
|
|
@ -31,34 +31,34 @@ type env =
|
|||
|
||||
(* clauses du probleme *)
|
||||
mutable clauses : clause Vec.t;
|
||||
|
||||
|
||||
(* clauses apprises *)
|
||||
mutable learnts : clause Vec.t;
|
||||
|
||||
|
||||
(* valeur de l'increment pour l'activite des clauses *)
|
||||
mutable clause_inc : float;
|
||||
|
||||
|
||||
(* valeur de l'increment pour l'activite des variables *)
|
||||
mutable var_inc : float;
|
||||
|
||||
|
||||
(* un vecteur des variables du probleme *)
|
||||
mutable vars : var Vec.t;
|
||||
|
||||
|
||||
(* la pile de decisions avec les faits impliques *)
|
||||
mutable trail : atom Vec.t;
|
||||
|
||||
(* une pile qui pointe vers les niveaux de decision dans trail *)
|
||||
mutable trail_lim : int Vec.t;
|
||||
|
||||
(* Tete de la File des faits unitaires a propager.
|
||||
(* Tete de la File des faits unitaires a propager.
|
||||
C'est un index vers le trail *)
|
||||
mutable qhead : int;
|
||||
|
||||
(* Nombre des assignements top-level depuis la derniere
|
||||
|
||||
(* Nombre des assignements top-level depuis la derniere
|
||||
execution de 'simplify()' *)
|
||||
mutable simpDB_assigns : int;
|
||||
|
||||
(* Nombre restant de propagations a faire avant la prochaine
|
||||
(* Nombre restant de propagations a faire avant la prochaine
|
||||
execution de 'simplify()' *)
|
||||
mutable simpDB_props : int;
|
||||
|
||||
|
|
@ -82,12 +82,12 @@ type env =
|
|||
|
||||
(* facteur de multiplication de restart limite, vaut 1.5 par defaut*)
|
||||
restart_inc : float;
|
||||
|
||||
(* limite initiale du nombre de clause apprises, vaut 1/3
|
||||
|
||||
(* limite initiale du nombre de clause apprises, vaut 1/3
|
||||
des clauses originales par defaut *)
|
||||
mutable learntsize_factor : float;
|
||||
|
||||
(* multiplier learntsize_factor par cette valeur a chaque restart,
|
||||
|
||||
(* multiplier learntsize_factor par cette valeur a chaque restart,
|
||||
vaut 1.1 par defaut *)
|
||||
learntsize_inc : float;
|
||||
|
||||
|
|
@ -96,7 +96,7 @@ type env =
|
|||
|
||||
(* controle la polarite a choisir lors de la decision *)
|
||||
polarity_mode : bool;
|
||||
|
||||
|
||||
mutable starts : int;
|
||||
|
||||
mutable decisions : int;
|
||||
|
|
@ -116,17 +116,17 @@ type env =
|
|||
mutable nb_init_vars : int;
|
||||
|
||||
mutable nb_init_clauses : int;
|
||||
|
||||
|
||||
mutable model : var Vec.t;
|
||||
|
||||
|
||||
mutable tenv : Th.t;
|
||||
|
||||
mutable tenv_queue : Th.t Vec.t;
|
||||
|
||||
|
||||
mutable tatoms_queue : atom Queue.t;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
exception Conflict of clause
|
||||
|
|
@ -136,36 +136,36 @@ module Make (Dummy : sig end) = struct
|
|||
|
||||
open Solver_types
|
||||
|
||||
type state =
|
||||
type state =
|
||||
{
|
||||
env : env;
|
||||
env : env;
|
||||
st_cpt_mk_var: int;
|
||||
st_ma : var Literal.LT.Map.t;
|
||||
}
|
||||
|
||||
|
||||
let env =
|
||||
{
|
||||
is_unsat = false;
|
||||
|
||||
{
|
||||
is_unsat = false;
|
||||
|
||||
unsat_core = [] ;
|
||||
|
||||
clauses = Vec.make 0 dummy_clause; (*sera mis a jour lors du parsing*)
|
||||
|
||||
|
||||
learnts = Vec.make 0 dummy_clause; (*sera mis a jour lors du parsing*)
|
||||
|
||||
|
||||
clause_inc = 1.;
|
||||
|
||||
|
||||
var_inc = 1.;
|
||||
|
||||
|
||||
vars = Vec.make 0 dummy_var; (*sera mis a jour lors du parsing*)
|
||||
|
||||
|
||||
trail = Vec.make 601 dummy_atom;
|
||||
|
||||
trail_lim = Vec.make 601 (-105);
|
||||
|
||||
qhead = 0;
|
||||
|
||||
|
||||
simpDB_assigns = -1;
|
||||
|
||||
simpDB_props = 0;
|
||||
|
|
@ -183,15 +183,15 @@ module Make (Dummy : sig end) = struct
|
|||
restart_first = 100;
|
||||
|
||||
restart_inc = 1.5;
|
||||
|
||||
|
||||
learntsize_factor = 1. /. 3. ;
|
||||
|
||||
|
||||
learntsize_inc = 1.1;
|
||||
|
||||
expensive_ccmin = true;
|
||||
|
||||
polarity_mode = false;
|
||||
|
||||
|
||||
starts = 0;
|
||||
|
||||
decisions = 0;
|
||||
|
|
@ -211,9 +211,9 @@ module Make (Dummy : sig end) = struct
|
|||
nb_init_vars = 0;
|
||||
|
||||
nb_init_clauses = 0;
|
||||
|
||||
|
||||
model = Vec.make 0 dummy_var;
|
||||
|
||||
|
||||
tenv = Th.empty();
|
||||
|
||||
tenv_queue = Vec.make 100 (Th.empty());
|
||||
|
|
@ -224,18 +224,18 @@ module Make (Dummy : sig end) = struct
|
|||
|
||||
|
||||
let f_weight i j = (Vec.get env.vars j).weight < (Vec.get env.vars i).weight
|
||||
|
||||
|
||||
let f_filter i = (Vec.get env.vars i).level < 0
|
||||
|
||||
let insert_var_order v =
|
||||
Iheap.insert f_weight env.order v.vid
|
||||
|
||||
let var_decay_activity () = env.var_inc <- env.var_inc *. env.var_decay
|
||||
|
||||
let clause_decay_activity () =
|
||||
|
||||
let clause_decay_activity () =
|
||||
env.clause_inc <- env.clause_inc *. env.clause_decay
|
||||
|
||||
let var_bump_activity v =
|
||||
let var_bump_activity v =
|
||||
v.weight <- v.weight +. env.var_inc;
|
||||
if v.weight > 1e100 then begin
|
||||
for i = 0 to env.vars.Vec.sz - 1 do
|
||||
|
|
@ -245,9 +245,9 @@ let var_bump_activity v =
|
|||
end;
|
||||
if Iheap.in_heap env.order v.vid then
|
||||
Iheap.decrease f_weight env.order v.vid
|
||||
|
||||
|
||||
let clause_bump_activity c =
|
||||
|
||||
let clause_bump_activity c =
|
||||
c.activity <- c.activity +. env.clause_inc;
|
||||
if c.activity > 1e20 then begin
|
||||
for i = 0 to env.learnts.Vec.sz - 1 do
|
||||
|
|
@ -264,32 +264,32 @@ let nb_clauses () = Vec.size env.clauses
|
|||
let nb_learnts () = Vec.size env.learnts
|
||||
let nb_vars () = Vec.size env.vars
|
||||
|
||||
let new_decision_level() =
|
||||
let new_decision_level() =
|
||||
Vec.push env.trail_lim (Vec.size env.trail);
|
||||
Vec.push env.tenv_queue env.tenv (* save the current tenv *)
|
||||
|
||||
let attach_clause c =
|
||||
let attach_clause c =
|
||||
Vec.push (Vec.get c.atoms 0).neg.watched c;
|
||||
Vec.push (Vec.get c.atoms 1).neg.watched c;
|
||||
if c.learnt then
|
||||
if c.learnt then
|
||||
env.learnts_literals <- env.learnts_literals + Vec.size c.atoms
|
||||
else
|
||||
env.clauses_literals <- env.clauses_literals + Vec.size c.atoms
|
||||
|
||||
let detach_clause c =
|
||||
|
||||
let detach_clause c =
|
||||
c.removed <- true;
|
||||
(*
|
||||
Vec.remove (Vec.get c.atoms 0).neg.watched c;
|
||||
Vec.remove (Vec.get c.atoms 1).neg.watched c;
|
||||
*)
|
||||
if c.learnt then
|
||||
if c.learnt then
|
||||
env.learnts_literals <- env.learnts_literals - Vec.size c.atoms
|
||||
else
|
||||
env.clauses_literals <- env.clauses_literals - Vec.size c.atoms
|
||||
|
||||
let remove_clause c = detach_clause c
|
||||
|
||||
let satisfied c =
|
||||
let satisfied c =
|
||||
try
|
||||
for i = 0 to Vec.size c.atoms - 1 do
|
||||
if (Vec.get c.atoms i).is_true then raise Exit
|
||||
|
|
@ -298,7 +298,7 @@ let satisfied c =
|
|||
with Exit -> true
|
||||
|
||||
(* annule tout jusqu'a lvl *exclu* *)
|
||||
let cancel_until lvl =
|
||||
let cancel_until lvl =
|
||||
if decision_level () > lvl then begin
|
||||
env.qhead <- Vec.get env.trail_lim lvl;
|
||||
for c = Vec.size env.trail - 1 downto env.qhead do
|
||||
|
|
@ -318,7 +318,7 @@ let cancel_until lvl =
|
|||
end;
|
||||
assert (Vec.size env.trail_lim = Vec.size env.tenv_queue)
|
||||
|
||||
let rec pick_branch_lit () =
|
||||
let rec pick_branch_lit () =
|
||||
let max = Iheap.remove_min f_weight env.order in
|
||||
let v = Vec.get env.vars max in
|
||||
