perf: make simplex more imperative

This commit is contained in:
Simon Cruanes 2021-02-05 13:48:57 -05:00
parent dee47743f7
commit 14a25f95a8
4 changed files with 195 additions and 178 deletions

View file

@ -372,8 +372,15 @@ module Make(A : ARG) : S with module A = A = struct
begin match res with
| SimpSolver.Solution _m ->
Log.debug 5 "lra: solver returns SAT";
let n_th_comb =
T.Tbl.keys self.needs_th_combination |> Iter.length
in
if n_th_comb > 0 then (
Log.debugf 5
(fun k->k "(@[LRA.needs-th-combination@ :n-lits %d@])" n_th_comb);
);
Log.debugf 50
(fun k->k "(@[LRA.needs-th-combination:@ %a@])"
(fun k->k "(@[LRA.needs-th-combination@ :lits %a@])"
(Util.pp_iter @@ Fmt.within "`" "`" T.pp) (T.Tbl.keys self.needs_th_combination));
(* FIXME: theory combination
let lazy model = model in

View file

@ -7,8 +7,7 @@
* - Implement gomorry cuts ?
*)
open Containers
module Fmt = CCFormat
module type VAR = Linear_expr_intf.VAR
module type FRESH = Linear_expr_intf.FRESH
module type VAR_GEN = Linear_expr_intf.VAR_GEN
@ -59,7 +58,7 @@ end = struct
end
(* use non-polymorphic comparison ops *)
open Int.Infix
open CCInt.Infix
(* Simplex Implementation *)
module Make_inner
@ -70,18 +69,10 @@ module Make_inner
module Var_map = VMap
module M = Var_map
(* Exceptions *)
exception Unsat of Var.t
exception AbsurdBounds of Var.t
exception NoneSuitable
type param = Param.t
type var = Var.t
type lit = Var.lit
type basic_var = var
type nbasic_var = var
type erat = {
base: Q.t; (* reference number *)
eps_factor: Q.t; (* coefficient for epsilon, the infinitesimal *)
@ -114,28 +105,43 @@ module Make_inner
if Q.equal Q.zero (eps_factor e)
then Q.pp_print out (base e)
else
Format.fprintf out "(@[<h>%a + @<1>ε * %a@])"
Fmt.fprintf out "(@[<h>%a + @<1>ε * %a@])"
Q.pp_print (base e) Q.pp_print (eps_factor e)
end
let str_of_var = Format.to_string Var.pp
let str_of_erat = Format.to_string Erat.pp
let str_of_q = Format.to_string Q.pp_print
let str_of_var = Fmt.to_string Var.pp
let str_of_erat = Fmt.to_string Erat.pp
let str_of_q = Fmt.to_string Q.pp_print
type bound = {
value : Erat.t;
reason : lit option;
}
(* state associated with a variable *)
type var_state = {
var: var;
mutable assign: Erat.t option; (* current assignment *)
mutable l_bound: bound; (* lower bound *)
mutable u_bound: bound; (* upper bound *)
mutable idx_basic: int; (* index in [t.nbasic] *)
mutable idx_nbasic: int; (* index in [t.nbasic] *)
}
(* Exceptions *)
exception Unsat of var_state
exception AbsurdBounds of var_state
exception NoneSuitable
type basic_var = var_state
type nbasic_var = var_state
type t = {
param: param;
mutable var_states: var_state M.t; (* var -> its state *)
tab : Q.t Matrix.t; (* the matrix of coefficients *)
basic : basic_var Vec.vector; (* basic variables *)
nbasic : nbasic_var Vec.vector; (* non basic variables *)
mutable assign : Erat.t M.t; (* assignments *)
mutable bounds : (bound * bound) M.t; (* (lower, upper) bounds for variables *)
mutable idx_basic : int M.t; (* basic var -> its index in [basic] *)
mutable idx_nbasic : int M.t; (* non basic var -> its index in [nbasic] *)