if v.level>= 0 then begin
|
||||
|
|
@ -328,7 +328,7 @@ let rec pick_branch_lit () =
|
|||
else v
|
||||
|
||||
let enqueue a lvl reason =
|
||||
assert (not a.is_true && not a.neg.is_true &&
|
||||
assert (not a.is_true && not a.neg.is_true &&
|
||||
a.var.level < 0 && a.var.reason = None && lvl >= 0);
|
||||
(* Garder la reason car elle est utile pour les unsat-core *)
|
||||
(*let reason = if lvl = 0 then None else reason in*)
|
||||
|
|
@ -338,10 +338,10 @@ let enqueue a lvl reason =
|
|||
(*eprintf "enqueue: %a@." Debug.atom a; *)
|
||||
Vec.push env.trail a
|
||||
|
||||
let progress_estimate () =
|
||||
let progress_estimate () =
|
||||
let prg = ref 0. in
|
||||
let nbv = to_float (nb_vars()) in
|
||||
let lvl = decision_level () in
|
||||
let lvl = decision_level () in
|
||||
let _F = 1. /. nbv in
|
||||
for i = 0 to lvl do
|
||||
let _beg = if i = 0 then 0 else Vec.get env.trail_lim (i-1) in
|
||||
|
|
@ -360,14 +360,14 @@ let propagate_in_clause a c i watched new_sz =
|
|||
let first = Vec.get atoms 0 in
|
||||
if first.is_true then begin
|
||||
(* clause vraie, la garder dans les watched *)
|
||||
Vec.set watched !new_sz c;
|
||||
Vec.set watched !new_sz c;
|
||||
incr new_sz;
|
||||
end
|
||||
else
|
||||
else
|
||||
try (* chercher un nouveau watcher *)
|
||||
for k = 2 to Vec.size atoms - 1 do
|
||||
let ak = Vec.get atoms k in
|
||||
if not (ak.neg.is_true) then begin
|
||||
if not (ak.neg.is_true) then begin
|
||||
(* Watcher Trouve: mettre a jour et sortir *)
|
||||
Vec.set atoms 1 ak;
|
||||
Vec.set atoms k a.neg;
|
||||
|
|
@ -387,22 +387,22 @@ let propagate_in_clause a c i watched new_sz =
|
|||
end
|
||||
else begin
|
||||
(* la clause est unitaire *)
|
||||
Vec.set watched !new_sz c;
|
||||
Vec.set watched !new_sz c;
|
||||
incr new_sz;
|
||||
enqueue first (decision_level ()) (Some c)
|
||||
end
|
||||
with Exit -> ()
|
||||
|
||||
let propagate_atom a res =
|
||||
|
||||
let propagate_atom a res =
|
||||
let watched = a.watched in
|
||||
let new_sz_w = ref 0 in
|
||||
begin
|
||||
begin
|
||||
try
|
||||
for i = 0 to Vec.size watched - 1 do
|
||||
let c = Vec.get watched i in
|
||||
if not c.removed then propagate_in_clause a c i watched new_sz_w
|
||||
done;
|
||||
with Conflict c -> assert (!res = None); res := Some c
|
||||
with Conflict c -> assert (!res = None); res := Some c
|
||||
end;
|
||||
let dead_part = Vec.size watched - !new_sz_w in
|
||||
Vec.shrink watched dead_part
|
||||
|
|
@ -416,7 +416,7 @@ let expensive_theory_propagate () = None
|
|||
(* with Exception.Inconsistent dep -> *)
|
||||
(* if D1.d then eprintf "expensive_theory_propagate => Inconsistent@."; *)
|
||||
(* Some dep *)
|
||||
|
||||
|
||||
let theory_propagate () =
|
||||
let facts = ref [] in
|
||||
while not (Queue.is_empty env.tatoms_queue) do
|
||||
|
|
@ -425,7 +425,7 @@ let theory_propagate () =
|
|||
(*let ex = if a.var.level > 0 then Ex.singleton a else Ex.empty in*)
|
||||
let ex = Ex.singleton a in (* Usefull for debugging *)
|
||||
facts := (a.lit, ex) :: !facts
|
||||
else
|
||||
else
|
||||
if a.neg.is_true then
|
||||
(*let ex = if a.var.level > 0 then Ex.singleton a.neg else Ex.empty in*)
|
||||
let ex = Ex.singleton a.neg in (* Usefull for debugging *)
|
||||
|
|
@ -434,17 +434,17 @@ let theory_propagate () =
|
|||
done;
|
||||
try
|
||||
let full_model = nb_assigns() = env.nb_init_vars in
|
||||
env.tenv <-
|
||||
List.fold_left
|
||||
(fun t (a,ex) -> let t,_,_ = Th.assume ~cs:true a ex t in t)
|
||||
env.tenv <-
|
||||
List.fold_left
|
||||
(fun t (a,ex) -> let t,_,_ = Th.assume ~cs:true a ex t in t)
|
||||
env.tenv !facts;
|
||||
if full_model then expensive_theory_propagate ()
|
||||
else None
|
||||
with Exception.Inconsistent dep ->
|
||||
with Exception.Inconsistent dep ->
|
||||
(* eprintf "th inconsistent : %a @." Ex.print dep; *)
|
||||
Some dep
|
||||
|
||||
let propagate () =
|
||||
let propagate () =
|
||||
let num_props = ref 0 in
|
||||
let res = ref None in
|
||||
(*assert (Queue.is_empty env.tqueue);*)
|
||||
|
|
@ -460,7 +460,7 @@ let propagate () =
|
|||
!res
|
||||
|
||||
|
||||
let analyze c_clause =
|
||||
let analyze c_clause =
|
||||
let pathC = ref 0 in
|
||||
let learnt = ref [] in
|
||||
let cond = ref true in
|
||||
|
|
@ -490,14 +490,14 @@ let analyze c_clause =
|
|||
end
|
||||
end
|
||||
done;
|
||||
|
||||
|
||||
(* look for the next node to expand *)
|
||||
while not (Vec.get env.trail !tr_ind).var.seen do decr tr_ind done;
|
||||
decr pathC;
|
||||
let p = Vec.get env.trail !tr_ind in
|
||||
decr tr_ind;
|
||||
match !pathC, p.var.reason with
|
||||
| 0, _ ->
|
||||
| 0, _ ->
|
||||
cond := false;
|
||||
learnt := p.neg :: (List.rev !learnt)
|
||||
| n, None -> assert false
|
||||
|
|
@ -506,12 +506,12 @@ let analyze c_clause =
|
|||
List.iter (fun q -> q.var.seen <- false) !seen;
|
||||
!blevel, !learnt, !history, !size
|
||||
|
||||
let f_sort_db c1 c2 =
|
||||
let f_sort_db c1 c2 =
|
||||
let sz1 = Vec.size c1.atoms in
|
||||
let sz2 = Vec.size c2.atoms in
|
||||
let c = compare c1.activity c2.activity in
|
||||
if sz1 = sz2 && c = 0 then 0
|
||||
else
|
||||
else
|
||||
if sz1 > 2 && (sz2 = 2 || c < 0) then -1
|
||||
else 1
|
||||
|
||||
|
|
@ -534,22 +534,22 @@ let reduce_db () = ()
|
|||
let j = ref 0 in
|
||||
for i = 0 to lim1 - 1 do
|
||||
let c = Vec.get env.learnts i in
|
||||
if Vec.size c.atoms > 2 && not (locked c) then
|
||||
if Vec.size c.atoms > 2 && not (locked c) then
|
||||
remove_clause c
|
||||
else
|
||||
else
|
||||
begin Vec.set env.learnts !j c; incr j end
|
||||
done;
|
||||
for i = lim1 to lim2 - 1 do
|
||||
for i = lim1 to lim2 - 1 do
|
||||
let c = Vec.get env.learnts i in
|
||||
if Vec.size c.atoms > 2 && not (locked c) && c.activity < extra_lim then
|
||||
remove_clause c
|
||||
else
|
||||
else
|
||||
begin Vec.set env.learnts !j c; incr j end
|
||||
done;
|
||||
Vec.shrink env.learnts (lim2 - !j)
|
||||
*)
|
||||
|
||||
let remove_satisfied vec =
|
||||
let remove_satisfied vec =
|
||||
let j = ref 0 in
|
||||
let k = Vec.size vec - 1 in
|
||||
for i = 0 to k do
|
||||
|
|
@ -563,7 +563,7 @@ let remove_satisfied vec =
|
|||
Vec.shrink vec (k + 1 - !j)
|
||||
|
||||
|
||||
module HUC = Hashtbl.Make
|
||||
module HUC = Hashtbl.Make
|
||||
(struct type t = clause let equal = (==) let hash = Hashtbl.hash end)
|
||||
|
||||
|
||||
|
|
@ -580,15 +580,15 @@ let report_b_unsat ({atoms=atoms} as confl) =
|
|||
(fun hc ->
|
||||
eprintf " %a@." Debug.clause hc
|
||||
)!l;
|
||||
end;
|
||||
end;
|
||||
let uc = HUC.create 17 in
|
||||
let rec roots todo =
|
||||
let rec roots todo =
|
||||
match todo with
|
||||
| [] -> ()
|
||||
| c::r ->
|
||||
for i = 0 to Vec.size c.atoms - 1 do
|
||||
let v = (Vec.get c.atoms i).var in
|
||||
if not v.seen then begin
|
||||
if not v.seen then begin
|
||||
v.seen <- true;
|
||||
roots v.vpremise;
|
||||
match v.reason with None -> () | Some r -> roots [r];
|
||||
|
|
@ -612,7 +612,7 @@ let report_b_unsat ({atoms=atoms} as confl) =
|
|||
|
||||
|
||||
let report_t_unsat dep =
|
||||
let l =
|
||||
let l =
|
||||
Ex.fold_atoms
|
||||
(fun {var=v} l ->
|
||||
let l = List.rev_append v.vpremise l in
|
||||
|
|
@ -627,13 +627,13 @@ let report_t_unsat dep =
|
|||
)l;
|
||||
end;
|
||||
let uc = HUC.create 17 in
|
||||
let rec roots todo =
|
||||
let rec roots todo =
|
||||
match todo with
|
||||
| [] -> ()
|
||||
| c::r ->
|
||||
for i = 0 to Vec.size c.atoms - 1 do
|
||||
let v = (Vec.get c.atoms i).var in
|
||||
if not v.seen then begin
|
||||
if not v.seen then begin
|
||||
v.seen <- true;
|
||||
roots v.vpremise;
|
||||
match v.reason with None -> () | Some r -> roots [r];
|
||||
|
|
@ -655,10 +655,10 @@ let report_t_unsat dep =
|
|||
env.unsat_core <- unsat_core;
|
||||
raise (Unsat unsat_core)
|
||||
|
||||
let simplify () =
|
||||
let simplify () =
|
||||
assert (decision_level () = 0);
|
||||
if env.is_unsat then raise (Unsat env.unsat_core);
|
||||
begin
|
||||
begin
|
||||
match propagate () with
|
||||
| Some confl -> report_b_unsat confl
|
||||
| None ->
|
||||
|
|
@ -674,7 +674,7 @@ let simplify () =
|
|||
env.simpDB_props <- env.clauses_literals + env.learnts_literals;
|
||||
end
|
||||
|
||||
let record_learnt_clause blevel learnt history size =
|
||||
let record_learnt_clause blevel learnt history size =
|
||||
begin match learnt with
|
||||
| [] -> assert false
|
||||
| [fuip] ->
|
||||
|
|
@ -692,7 +692,7 @@ let record_learnt_clause blevel learnt history size =
|
|||
var_decay_activity ();
|
||||
clause_decay_activity()
|
||||
|
||||
let check_inconsistence_of dep =
|
||||
let check_inconsistence_of dep =
|
||||
try
|
||||
let env = ref (Th.empty()) in ();
|
||||
Ex.iter_atoms
|
||||
|
|
@ -704,12 +704,12 @@ let check_inconsistence_of dep =
|
|||
assert false
|
||||
with Exception.Inconsistent _ -> ()
|
||||
|
||||
let theory_analyze dep =
|
||||
let atoms, sz, max_lvl, c_hist =
|
||||
let theory_analyze dep =
|
||||
let atoms, sz, max_lvl, c_hist =
|
||||
Ex.fold_atoms
|
||||
(fun a (acc, sz, max_lvl, c_hist) ->
|
||||
let c_hist = List.rev_append a.var.vpremise c_hist in
|
||||
let c_hist = match a.var.reason with
|
||||
let c_hist = match a.var.reason with
|
||||
| None -> c_hist | Some r -> r:: c_hist in
|
||||
if a.var.level = 0 then acc, sz, max_lvl, c_hist
|
||||
else a.neg :: acc, sz + 1, max max_lvl a.var.level, c_hist
|
||||
|
|
@ -748,20 +748,20 @@ let theory_analyze dep =
|
|||
seen := q :: !seen;
|
||||
if q.var.level >= max_lvl then incr pathC
|
||||
else begin
|
||||
learnt := q :: !learnt;
|
||||
learnt := q :: !learnt;
|
||||
incr size;
|
||||
blevel := max !blevel q.var.level
|
||||
end
|
||||
end
|
||||
done;
|
||||
|
||||
|
||||
(* look for the next node to expand *)
|
||||
while not (Vec.get env.trail !tr_ind).var.seen do decr tr_ind done;
|
||||
decr pathC;
|
||||
let p = Vec.get env.trail !tr_ind in
|
||||
decr tr_ind;
|
||||
match !pathC, p.var.reason with
|
||||
| 0, _ ->
|
||||
| 0, _ ->
|
||||
cond := false;
|
||||
learnt := p.neg :: (List.rev !learnt)
|
||||
| n, None -> assert false
|
||||
|
|
@ -779,7 +779,7 @@ let add_boolean_conflict confl =
|
|||
cancel_until blevel;
|
||||
record_learnt_clause blevel learnt history size
|
||||
|
||||
let search n_of_conflicts n_of_learnts =
|
||||
let search n_of_conflicts n_of_learnts =
|
||||
let conflictC = ref 0 in
|
||||
env.starts <- env.starts + 1;
|
||||
while (true) do
|
||||
|
|
@ -787,20 +787,20 @@ let search n_of_conflicts n_of_learnts =
|
|||
| Some confl -> (* Conflict *)
|
||||
incr conflictC;
|
||||
add_boolean_conflict confl
|
||||
|
||||
|
||||
| None -> (* No Conflict *)
|
||||
match theory_propagate () with
|
||||
| Some dep ->
|
||||
| Some dep ->
|
||||
incr conflictC;
|
||||
env.conflicts <- env.conflicts + 1;
|
||||
if decision_level() = 0 then report_t_unsat dep; (* T-L conflict *)
|
||||
let blevel, learnt, history, size = theory_analyze dep in
|
||||
cancel_until blevel;
|
||||
record_learnt_clause blevel learnt history size
|
||||
|
||||
| None ->
|
||||
|
||||
| None ->
|
||||
if nb_assigns () = env.nb_init_vars then raise Sat;
|
||||
if n_of_conflicts >= 0 && !conflictC >= n_of_conflicts then
|
||||
if n_of_conflicts >= 0 && !conflictC >= n_of_conflicts then
|
||||
begin
|
||||
env.progress_estimate <- progress_estimate();
|
||||
cancel_until 0;
|
||||
|
|
@ -808,8 +808,8 @@ let search n_of_conflicts n_of_learnts =
|
|||
end;
|
||||
if decision_level() = 0 then simplify ();
|
||||
|
||||
if n_of_learnts >= 0 &&
|
||||
Vec.size env.learnts - nb_assigns() >= n_of_learnts then
|
||||
if n_of_learnts >= 0 &&
|
||||
Vec.size env.learnts - nb_assigns() >= n_of_learnts then
|
||||
reduce_db();
|
||||
|
||||
env.decisions <- env.decisions + 1;
|
||||
|
|
@ -822,7 +822,7 @@ let search n_of_conflicts n_of_learnts =
|
|||
enqueue next.pa current_level None
|
||||
done
|
||||
|
||||
let check_clause c =
|
||||
let check_clause c =
|
||||
let b = ref false in
|
||||
let atoms = c.atoms in
|
||||
for i = 0 to Vec.size atoms - 1 do
|
||||
|
|
@ -830,16 +830,16 @@ let check_clause c =
|
|||
b := !b || a.is_true
|
||||
done;
|
||||
assert (!b)
|
||||
|
||||
let check_vec vec =
|
||||
|
||||
let check_vec vec =
|
||||
for i = 0 to Vec.size vec - 1 do check_clause (Vec.get vec i) done
|
||||
|
||||
let check_model () =
|
||||
|
||||
let check_model () =
|
||||
check_vec env.clauses;
|
||||
check_vec env.learnts
|
||||
|
||||
|
||||
let solve () =
|
||||
let solve () =
|
||||
if env.is_unsat then raise (Unsat env.unsat_core);
|
||||
let n_of_conflicts = ref (to_float env.restart_first) in
|
||||
let n_of_learnts = ref ((to_float (nb_clauses())) *. env.learntsize_factor) in
|
||||
|
|
@ -850,11 +850,11 @@ let solve () =
|
|||
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
|
||||
n_of_learnts := !n_of_learnts *. env.learntsize_inc;
|
||||
done;
|
||||
with
|
||||
| Sat ->
|
||||
with
|
||||
| Sat ->
|
||||
(*check_model ();*)
|
||||
raise Sat
|
||||
| (Unsat cl) as e ->
|
||||
| (Unsat cl) as e ->
|
||||
(* check_unsat_core cl; *)
|
||||
raise e
|
||||
|
||||
|
|
@ -863,13 +863,13 @@ exception Trivial
|
|||
let partition atoms init =
|
||||
let rec partition_aux trues unassigned falses init = function
|
||||
| [] -> trues @ unassigned @ falses, init
|
||||
| a::r ->
|
||||
if a.is_true then
|
||||
| a::r ->
|
||||
if a.is_true then
|
||||
if a.var.level = 0 then raise Trivial
|
||||
else (a::trues) @ unassigned @ falses @ r, init
|
||||
else if a.neg.is_true then
|
||||
if a.var.level = 0 then
|
||||
partition_aux trues unassigned falses
|
||||
if a.var.level = 0 then
|
||||
partition_aux trues unassigned falses
|
||||
(List.rev_append (a.var.vpremise) init) r
|
||||
else partition_aux trues unassigned (a::falses) init r
|
||||
else partition_aux trues (a::unassigned) falses init r
|
||||
|
|
@ -882,12 +882,12 @@ let add_clause ~cnumber atoms =
|
|||
let init_name = string_of_int cnumber in
|
||||
let init0 = make_clause init_name atoms (List.length atoms) false [] in
|
||||
try
|
||||
let atoms, init =
|
||||
let atoms, init =
|
||||
if decision_level () = 0 then
|
||||
let atoms, init = List.fold_left
|
||||
(fun (atoms, init) a ->
|
||||
(fun (atoms, init) a ->
|
||||
if a.is_true then raise Trivial;
|
||||
if a.neg.is_true then
|
||||
if a.neg.is_true then
|
||||
atoms, (List.rev_append (a.var.vpremise) init)
|
||||
else a::atoms, init
|
||||
) ([], [init0]) atoms in
|
||||
|
|
@ -896,41 +896,41 @@ let add_clause ~cnumber atoms =
|
|||
in
|
||||
let size = List.length atoms in
|
||||
match atoms with
|
||||
| [] ->
|
||||
| [] ->
|
||||
report_b_unsat init0;
|
||||
|
||||
| a::_::_ ->
|
||||
|
||||
| a::_::_ ->
|
||||
let name = fresh_name () in
|
||||
let clause = make_clause name atoms size false init in