}
type cert = {
@ -148,99 +154,80 @@ module Make_inner
| Unsatisfiable of cert
let create param : t = {
param: param;
param;
var_states = M.empty;
tab = Matrix.create ();
basic = Vec.create ();
nbasic = Vec.create ();
assign = M.empty;
bounds = M.empty;
idx_basic = M.empty;
idx_nbasic = M.empty;
}
let copy t = {
param = Param.copy t.param;
tab = Matrix.copy t.tab;
basic = Vec.copy t.basic;
nbasic = Vec.copy t.nbasic;
assign = t.assign;
bounds = t.bounds;
idx_nbasic = t.idx_nbasic;
idx_basic = t.idx_basic;
}
let[@inline] index_basic (x:basic_var) : int = x.idx_basic
let[@inline] index_nbasic (x:nbasic_var) : int = x.idx_nbasic
let index_basic (t:t) (x:basic_var) : int =
match M.find x t.idx_basic with
| n -> n
| exception Not_found -> -1
let index_nbasic (t:t) (x:nbasic_var) : int =
match M.find x t.idx_nbasic with
| n -> n
| exception Not_found -> -1
let[@inline] mem_basic (t:t) (x:var) : bool = M.mem x t.idx_basic
let[@inline] mem_nbasic (t:t) (x:var) : bool = M.mem x t.idx_nbasic
let[@inline] is_basic (x:var_state) : bool = x.idx_basic >= 0
let[@inline] is_nbasic (x:var_state) : bool = x.idx_nbasic >= 0
(* check invariants, for test purposes *)
let check_invariants (t:t) : bool =
Matrix.check_invariants t.tab &&
Vec.for_all (fun v -> mem_basic t v) t.basic &&
Vec.for_all (fun v -> mem_nbasic t v) t.nbasic &&
Vec.for_all (fun v -> not (mem_nbasic t v)) t.basic &&
Vec.for_all (fun v -> not (mem_basic t v)) t.nbasic &&
Vec.for_all (fun v -> Var_map.mem v t.assign) t.nbasic &&
Vec.for_all (fun v -> not (Var_map.mem v t.assign)) t.basic &&
Vec.for_all (fun v -> is_basic v) t.basic &&
Vec.for_all (fun v -> is_nbasic v) t.nbasic &&
Vec.for_all (fun v -> not (is_nbasic v)) t.basic &&
Vec.for_all (fun v -> not (is_basic v)) t.nbasic &&
Vec.for_all (fun v -> CCOpt.is_some v.assign) t.nbasic &&
Vec.for_all (fun v -> CCOpt.is_none v.assign) t.basic &&
true
(* find the definition of the basic variable [x],
as a linear combination of non basic variables *)
let find_expr_basic_opt t (x:var) : Q.t Vec.vector option =
begin match index_basic t x with
let find_expr_basic_opt t (x:var_state) : Q.t Vec.vector option =
begin match index_basic x with
| -1 -> None
| i -> Some (Matrix.get_row t.tab i)
end
(* expression that defines a basic variable in terms of non-basic variables *)
let find_expr_basic t (x:basic_var) : Q.t Vec.vector =
begin match find_expr_basic_opt t x with
| None -> assert false
| Some e -> e
end
let i = index_basic x in
assert (i >= 0);
Matrix.get_row t.tab i
(* build the expression [y = \sum_i (if x_i=y then 1 else 0)·x_i] *)
let find_expr_nbasic t (x:nbasic_var) : Q.t Vec.vector =
Vec.map
(fun y -> if Var.compare x y = 0 then Q.one else Q.zero)
(fun y -> if x == y then Q.one else Q.zero)
t.nbasic
(* find expression of [x] *)
let find_expr_total (t:t) (x:var) : Q.t Vec.vector =
let find_expr_total (t:t) (x:var_state) : Q.t Vec.vector =
match find_expr_basic_opt t x with
| Some e -> e
| None ->
assert (mem_nbasic t x);
assert (is_nbasic x);
find_expr_nbasic t x
(* compute value of basic variable.