|
||||
attach_clause clause;
|
||||
Vec.push env.clauses clause;
|
||||
|
||||
|
||||
if a.neg.is_true then begin
|
||||
let lvl = List.fold_left (fun m a -> max m a.var.level) 0 atoms in
|
||||
cancel_until lvl;
|
||||
add_boolean_conflict clause
|
||||
end
|
||||
|
||||
|
||||
| [a] ->
|
||||
cancel_until 0;
|
||||
a.var.vpremise <- init;
|
||||
enqueue a 0 None;
|
||||
match propagate () with
|
||||
match propagate () with
|
||||
None -> () | Some confl -> report_b_unsat confl
|
||||
with Trivial -> ()
|
||||
|
||||
let add_clauses cnf ~cnumber =
|
||||
let add_clauses cnf ~cnumber =
|
||||
List.iter (add_clause ~cnumber) cnf;
|
||||
match theory_propagate () with
|
||||
None -> () | Some dep -> report_t_unsat dep
|
||||
|
||||
|
||||
let init_solver cnf ~cnumber =
|
||||
let nbv, _ = made_vars_info () in
|
||||
let nbc = env.nb_init_clauses + List.length cnf in
|
||||
Vec.grow_to_by_double env.vars nbv;
|
||||
Iheap.grow_to_by_double env.order nbv;
|
||||
List.iter
|
||||
(List.iter
|
||||
List.iter
|
||||
(List.iter
|
||||
(fun a ->
|
||||
Vec.set env.vars a.var.vid a.var;
|
||||
insert_var_order a.var
|
||||
|
|
@ -952,11 +952,11 @@ let clear () =
|
|||
let empty_theory = Th.empty () in
|
||||
env.is_unsat <- false;
|
||||
env.unsat_core <- [];
|
||||
env.clauses <- Vec.make 0 dummy_clause;
|
||||
env.learnts <- Vec.make 0 dummy_clause;
|
||||
env.clauses <- Vec.make 0 dummy_clause;
|
||||
env.learnts <- Vec.make 0 dummy_clause;
|
||||
env.clause_inc <- 1.;
|
||||
env.var_inc <- 1.;
|
||||
env.vars <- Vec.make 0 dummy_var;
|
||||
env.vars <- Vec.make 0 dummy_var;
|
||||
env.qhead <- 0;
|
||||
env.simpDB_assigns <- -1;
|
||||
env.simpDB_props <- 0;
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
open Format
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
let ale = Hstring.make "<="
|
||||
let alt = Hstring.make "<"
|
||||
let agt = Hstring.make ">"
|
||||
|
||||
|
|
@ -31,8 +31,8 @@ type var =
|
|||
mutable level : int;
|
||||
mutable reason: reason;
|
||||
mutable vpremise : premise}
|
||||
|
||||
and atom =
|
||||
|
||||
and atom =
|
||||
{ var : var;
|
||||
lit : Literal.LT.t;
|
||||
neg : atom;
|
||||
|
|
@ -40,9 +40,9 @@ and atom =
|
|||
mutable is_true : bool;
|
||||
aid : int }
|
||||
|
||||
and clause =
|
||||
{ name : string;
|
||||
mutable atoms : atom Vec.t ;
|
||||
and clause =
|
||||
{ name : string;
|
||||
mutable atoms : atom Vec.t ;
|
||||
mutable activity : float;
|
||||
mutable removed : bool;
|
||||
learnt : bool;
|
||||
|
|
@ -59,21 +59,21 @@ let dummy_lit = Literal.LT.make (Literal.Eq(Term.vrai,Term.vrai))
|
|||
let rec dummy_var =
|
||||
{ vid = -101;
|
||||
pa = dummy_atom;
|
||||
na = dummy_atom;
|
||||
na = dummy_atom;
|
||||
level = -1;
|
||||
reason = None;
|
||||
weight = -1.;
|
||||
seen = false;
|
||||
vpremise = [] }
|
||||
and dummy_atom =
|
||||
{ var = dummy_var;
|
||||
and dummy_atom =
|
||||
{ var = dummy_var;
|
||||
lit = dummy_lit;
|
||||
watched = {Vec.dummy=dummy_clause; data=[||]; sz=0};
|
||||
neg = dummy_atom;
|
||||
is_true = false;
|
||||
aid = -102 }
|
||||
and dummy_clause =
|
||||
{ name = "";
|
||||
and dummy_clause =
|
||||
{ name = "";
|
||||
atoms = {Vec.dummy=dummy_atom; data=[||]; sz=0};
|
||||
activity = -1.;
|
||||
removed = false;
|
||||
|
|
@ -82,8 +82,8 @@ and dummy_clause =
|
|||
|
||||
|
||||
module MA = Literal.LT.Map
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
|
||||
let ale = Hstring.make "<="
|
||||
let alt = Hstring.make "<"
|
||||
let agt = Hstring.make ">"
|
||||
let is_le n = Hstring.compare n ale = 0
|
||||
|
|
@ -132,7 +132,7 @@ let normal_form lit =
|
|||
(* | Literal.Distinct(false,[_;_]) -> Literal.LT.neg lit, true *)
|
||||
(* | Literal.Builtin(true,n,[t1;t2]) when Builtin.is_gt n -> *)
|
||||
(* Literal.LT.neg lit, true *)
|
||||
|
||||
|
||||
(* | Literal.Builtin(false,n,[t1;t2]) when Builtin.is_le n -> *)
|
||||
(* Literal.LT.neg lit, true *)
|
||||
(* | _ -> lit, false *)
|
||||
|
|
@ -143,33 +143,33 @@ let ma = ref MA.empty
|
|||
let make_var =
|
||||
fun lit ->
|
||||
let lit, negated = normal_form lit in
|
||||
try MA.find lit !ma, negated
|
||||
try MA.find lit !ma, negated
|
||||
with Not_found ->
|
||||
let cpt_fois_2 = !cpt_mk_var lsl 1 in
|
||||
let rec var =
|
||||
{ vid = !cpt_mk_var;
|
||||
let rec var =
|
||||
{ vid = !cpt_mk_var;
|
||||
pa = pa;
|
||||
na = na;
|
||||
na = na;
|
||||
level = -1;
|
||||
reason = None;
|
||||
weight = 0.;
|
||||
seen = false;
|
||||
vpremise = [];
|
||||
}
|
||||
and pa =
|
||||
{ var = var;
|
||||
and pa =
|
||||
{ var = var;
|
||||
lit = lit;
|
||||
watched = Vec.make 10 dummy_clause;
|
||||
watched = Vec.make 10 dummy_clause;
|
||||
neg = na;
|
||||
is_true = false;
|
||||
aid = cpt_fois_2 (* aid = vid*2 *) }
|
||||
and na =
|
||||
and na =
|
||||
{ var = var;
|
||||
lit = Literal.LT.neg lit;
|
||||
watched = Vec.make 10 dummy_clause;
|
||||
neg = pa;
|
||||
is_true = false;
|
||||
aid = cpt_fois_2 + 1 (* aid = vid*2+1 *) } in
|
||||
aid = cpt_fois_2 + 1 (* aid = vid*2+1 *) } in
|
||||
ma := MA.add lit var !ma;
|
||||
incr cpt_mk_var;
|
||||
var, negated
|
||||
|
|
@ -178,9 +178,9 @@ let made_vars_info () = !cpt_mk_var, MA.fold (fun lit var acc -> var::acc)!ma []
|
|||
|
||||
let add_atom lit =
|
||||
let var, negated = make_var lit in
|
||||
if negated then var.na else var.pa
|
||||
if negated then var.na else var.pa
|
||||
|
||||
let make_clause name ali sz_ali is_learnt premise =
|
||||
let make_clause name ali sz_ali is_learnt premise =
|
||||
let atoms = Vec.from_list ali sz_ali dummy_atom in
|
||||
{ name = name;
|
||||
atoms = atoms;
|
||||
|
|
@ -188,23 +188,23 @@ let make_clause name ali sz_ali is_learnt premise =
|
|||
learnt = is_learnt;
|
||||
activity = 0.;
|
||||
cpremise = premise}
|
||||
|
||||
|
||||
let fresh_lname =
|
||||
let cpt = ref 0 in
|
||||
let cpt = ref 0 in
|
||||
fun () -> incr cpt; "L" ^ (string_of_int !cpt)
|
||||
|
||||
let fresh_dname =
|
||||
let cpt = ref 0 in
|
||||
let cpt = ref 0 in
|
||||
fun () -> incr cpt; "D" ^ (string_of_int !cpt)
|
||||
|
||||
|
||||
let fresh_name =
|
||||
let cpt = ref 0 in
|
||||
let cpt = ref 0 in
|
||||
fun () -> incr cpt; "C" ^ (string_of_int !cpt)
|
||||
|
||||
|
||||
|
||||
module Clause = struct
|
||||
|
||||
|
||||
let size c = Vec.size c.atoms
|
||||
let pop c = Vec.pop c.atoms
|
||||
let shrink c i = Vec.shrink c.atoms i
|
||||
|
|
@ -227,32 +227,32 @@ end
|
|||
|
||||
|
||||
module Debug = struct
|
||||
|
||||
|
||||
let sign a = if a==a.var.pa then "" else "-"
|
||||
|
||||
|
||||
let level a =
|
||||
match a.var.level, a.var.reason with
|
||||
match a.var.level, a.var.reason with
|
||||
| n, _ when n < 0 -> assert false
|
||||
| 0, Some c -> sprintf "->0/%s" c.name
|
||||
| 0, None -> "@0"
|
||||
| n, Some c -> sprintf "->%d/%s" n c.name
|
||||
| n, None -> sprintf "@@%d" n
|
||||
|
||||
let value a =
|
||||
let value a =
|
||||
if a.is_true then sprintf "[T%s]" (level a)
|
||||
else if a.neg.is_true then sprintf "[F%s]" (level a)
|
||||
else ""
|
||||
|
||||
let value_ms_like a =
|
||||
let value_ms_like a =
|
||||
if a.is_true then sprintf ":1%s" (level a)
|
||||
else if a.neg.is_true then sprintf ":0%s" (level a)
|
||||
else ":X"
|
||||
|
||||
let premise fmt v =
|
||||
let premise fmt v =
|
||||
List.iter (fun {name=name} -> fprintf fmt "%s," name) v
|
||||
|
||||
let atom fmt a =
|
||||
fprintf fmt "%s%d%s [lit:%a] vpremise={{%a}}"
|
||||
let atom fmt a =
|
||||
fprintf fmt "%s%d%s [lit:%a] vpremise={{%a}}"
|
||||
(sign a) (a.var.vid+1) (value a) Literal.LT.print a.lit
|
||||
premise a.var.vpremise
|
||||
|
||||
|
|
@ -260,7 +260,7 @@ module Debug = struct
|
|||
let atoms_list fmt l = List.iter (fprintf fmt "%a ; " atom) l
|
||||
let atoms_array fmt arr = Array.iter (fprintf fmt "%a ; " atom) arr
|
||||
|
||||
let atoms_vec fmt vec =
|
||||
let atoms_vec fmt vec =
|
||||
for i = 0 to Vec.size vec - 1 do
|
||||
fprintf fmt "%a ; " atom (Vec.get vec i)
|
||||
done
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
|
||||
|
||||
type var =
|
||||
type var =
|
||||
{ vid : int;
|
||||
pa : atom;
|
||||
na : atom;
|
||||
|
|
@ -22,8 +22,8 @@ type var =
|
|||
mutable level : int;
|
||||
mutable reason : reason;
|
||||
mutable vpremise : premise }
|
||||
|
||||
and atom =
|
||||
|
||||
and atom =
|
||||
{ var : var;
|
||||
lit : Literal.LT.t;
|
||||
neg : atom;
|
||||
|
|
@ -31,7 +31,7 @@ and atom =
|
|||
mutable is_true : bool;
|
||||
aid : int }
|
||||
|
||||
and clause =
|
||||
and clause =
|
||||
{ name : string;
|
||||
mutable atoms : atom Vec.t;
|
||||
mutable activity : float;
|
||||
|
|
@ -54,7 +54,7 @@ val dummy_clause : clause
|
|||
|
||||
val make_var : Literal.LT.t -> var * bool
|
||||
|
||||
val add_atom : Literal.LT.t -> atom
|
||||
val add_atom : Literal.LT.t -> atom
|
||||
|
||||
val make_clause : string -> atom list -> int -> bool -> premise-> clause
|
||||
|
||||
|
|
@ -73,9 +73,9 @@ val clear : unit -> unit
|
|||
end
|
||||
|
||||
module Debug: sig
|
||||
|
||||
|
||||
val atom : Format.formatter -> atom -> unit
|
||||
|
||||
|
||||
val clause : Format.formatter -> clause -> unit
|
||||
|
||||
end
|
||||
|
|
|
|||
86
smt/sum.ml
86
smt/sum.ml
|
|
@ -14,7 +14,7 @@
|
|||
|
||||
open Format
|
||||
open Sig
|
||||
open Exception
|
||||
open Exception
|
||||
module Sy = Symbols
|
||||
module T = Term
|
||||
module A = Literal
|
||||
|
|
@ -36,27 +36,27 @@ module Make(X : ALIEN) = struct
|
|||
type r = X.r
|
||||
|
||||
let name = "Sum"
|
||||
|
||||
|
||||
let unsolvable _ = false
|
||||
|
||||
|
||||
let is_mine_a _ = false
|
||||
|
||||
let is_mine_symb = function
|
||||
| Sy.Name(_, Sy.Constructor) -> true
|
||||
|
||||
let is_mine_symb = function
|
||||
| Sy.Name(_, Sy.Constructor) -> true
|
||||
| _ -> false
|
||||
|
||||
|
||||
let fully_interpreted sb = true
|
||||
|
||||
let type_info = function
|
||||
| Cons (_, ty) -> ty
|
||||
| Alien x -> X.type_info x
|
||||
|
||||
|
||||
let is_mine_type c = match type_info c with
|
||||
| Ty.Tsum _ -> true
|
||||
| Ty.Tsum _ -> true
|
||||
| _ -> false
|
||||
|
||||
|
||||
let color _ = assert false
|
||||
|
||||
|
||||
let print fmt = function
|
||||
| Cons (hs,ty) -> fprintf fmt "%s" (Hs.view hs)
|
||||
| Alien x -> fprintf fmt "%a" X.print x
|
||||
|
|
@ -64,41 +64,41 @@ module Make(X : ALIEN) = struct
|
|||
let embed r =
|
||||
match X.extract r with
|
||||
| Some c -> c
|
||||
| None -> Alien r
|
||||
| None -> Alien r
|
||||
|
||||
let is_mine = function
|
||||
| Alien r -> r
|
||||
| Cons(hs,ty) as c -> X.embed c
|
||||
|
||||
let compare c1 c2 =
|
||||
|
||||
let compare c1 c2 =
|
||||
match c1 , c2 with
|
||||
| Cons (h1,ty1) , Cons (h2,ty2) ->
|
||||
| Cons (h1,ty1) , Cons (h2,ty2) ->
|
||||
let n = Hs.compare h1 h2 in
|
||||
if n <> 0 then n else Ty.compare ty1 ty2
|
||||
| Alien r1, Alien r2 -> X.compare r1 r2
|
||||
| Alien _ , Cons _ -> 1
|
||||
| Cons _ , Alien _ -> -1
|
||||
|
||||
|
||||
let hash = function
|
||||
| Cons (h, ty) -> Hstring.hash h + 19 * Ty.hash ty
|
||||
| Alien r -> X.hash r
|
||||
|
||||
let leaves _ = []
|
||||
|
||||
let subst p v c =
|
||||
let subst p v c =
|
||||
let cr = is_mine c in
|
||||
if X.equal p cr then v
|
||||
else
|
||||
else
|
||||
match c with
|
||||
| Cons(hs,t) -> cr
|
||||
| Alien r -> X.subst p v r
|
||||
|
||||
|
||||
let make t = match T.view t with
|
||||
| {T.f=Sy.Name(hs, Sy.Constructor); xs=[];ty=ty} ->
|
||||
is_mine (Cons(hs,ty)), []
|
||||
| _ -> assert false
|
||||
|
||||
let solve a b =
|
||||
|
||||
let solve a b =
|
||||
match embed a, embed b with
|
||||
| Cons(c1,_) , Cons(c2,_) when Hs.equal c1 c2 -> []
|
||||
| Cons(c1,_) , Cons(c2,_) -> raise Unsolvable
|
||||
|
|
@ -131,29 +131,29 @@ module Make(X : ALIEN) = struct
|
|||
end
|
||||
|
||||
let values_of r = match X.type_info r with
|
||||
| Ty.Tsum (_,l) ->
|
||||
| Ty.Tsum (_,l) ->
|
||||
Some (List.fold_left (fun st hs -> HSS.add hs st) HSS.empty l)
|
||||
| _ -> None
|
||||
|
||||
let add_diseq hss sm1 sm2 dep env eqs =
|
||||
let add_diseq hss sm1 sm2 dep env eqs =
|
||||
match sm1, sm2 with
|
||||
| Alien r , Cons(h,ty)
|
||||
| Alien r , Cons(h,ty)
|
||||
| Cons (h,ty), Alien r ->
|
||||
let enum, ex = try MX.find r env with Not_found -> hss, Ex.empty in
|
||||
let enum = HSS.remove h enum in
|
||||
let ex = Ex.union ex dep in
|
||||
if HSS.is_empty enum then raise (Inconsistent ex)
|
||||
else
|
||||
else
|
||||
let env = MX.add r (enum, ex) env in
|
||||
if HSS.cardinal enum = 1 then
|
||||
let h' = HSS.choose enum in
|
||||
env, (LSem (A.Eq(r, is_mine (Cons(h',ty)))), ex)::eqs
|
||||
else env, eqs
|
||||
|
||||
|
||||
| Alien r1 , Alien r2 -> env, eqs
|
||||
| _ -> env, eqs
|
||||
|
||||
let add_eq hss sm1 sm2 dep env eqs =
|
||||
let add_eq hss sm1 sm2 dep env eqs =
|
||||
match sm1, sm2 with
|
||||
| Alien r, Cons(h,ty) | Cons (h,ty), Alien r ->
|
||||
|
||||
|
|
@ -161,13 +161,13 @@ module Make(X : ALIEN) = struct
|
|||
let ex = Ex.union ex dep in
|
||||
if not (HSS.mem h enum) then raise (Inconsistent ex);
|
||||
MX.add r (HSS.singleton h, ex) env, eqs
|
||||
|
||||
| Alien r1, Alien r2 ->
|
||||
|
||||
| Alien r1, Alien r2 ->
|
||||
|
||||
let enum1,ex1 = try MX.find r1 env with Not_found -> hss, Ex.empty in
|
||||
let enum2,ex2 = try MX.find r2 env with Not_found -> hss, Ex.empty in
|
||||
let ex = Ex.union dep (Ex.union ex1 ex2) in
|
||||
let diff = HSS.inter enum1 enum2 in
|
||||
let diff = HSS.inter enum1 enum2 in
|
||||
if HSS.is_empty diff then raise (Inconsistent ex);
|
||||
let env = MX.add r1 (diff, ex) env in
|
||||
let env = MX.add r2 (diff, ex) env in
|
||||
|
|
@ -179,28 +179,28 @@ module Make(X : ALIEN) = struct
|
|||
|
||||
| _ -> env, eqs
|
||||
|
||||
let assume env la =
|
||||
let assume env la =
|
||||
let aux bol r1 r2 dep env eqs = function
|
||||
| None -> env, eqs
|
||||
| Some hss ->
|
||||
| Some hss ->
|
||||
Debug.assume bol r1 r2;
|
||||
if bol then
|
||||
if bol then
|
||||
add_eq hss (embed r1) (embed r2) dep env eqs
|
||||
else
|
||||
add_diseq hss (embed r1) (embed r2) dep env eqs
|
||||
in
|
||||
Debug.print_env env;
|
||||
let env, eqs =
|
||||
let env, eqs =
|
||||
List.fold_left
|
||||
(fun (env,eqs) -> function
|
||||
| A.Eq(r1,r2), _, ex ->
|
||||
| A.Eq(r1,r2), _, ex ->
|
||||
aux true r1 r2 ex env eqs (values_of r1)
|
||||
|
||||
| A.Distinct(false, [r1;r2]), _, ex ->
|
||||
|
||||
| A.Distinct(false, [r1;r2]), _, ex ->
|
||||
aux false r1 r2 ex env eqs (values_of r1)
|
||||
|
||||
|
||||
| _ -> env, eqs
|
||||
|
||||
|
||||
) (env,[]) la
|
||||
in
|
||||
env, { assume = eqs; remove = [] }
|
||||
|
|
@ -223,15 +223,15 @@ module Make(X : ALIEN) = struct
|
|||
let r' = is_mine (Cons(hs,X.type_info r)) in
|
||||