It can be computed by using [x]'s definition
in terms of nbasic variables, which have values *)
let value_basic (t:t) (x:basic_var) : Erat.t =
assert (mem_basic t x);
assert (is_basic x);
let res = ref Erat.zero in
let expr = find_expr_basic t x in
for i = 0 to Vec.length expr - 1 do
let val_nbasic_i =
try M.find (Vec.get t.nbasic i) t.assign
with Not_found -> assert false
match (Vec.get t.nbasic i).assign with
| None -> assert false
| Some e -> e
in
res := Erat.sum !res (Erat.mul (Vec.get expr i) val_nbasic_i)
done;
!res
(* extract a value for [x] *)
let[@inline] value (t:t) (x:var) : Erat.t =
try M.find x t.assign (* nbasic variables are assigned *)
with Not_found -> value_basic t x
let[@inline] value (t:t) (x:var_state) : Erat.t =
match x.assign with
| Some e -> e
| None -> value_basic t x
(* trivial bounds *)
let empty_bounds : bound * bound =
@ -248,18 +235,17 @@ module Make_inner
{ value = Erat.make Q.inf Q.zero; reason = None; }
(* find bounds of [x] *)
let[@inline] get_bounds (t:t) (x:var) : bound * bound =
try M.find x t.bounds
with Not_found -> empty_bounds
let[@inline] get_bounds (x:var_state) : bound * bound =
x.l_bound, x.u_bound
let[@inline] get_bounds_values (t:t) (x:var) : Erat.t * Erat.t =
let l, u = get_bounds t x in
let[@inline] get_bounds_values (x:var_state) : Erat.t * Erat.t =
let l, u = get_bounds x in
l.value, u.value
(* is [value x] within the bounds for [x]? *)
let is_within_bounds (t:t) (x:var) : bool * Erat.t =
let is_within_bounds (t:t) (x:var_state) : bool * Erat.t =
let v = value t x in
let low, upp = get_bounds_values t x in
let low, upp = get_bounds_values x in
if Erat.compare v low < 0 then
false, low
else if Erat.compare v upp > 0 then
@ -267,50 +253,62 @@ module Make_inner
else
true, v
(* add nbasic variables *)
let add_vars (t:t) (l:var list) : unit =
(* add new variable to idx and array for nbasic, removing duplicates
and variables already present *)
let idx_nbasic, _, l =
List.fold_left
(fun ((idx_nbasic, offset, l) as acc) x ->
if mem_basic t x then acc
else if M.mem x idx_nbasic then acc
else (
(* add [v] as a non-basic variable, or return its state if already mapped *)
let get_var_or_add_as_nbasic (t:t) (v:var) : var_state =
match M.get v t.var_states with
| Some v -> v
| None ->
let l_bound, u_bound = empty_bounds in
let idx_nbasic = Vec.length t.nbasic in
let vs = {
var=v; l_bound; u_bound;
assign=Some Erat.zero;
idx_nbasic; idx_basic=(-1);
} in
t.var_states <- M.add v vs t.var_states;
Vec.push t.nbasic vs;
Matrix.push_col t.tab Q.zero; (* new empty column *)
vs
(* add new variables as nbasic variables, return them, ignore
the already existing variables *)
let add_vars_as_nbasic (t:t) (l:var list) : unit =
List.iter
(fun x ->
if not (M.mem x t.var_states) then (
(* allocate new index for [x] *)
M.add x offset idx_nbasic, offset+1, x::l
ignore (get_var_or_add_as_nbasic t x : var_state)
))
(t.idx_nbasic, Vec.length t.nbasic, [])
l
in
(* add new columns to the matrix *)
let old_dim = Matrix.n_col t.tab in
List.iter (fun _ -> Matrix.push_col t.tab Q.zero) l;
assert (old_dim + List.length l = Matrix.n_col t.tab);
Vec.append_list t.nbasic (List.rev l);
(* assign these variables *)
t.assign <- List.fold_left (fun acc y -> M.add y Erat.zero acc) t.assign l;
t.idx_nbasic <- idx_nbasic;
()
(* define basic variable [x] by [eq] in [t] *)
let add_eq (t:t) (x, eq : basic_var * _ list) : unit =
if mem_basic t x || mem_nbasic t x then (
invalid_arg (Format.sprintf "Variable `%a` already defined." Var.pp x);
);
add_vars t (List.map snd eq);
let add_eq (t:t) (x, eq : var * _ list) : unit =
let eq = List.map (fun (coeff,x) -> coeff, get_var_or_add_as_nbasic t x) eq in
(* add [x] as a basic var *)
t.idx_basic <- M.add x (Vec.length t.basic) t.idx_basic;
Vec.push t.basic x;
begin match M.get x t.var_states with
| Some _ ->
invalid_arg (Fmt.sprintf "Variable `%a` already defined." Var.pp x);
| None ->