[A.Eq(r, r'), Ex.empty, Num.Int n]
|
||||
| None -> []
|
||||
|
||||
|
||||
|
||||
let query env a_ex =
|
||||
try ignore(assume env [a_ex]); Sig.No
|
||||
with Inconsistent expl -> Sig.Yes expl
|
||||
with Inconsistent expl -> Sig.Yes expl
|
||||
|
||||
let add env r = match embed r, values_of r with
|
||||
| Alien r, Some hss ->
|
||||
if MX.mem r env then env else
|
||||
| Alien r, Some hss ->
|
||||
if MX.mem r env then env else
|
||||
MX.add r (hss, Ex.empty) env
|
||||
|
||||
| _ -> env
|
||||
|
|
|
|||
|
|
@ -20,6 +20,6 @@ module type ALIEN = sig
|
|||
val extract : r -> (r abstract) option
|
||||
end
|
||||
|
||||
module Make
|
||||
module Make
|
||||
(X : ALIEN) : Sig.THEORY with type r = X.r and type t = X.r abstract
|
||||
|
||||
|
|
|
|||
|
|
@ -13,13 +13,13 @@
|
|||
|
||||
open Hashcons
|
||||
|
||||
type operator =
|
||||
| Plus | Minus | Mult | Div | Modulo
|
||||
type operator =
|
||||
| Plus | Minus | Mult | Div | Modulo
|
||||
|
||||
type name_kind = Ac | Constructor | Other
|
||||
|
||||
type t =
|
||||
| True
|
||||
type t =
|
||||
| True
|
||||
| False
|
||||
| Name of Hstring.t * name_kind
|
||||
| Int of Hstring.t
|
||||
|
|
@ -47,7 +47,7 @@ let compare_kind k1 k2 = match k1, k2 with
|
|||
| Constructor, Constructor -> 0
|
||||
|
||||
let compare s1 s2 = match s1, s2 with
|
||||
| Name (n1,k1), Name (n2,k2) ->
|
||||
| Name (n1,k1), Name (n2,k2) ->
|
||||
let c = compare_kind k1 k2 in
|
||||
if c = 0 then Hstring.compare n1 n2 else c
|
||||
| Name _, _ -> -1
|
||||
|
|
@ -59,7 +59,7 @@ let compare s1 s2 = match s1, s2 with
|
|||
| Int _, _ -> -1
|
||||
| _ ,Int _ -> 1
|
||||
| _ -> Pervasives.compare s1 s2
|
||||
|
||||
|
||||
let equal s1 s2 = compare s1 s2 = 0
|
||||
|
||||
let hash = function
|
||||
|
|
@ -73,8 +73,8 @@ let to_string = function
|
|||
| Var x -> "*var* "^(Hstring.view x)
|
||||
| Int n -> Hstring.view n
|
||||
| Real n -> Hstring.view n
|
||||
| Op Plus -> "+"
|
||||
| Op Minus -> "-"
|
||||
| Op Plus -> "+"
|
||||
| Op Minus -> "-"
|
||||
| Op Mult -> "*"
|
||||
| Op Div -> "/"
|
||||
| Op Modulo -> "%"
|
||||
|
|
@ -86,6 +86,6 @@ let print fmt s = Format.fprintf fmt "%s" (to_string s)
|
|||
module Map =
|
||||
Map.Make(struct type t' = t type t=t' let compare=compare end)
|
||||
|
||||
module Set =
|
||||
module Set =
|
||||
Set.Make(struct type t' = t type t=t' let compare=compare end)
|
||||
|
||||
|
|
|
|||
|
|
@ -11,13 +11,13 @@
|
|||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
type operator =
|
||||
| Plus | Minus | Mult | Div | Modulo
|
||||
type operator =
|
||||
| Plus | Minus | Mult | Div | Modulo
|
||||
|
||||
type name_kind = Ac | Constructor | Other
|
||||
|
||||
type t =
|
||||
| True
|
||||
type t =
|
||||
| True
|
||||
| False
|
||||
| Name of Hstring.t * name_kind
|
||||
| Int of Hstring.t
|
||||
|
|
|
|||
26
smt/term.ml
26
smt/term.ml
|
|
@ -22,26 +22,26 @@ and t = view
|
|||
module H = struct
|
||||
type t = view
|
||||
let equal t1 t2 = try
|
||||
Sy.equal t1.f t2.f
|
||||
&& List.for_all2 (==) t1.xs t2.xs
|
||||
Sy.equal t1.f t2.f
|
||||
&& List.for_all2 (==) t1.xs t2.xs
|
||||
&& Ty.equal t1.ty t2.ty
|
||||
with Invalid_argument _ -> false
|
||||
|
||||
|
||||
let hash t =
|
||||
abs (List.fold_left
|
||||
(fun acc x-> acc*19 +x.tag) (Sy.hash t.f + Ty.hash t.ty)
|
||||
abs (List.fold_left
|
||||
(fun acc x-> acc*19 +x.tag) (Sy.hash t.f + Ty.hash t.ty)
|
||||
t.xs)
|
||||
let tag tag x = {x with tag = tag}
|
||||
end
|
||||
|
||||
module T = Make(H)
|
||||
|
||||
|
||||
let view t = t
|
||||
|
||||
let rec print fmt t =
|
||||
let rec print fmt t =
|
||||
let {f=x; xs=l; ty=ty} = view t in
|
||||
match x, l with
|
||||
| Sy.Op op, [e1; e2] ->
|
||||
| Sy.Op op, [e1; e2] ->
|
||||
fprintf fmt "(%a %a %a)" print e1 Sy.print x print e2
|
||||
| _, [] -> fprintf fmt "%a" Sy.print x
|
||||
| _, _ -> fprintf fmt "%a(%a)" Sy.print x print_list l
|
||||
|
|
@ -72,11 +72,11 @@ let is_int t = (view t).ty= Ty.Tint
|
|||
let is_real t = (view t).ty= Ty.Treal
|
||||
|
||||
let equal t1 t2 = t1 == t2
|
||||
|
||||
|
||||
let hash t = t.tag
|
||||
|
||||
module Set =
|
||||
|
||||
module Set =
|
||||
Set.Make(struct type t' = t type t=t' let compare=compare end)
|
||||
|
||||
module Map =
|
||||
|
||||
module Map =
|
||||
Map.Make(struct type t' = t type t=t' let compare=compare end)
|
||||
|
|
|
|||
18
smt/ty.ml
18
smt/ty.ml
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
open Format
|
||||
|
||||
type t =
|
||||
type t =
|
||||
| Tint
|
||||
| Treal
|
||||
| Tbool
|
||||
|
|
@ -23,33 +23,33 @@ type t =
|
|||
let hash t =
|
||||
match t with
|
||||
| Tabstract s -> Hstring.hash s
|
||||
| Tsum (s, l) ->
|
||||
let h =
|
||||
List.fold_left
|
||||
| Tsum (s, l) ->
|
||||
let h =
|
||||
List.fold_left
|
||||
(fun h x -> 13 * h + Hstring.hash x) (Hstring.hash s) l
|
||||
in
|
||||
abs h
|
||||
| _ -> Hashtbl.hash t
|
||||
|
||||
let equal t1 t2 =
|
||||
let equal t1 t2 =
|
||||
match t1, t2 with
|
||||
| Tabstract s1, Tabstract s2
|
||||
| Tabstract s1, Tabstract s2
|
||||
| Tsum (s1, _), Tsum (s2, _) ->
|
||||
Hstring.equal s1 s2
|
||||
| Tint, Tint | Treal, Treal | Tbool, Tbool -> true
|
||||
| _ -> false
|
||||
|
||||
let compare t1 t2 =
|
||||
let compare t1 t2 =
|
||||
match t1, t2 with
|
||||
| Tabstract s1, Tabstract s2 ->
|
||||
Hstring.compare s1 s2
|
||||
Hstring.compare s1 s2
|
||||
| Tabstract _, _ -> -1 | _ , Tabstract _ -> 1
|
||||
| Tsum (s1, _), Tsum(s2, _) ->
|
||||
Hstring.compare s1 s2
|
||||
| Tsum _, _ -> -1 | _ , Tsum _ -> 1
|
||||
| t1, t2 -> Pervasives.compare t1 t2
|
||||
|
||||
let print fmt ty =
|
||||
let print fmt ty =
|
||||
match ty with
|
||||
| Tint -> fprintf fmt "int"
|
||||
| Treal -> fprintf fmt "real"
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@
|
|||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
type t =
|
||||
type t =
|
||||
| Tint
|
||||
| Treal
|
||||
| Tbool
|
||||
|
|
|
|||
206
smt/uf.ml
206
smt/uf.ml
|
|
@ -28,9 +28,9 @@ module type S = sig
|
|||
|
||||
val find : t -> Term.t -> R.r * Explanation.t
|
||||
val find_r : t -> R.r -> R.r * Explanation.t
|
||||
|
||||
val union :
|
||||
t -> R.r -> R.r -> Explanation.t ->
|
||||
|
||||
val union :
|
||||
t -> R.r -> R.r -> Explanation.t ->
|
||||
t * (R.r * (R.r * R.r * Explanation.t) list * R.r) list
|
||||
|
||||
val distinct : t -> R.r list -> Explanation.t -> t
|
||||
|
|
@ -41,7 +41,7 @@ module type S = sig
|
|||
|
||||
val class_of : t -> Term.t -> Term.t list
|
||||
end
|
||||
|
||||
|
||||
module Make ( R : Sig.X ) = struct
|
||||
|
||||
module L = List
|
||||
|
|
@ -52,112 +52,112 @@ module Make ( R : Sig.X ) = struct
|
|||
module T = Term
|
||||
module MapT = Term.Map
|
||||
module SetT = Term.Set
|
||||
|
||||
|
||||
module Lit = Literal.Make(struct type t = R.r include R end)
|
||||
module MapL = Lit.Map
|
||||
module MapL = Lit.Map
|
||||
|
||||
module MapR = Map.Make(struct type t = R.r let compare = R.compare end)
|
||||
|
||||
module SetR = Set.Make(struct type t = R.r let compare = R.compare end)
|
||||
|
||||
module SetRR = Set.Make(struct
|
||||
type t = R.r * R.r
|
||||
let compare (r1, r1') (r2, r2') =
|
||||
module SetRR = Set.Make(struct
|
||||
type t = R.r * R.r
|
||||
let compare (r1, r1') (r2, r2') =
|
||||
let c = R.compare r1 r2 in
|
||||
if c <> 0 then c
|
||||
if c <> 0 then c
|
||||
else R.compare r1' r2'
|
||||
end)
|
||||
|
||||
|
||||
type t = {
|
||||
type t = {
|
||||
|
||||
(* term -> [t] *)
|
||||
make : R.r MapT.t;
|
||||
|
||||
make : R.r MapT.t;
|
||||
|
||||
(* representative table *)
|
||||
repr : (R.r * Ex.t) MapR.t;
|
||||
|
||||
repr : (R.r * Ex.t) MapR.t;
|
||||
|
||||
(* r -> class (of terms) *)
|
||||
classes : SetT.t MapR.t;
|
||||
|
||||
|
||||
(*associates each value r with the set of semantical values whose
|
||||
representatives contains r *)
|
||||
gamma : SetR.t MapR.t;
|
||||
|
||||
gamma : SetR.t MapR.t;
|
||||
|
||||
(* the disequations map *)
|
||||
neqs: Ex.t MapL.t MapR.t;
|
||||
|
||||
neqs: Ex.t MapL.t MapR.t;
|
||||
|
||||
}
|
||||
|
||||
let empty = {
|
||||
make = MapT.empty;
|
||||
|
||||
let empty = {
|
||||
make = MapT.empty;
|
||||
repr = MapR.empty;
|
||||
classes = MapR.empty;
|
||||
classes = MapR.empty;
|
||||
gamma = MapR.empty;
|
||||
neqs = MapR.empty;
|
||||
}
|
||||
|
||||
|
||||
module Env = struct
|
||||
|
||||
let mem env t = MapT.mem t env.make
|
||||
|
||||
|
||||
let lookup_by_t t env =
|
||||
try MapR.find (MapT.find t env.make) env.repr
|
||||
with Not_found ->
|
||||
with Not_found ->
|
||||
assert false (*R.make t, Ex.empty*) (* XXXX *)
|
||||
|
||||
let lookup_by_r r env =
|
||||
|
||||
let lookup_by_r r env =
|
||||
try MapR.find r env.repr with Not_found -> r, Ex.empty
|
||||
|
||||
let lookup_for_neqs env r =
|
||||
try MapR.find r env.neqs with Not_found -> MapL.empty
|
||||
|
||||
let add_to_classes t r classes =
|
||||
MapR.add r
|
||||
let add_to_classes t r classes =
|
||||
MapR.add r
|
||||
(SetT.add t (try MapR.find r classes with Not_found -> SetT.empty))
|
||||
classes
|
||||
|
||||
let update_classes c nc classes =
|
||||
let update_classes c nc classes =
|
||||
let s1 = try MapR.find c classes with Not_found -> SetT.empty in
|
||||
let s2 = try MapR.find nc classes with Not_found -> SetT.empty in
|
||||
MapR.remove c (MapR.add nc (SetT.union s1 s2) classes)
|
||||
|
||||
let add_to_gamma r c gamma =
|
||||
let add_to_gamma r c gamma =
|
||||
L.fold_left
|
||||
(fun gamma x ->
|
||||
(fun gamma x ->
|
||||
let s = try MapR.find x gamma with Not_found -> SetR.empty in
|
||||
MapR.add x (SetR.add r s) gamma) gamma (R.leaves c)
|
||||
|
||||
(* r1 = r2 => neqs(r1) \uplus neqs(r2) *)
|
||||
let update_neqs r1 r2 dep env =
|
||||
let update_neqs r1 r2 dep env =
|
||||
let nq_r1 = lookup_for_neqs env r1 in
|
||||
let nq_r2 = lookup_for_neqs env r2 in
|
||||
let mapl =
|
||||
let mapl =
|
||||
MapL.fold
|
||||
(fun l1 ex1 mapl ->
|
||||
try
|
||||
(fun l1 ex1 mapl ->
|
||||
try
|
||||
let ex2 = MapL.find l1 mapl in
|
||||
let ex = Ex.union (Ex.union ex1 ex2) dep in (* VERIF *)
|
||||
raise (Inconsistent ex)
|
||||
with Not_found ->
|
||||
MapL.add l1 (Ex.union ex1 dep) mapl)
|
||||
with Not_found ->
|
||||
MapL.add l1 (Ex.union ex1 dep) mapl)
|
||||
nq_r1 nq_r2
|
||||
in
|
||||
MapR.add r2 mapl (MapR.add r1 mapl env.neqs)
|
||||
|
||||
let filter_leaves r =
|
||||
let filter_leaves r =
|
||||
L.fold_left (fun p r -> SetR.add r p) SetR.empty (R.leaves r)
|
||||
|
||||
let canon_empty st env =
|
||||
SetR.fold
|
||||
(fun p ((z, ex) as acc) ->
|
||||
let q, ex_q = lookup_by_r p env in
|
||||
(fun p ((z, ex) as acc) ->
|
||||
let q, ex_q = lookup_by_r p env in
|
||||
if R.equal p q then acc else (p,q)::z, Ex.union ex_q ex)
|
||||
st ([], Ex.empty)
|
||||
|
||||
let canon_aux rx = List.fold_left (fun r (p,v) -> R.subst p v r) rx
|
||||
|
||||
let rec canon env r ex_r =
|
||||
let rec canon env r ex_r =
|
||||
let se = filter_leaves r in
|
||||
let subst, ex_subst = canon_empty se env in
|
||||
let r2 = canon_aux r subst in
|
||||
|
|
@ -169,38 +169,38 @@ module Make ( R : Sig.X ) = struct
|
|||
let find_or_normal_form env r =
|
||||
try MapR.find r env.repr with Not_found -> normal_form env r
|
||||
|
||||
let init_leaf env p =
|
||||
let init_leaf env p =
|
||||
let in_repr = MapR.mem p env.repr in
|
||||
let in_neqs = MapR.mem p env.neqs in
|
||||
{ env with
|
||||
repr =
|
||||
if in_repr then env.repr
|
||||
repr =
|
||||
if in_repr then env.repr
|
||||
else MapR.add p (p, Ex.empty) env.repr;
|
||||
classes =
|
||||
classes =
|
||||
if in_repr then env.classes
|
||||
else update_classes p p env.classes;
|
||||
gamma =
|
||||
gamma =
|
||||
if in_repr then env.gamma
|
||||
else add_to_gamma p p env.gamma ;
|
||||
neqs =
|
||||
if in_neqs then env.neqs
|
||||
else update_neqs p p Ex.empty env }
|
||||
|
||||
let init_term env t =
|
||||
neqs =
|
||||
if in_neqs then env.neqs
|
||||
else update_neqs p p Ex.empty env }
|
||||
|
||||
let init_term env t =
|
||||
let mkr, ctx = R.make t in
|
||||
let rp, ex = normal_form env mkr in
|
||||
{ make = MapT.add t mkr env.make;
|
||||
{ make = MapT.add t mkr env.make;
|
||||
repr = MapR.add mkr (rp,ex) env.repr;
|
||||
classes = add_to_classes t rp env.classes;
|
||||
gamma = add_to_gamma mkr rp env.gamma;
|
||||
neqs =
|
||||
neqs =
|
||||
if MapR.mem rp env.neqs then env.neqs (* pourquoi ce test *)
|
||||
else MapR.add rp MapL.empty env.neqs}, ctx
|
||||
|
||||
|
||||
let update_aux dep set env=
|
||||
SetRR.fold
|
||||
(fun (rr, nrr) env ->
|
||||
|
||||
let update_aux dep set env=
|
||||
SetRR.fold
|
||||
(fun (rr, nrr) env ->
|
||||
{ env with
|
||||
neqs = update_neqs rr nrr dep env ;
|
||||
classes = update_classes rr nrr env.classes})
|
||||
|
|
@ -209,37 +209,37 @@ module Make ( R : Sig.X ) = struct
|
|||
let apply_sigma_uf env (p, v, dep) =
|
||||
assert (MapR.mem p env.gamma);
|
||||
let use_p = MapR.find p env.gamma in
|
||||
try
|
||||
let env, tch, neqs_to_up = SetR.fold
|
||||
(fun r (env, touched, neqs_to_up) ->
|
||||
try
|
||||
let env, tch, neqs_to_up = SetR.fold
|
||||
(fun r (env, touched, neqs_to_up) ->
|
||||
let rr, ex = MapR.find r env.repr in
|
||||
let nrr = R.subst p v rr in
|
||||
if R.equal rr nrr then env, touched, neqs_to_up
|
||||
else
|
||||
else
|
||||
let ex = Ex.union ex dep in
|
||||
let env =
|
||||
let env =
|
||||
{env with
|
||||
repr = MapR.add r (nrr, ex) env.repr;
|
||||
gamma = add_to_gamma r nrr env.gamma }
|
||||
gamma = add_to_gamma r nrr env.gamma }
|
||||
in
|
||||
env, (r, nrr, ex)::touched, SetRR.add (rr, nrr) neqs_to_up
|
||||
) use_p (env, [], SetRR.empty) in
|
||||
(* Correction : Do not update neqs twice for the same r *)
|
||||
update_aux dep neqs_to_up env, tch
|
||||
update_aux dep neqs_to_up env, tch
|
||||
|
||||
with Not_found -> assert false
|
||||
|
||||
let apply_sigma eqs env tch ((p, v, dep) as sigma) =
|
||||
|
||||
let apply_sigma eqs env tch ((p, v, dep) as sigma) =
|
||||
let env = init_leaf env p in
|
||||
let env, touched = apply_sigma_uf env sigma in
|
||||
let env, touched = apply_sigma_uf env sigma in
|
||||
env, ((p, touched, v) :: tch)
|
||||
|
||||
end
|
||||
|
||||
|
||||
let add env t =
|
||||
if MapT.mem t env.make then env, [] else Env.init_term env t
|
||||
|
||||
let ac_solve eqs dep (env, tch) (p, v) =
|
||||
let ac_solve eqs dep (env, tch) (p, v) =
|
||||
(* pourquoi recuperer le representant de rv? r = rv d'apres testopt *)
|
||||
(* assert ( let rp, _ = Env.find_or_normal_form env p in R.equal p rp); *)
|
||||
let rv, ex_rv = Env.find_or_normal_form env v in
|
||||
|
|
@ -248,51 +248,51 @@ module Make ( R : Sig.X ) = struct
|
|||
let dep = Ex.union ex_rv dep in
|
||||
Env.apply_sigma eqs env tch (p, rv, dep)