let l_bound, u_bound = empty_bounds in
let idx_basic = Vec.length t.basic in
let vs = {
var=x; l_bound; u_bound; assign=None; idx_basic;
idx_nbasic=(-1);
} in
Vec.push t.basic vs;
t.var_states <- M.add x vs t.var_states;
end;
(* add new row for defining [x] *)
assert (Matrix.n_col t.tab > 0);
Matrix.push_row t.tab Q.zero;
let row_i = Matrix.n_row t.tab - 1 in
assert (row_i >= 0);
(* now put into the row the coefficients corresponding to [eq],
expanding basic variables to their definition *)
List.iter
(fun (c, x) ->
(* FIXME(perf): replace with a `idx -> Q.t` function, do not allocate vector *)
let expr = find_expr_total t x in
assert (Vec.length expr = Matrix.n_col t.tab);
Vec.iteri
@ -323,25 +321,27 @@ module Make_inner
()
(* add bounds to [x] in [t] *)
let add_bound_aux (t:t) (x:var)
let add_bound_aux (x:var_state)
(low:Erat.t) (low_reason:lit option)
(upp:Erat.t) (upp_reason:lit option) : unit =
add_vars t [x];
let l, u = get_bounds t x in
let l, u = get_bounds x in
let l' = if Erat.lt low l.value then l else { value = low; reason = low_reason; } in
let u' = if Erat.gt upp u.value then u else { value = upp; reason = upp_reason; } in
t.bounds <- M.add x (l', u') t.bounds
x.l_bound <- l';
x.u_bound <- u';
()
let add_bounds (t:t)
?strict_lower:(slow=false) ?strict_upper:(supp=false)
?lower_reason ?upper_reason (x, l, u) : unit =
let x = get_var_or_add_as_nbasic t x in
let e1 = if slow then Q.one else Q.zero in
let e2 = if supp then Q.neg Q.one else Q.zero in
add_bound_aux t x (Erat.make l e1) lower_reason (Erat.make u e2) upper_reason;
if mem_nbasic t x then (
add_bound_aux x (Erat.make l e1) lower_reason (Erat.make u e2) upper_reason;
if is_nbasic x then (
let b, v = is_within_bounds t x in
if not b then (
t.assign <- M.add x v t.assign;
x.assign <- Some v;
)
)
@ -351,10 +351,13 @@ module Make_inner
let add_upper_bound t ?strict ~reason x u =
add_bounds t ?strict_upper:strict ~upper_reason:reason (x,Q.minus_inf,u)
let iter_all_vars (t:t) : var_state Iter.t =
Iter.append (Vec.to_iter t.nbasic) (Vec.to_iter t.basic)
(* full assignment *)
let full_assign (t:t) : (var * Erat.t) Iter.t =
Iter.append (Vec.to_iter t.nbasic) (Vec.to_iter t.basic)
|> Iter.map (fun x -> x, value t x)
|> Iter.map (fun x -> x.var, value t x)
let[@inline] min x y = if Q.compare x y < 0 then x else y
@ -370,9 +373,10 @@ module Make_inner
*)
let solve_epsilon (t:t) : Q.t =
let emax =
M.fold
(fun x ({ value = {base=low;eps_factor=e_low}; _},
{ value = {base=upp;eps_factor=e_upp}; _}) emax ->
Iter.fold
(fun emax x ->
let { value = {base=low;eps_factor=e_low}; _} = x.l_bound in
let { value = {base=upp;eps_factor=e_upp}; _} = x.u_bound in
let {base=v; eps_factor=e_v} = value t x in
(* lower bound *)
let emax =
@ -384,8 +388,7 @@ module Make_inner
if Q.compare upp Q.inf < 0 && Q.compare e_v e_upp > 0
then min emax Q.((upp - v) / (e_v - e_upp))
else emax)
t.bounds
Q.inf
Q.inf (iter_all_vars t)
in
if Q.compare emax Q.one >= 0 then Q.one else emax
@ -409,14 +412,15 @@ module Make_inner
This is important for termination.
*)
let find_suitable_nbasic_for_pivot (t:t) (x:basic_var) : nbasic_var * Q.t =
assert (mem_basic t x);
Profile.with_ "simplex.find-pivot-var" @@ fun () ->
assert (is_basic x);
let _, v = is_within_bounds t x in
let b = Erat.compare (value t x) v < 0 in
(* is nbasic var [y], with coeff [a] in definition of [x], suitable? *)
let test (y:nbasic_var) (a:Q.t) : bool =
assert (mem_nbasic t y);
assert (is_nbasic y);
let v = value t y in
let low, upp = get_bounds_values t y in
let low, upp = get_bounds_values y in
if b then (
(Erat.lt v upp && Q.compare a Q.zero > 0) ||
(Erat.gt v low && Q.compare a Q.zero < 0)
@ -440,7 +444,7 @@ module Make_inner
begin match aux (i+1) with
| None -> Some (y,a)
| Some (z, _) as res_tail ->
if Var.compare y z <= 0
if Var.compare y.var z.var <= 0
then Some (y,a)
else res_tail
end
@ -456,15 +460,17 @@ module Make_inner
(