|
||||
|
||||
let x_solve env r1 r2 dep =
|
||||
let x_solve env r1 r2 dep =
|
||||
let rr1, ex_r1 = Env.find_or_normal_form env r1 in
|
||||
let rr2, ex_r2 = Env.find_or_normal_form env r2 in
|
||||
let dep = Ex.union dep (Ex.union ex_r1 ex_r2) in
|
||||
if R.equal rr1 rr2 then begin
|
||||
[] (* Remove rule *)
|
||||
end
|
||||
else
|
||||
else
|
||||
begin
|
||||
ignore (Env.update_neqs rr1 rr2 dep env);
|
||||
try R.solve rr1 rr2
|
||||
try R.solve rr1 rr2
|
||||
with Unsolvable ->
|
||||
raise (Inconsistent dep)
|
||||
end
|
||||
|
||||
let rec ac_x eqs env tch =
|
||||
|
||||
let rec ac_x eqs env tch =
|
||||
if Queue.is_empty eqs then env, tch
|
||||
else
|
||||
else
|
||||
let r1, r2, dep = Queue.pop eqs in
|
||||
let sbs = x_solve env r1 r2 dep in
|
||||
let env, tch = List.fold_left (ac_solve eqs dep) (env, tch) sbs in
|
||||
ac_x eqs env tch
|
||||
|
||||
|
||||
let union env r1 r2 dep =
|
||||
let equations = Queue.create () in
|
||||
let equations = Queue.create () in
|
||||
Queue.push (r1,r2, dep) equations;
|
||||
ac_x equations env []
|
||||
|
||||
let rec distinct env rl dep =
|
||||
let d = Lit.make (Literal.Distinct (false,rl)) in
|
||||
let env, _, newds =
|
||||
let env, _, newds =
|
||||
List.fold_left
|
||||
(fun (env, mapr, newds) r ->
|
||||
let rr, ex = Env.find_or_normal_form env r in
|
||||
(fun (env, mapr, newds) r ->
|
||||
let rr, ex = Env.find_or_normal_form env r in
|
||||
try
|
||||
let exr = MapR.find rr mapr in
|
||||
raise (Inconsistent (Ex.union ex exr))
|
||||
with Not_found ->
|
||||
let uex = Ex.union ex dep in
|
||||
let mdis =
|
||||
let mdis =
|
||||
try MapR.find rr env.neqs with Not_found -> MapL.empty in
|
||||
let mdis =
|
||||
try
|
||||
let mdis =
|
||||
try
|
||||
MapL.add d (Ex.merge uex (MapL.find d mdis)) mdis
|
||||
with Not_found ->
|
||||
with Not_found ->
|
||||
MapL.add d uex mdis
|
||||
in
|
||||
let env = Env.init_leaf env rr in
|
||||
|
|
@ -302,29 +302,29 @@ module Make ( R : Sig.X ) = struct
|
|||
(env, MapR.empty, [])
|
||||
rl
|
||||
in
|
||||
List.fold_left
|
||||
(fun env (r1, ex1, mapr) ->
|
||||
MapR.fold (fun r2 ex2 env ->
|
||||
List.fold_left
|
||||
(fun env (r1, ex1, mapr) ->
|
||||
MapR.fold (fun r2 ex2 env ->
|
||||
let ex = Ex.union ex1 (Ex.union ex2 dep) in
|
||||
try match R.solve r1 r2 with
|
||||
| [a, b] ->
|
||||
| [a, b] ->
|
||||
if (R.equal a r1 && R.equal b r2) ||
|
||||
(R.equal a r2 && R.equal b r1) then env
|
||||
else
|
||||
distinct env [a; b] ex
|
||||
| [] ->
|
||||
raise (Inconsistent ex)
|
||||
| [] ->
|
||||
raise (Inconsistent ex)
|
||||
| _ -> env
|
||||
with Unsolvable -> env) mapr env)
|
||||
env newds
|
||||
|
||||
|
||||
let are_equal env t1 t2 =
|
||||
|
||||
let are_equal env t1 t2 =
|
||||
let r1, ex_r1 = Env.lookup_by_t t1 env in
|
||||
let r2, ex_r2 = Env.lookup_by_t t2 env in
|
||||
if R.equal r1 r2 then Yes(Ex.union ex_r1 ex_r2) else No
|
||||
|
||||
let are_distinct env t1 t2 =
|
||||
let are_distinct env t1 t2 =
|
||||
let r1, ex_r1 = Env.lookup_by_t t1 env in
|
||||
let r2, ex_r2 = Env.lookup_by_t t2 env in
|
||||
try
|
||||
|
|
@ -332,25 +332,25 @@ module Make ( R : Sig.X ) = struct
|
|||
No
|
||||
with Inconsistent ex -> Yes(ex)
|
||||
|
||||
let already_distinct env lr =
|
||||
let already_distinct env lr =
|
||||
let d = Lit.make (Literal.Distinct (false,lr)) in
|
||||
try
|
||||
List.iter (fun r ->
|
||||
try
|
||||
List.iter (fun r ->
|
||||
let mdis = MapR.find r env.neqs in
|
||||
ignore (MapL.find d mdis)
|
||||
) lr;
|
||||
true
|
||||
with Not_found -> false
|
||||
|
||||
let find env t =
|
||||
|
||||
let find env t =
|
||||
Env.lookup_by_t t env
|
||||
|
||||
let find_r = Env.find_or_normal_form
|
||||
|
||||
let mem = Env.mem
|
||||
|
||||
let class_of env t =
|
||||
try
|
||||
let class_of env t =
|
||||
try
|
||||
let rt, _ = MapR.find (MapT.find t env.make) env.repr in
|
||||
SetT.elements (MapR.find rt env.classes)
|
||||
with Not_found -> [t]
|
||||
|
|
|
|||
|
|
@ -26,8 +26,8 @@ module type S = sig
|
|||
|
||||
val find_r : t -> R.r -> R.r * Explanation.t
|
||||
|
||||
val union :
|
||||
t -> R.r -> R.r -> Explanation.t ->
|
||||
val union :
|
||||
t -> R.r -> R.r -> Explanation.t ->
|
||||
t * (R.r * (R.r * R.r * Explanation.t) list * R.r) list
|
||||
|
||||
val distinct : t -> R.r list -> Explanation.t -> t
|
||||
|
|
|
|||
42
smt/use.ml
42
smt/use.ml
|
|
@ -25,13 +25,13 @@ module SA = Set.Make(struct
|
|||
end)
|
||||
|
||||
type elt = ST.t * SA.t
|
||||
|
||||
|
||||
module Make (X : Sig.X) = struct
|
||||
|
||||
let inter_tpl (x1,y1) (x2,y2) = ST.inter x1 x2, SA.inter y1 y2
|
||||
let union_tpl (x1,y1) (x2,y2) = ST.union x1 x2, SA.union y1 y2
|
||||
let bottom = Hstring.make "@bottom"
|
||||
let leaves r =
|
||||
let bottom = Hstring.make "@bottom"
|
||||
let leaves r =
|
||||
let one, _ = X.make (T.make (Symbols.name bottom) [] Ty.Tint) in
|
||||
match X.leaves r with [] -> [one] | l -> l
|
||||
|
||||
|
|
@ -41,39 +41,39 @@ module Make (X : Sig.X) = struct
|
|||
|
||||
type t = elt G.t
|
||||
|
||||
|
||||
|
||||
let find k m = try find k m with Not_found -> (ST.empty,SA.empty)
|
||||
|
||||
|
||||
let add_term k t mp =
|
||||
let g_t,g_a = find k mp in add k (ST.add t g_t,g_a) mp
|
||||
|
||||
let up_add g t rt lvs =
|
||||
|
||||
let up_add g t rt lvs =
|
||||
let g = if mem rt g then g else add rt (ST.empty, SA.empty) g in
|
||||
L.fold_left (fun g x -> add_term x t g) g lvs
|
||||
|
||||
let congr_add g lvs =
|
||||
L.fold_left (fun g x -> add_term x t g) g lvs
|
||||
|
||||
let congr_add g lvs =
|
||||
match lvs with
|
||||
[] -> ST.empty
|
||||
| x::ls ->
|
||||
L.fold_left
|
||||
| x::ls ->
|
||||
L.fold_left
|
||||
(fun acc y -> ST.inter (fst(find y g)) acc)
|
||||
(fst(find x g)) ls
|
||||
|
||||
let up_close_up g p v =
|
||||
|
||||
let up_close_up g p v =
|
||||
let lvs = leaves v in
|
||||
let g_p = find p g in
|
||||
L.fold_left (fun gg l -> add l (union_tpl g_p (find l g)) gg) g lvs
|
||||
|
||||
|
||||
let congr_close_up g p touched =
|
||||
let inter = function
|
||||
let inter = function
|
||||
[] -> (ST.empty, SA.empty)
|
||||
| rx::l ->
|
||||
| rx::l ->
|
||||
L.fold_left (fun acc x ->inter_tpl acc (find x g))(find rx g) l
|
||||
in
|
||||
L.fold_left
|
||||
in
|
||||
L.fold_left
|
||||
(fun (st,sa) tch -> union_tpl (st,sa)(inter (leaves tch)))
|
||||
(find p g) touched
|
||||
|
||||
(find p g) touched
|
||||
|
||||
let print g = ()
|
||||
|
||||
let mem = G.mem
|
||||
|
|
|
|||
12
smt/use.mli
12
smt/use.mli
|
|
@ -16,23 +16,23 @@ module T : sig type t = Term.t end
|
|||
module S : sig type t = Symbols.t end
|
||||
module ST : sig type elt = T.t type t = Term.Set.t end
|
||||
module SA : Set.S with type elt = Literal.LT.t * Explanation.t
|
||||
|
||||
|
||||
type elt = ST.t * SA.t
|
||||
|
||||
|
||||
module Make :
|
||||
functor (X : Sig.X) ->
|
||||
sig
|
||||
|
||||
type t
|
||||
|
||||
type t
|
||||
val empty : t
|
||||
val find : X.r -> t -> elt
|
||||
val add : X.r -> elt -> t -> t
|
||||
val mem : X.r -> t -> bool
|
||||
val print : t -> unit
|
||||
val up_add : t -> ST.elt -> X.r -> X.r list -> t
|
||||
|
||||
|
||||
val congr_add : t -> X.r list -> ST.t
|
||||
|
||||
|
||||
val up_close_up :t -> X.r -> X.r -> t
|
||||
val congr_close_up : t -> X.r -> X.r list -> elt
|
||||
end
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue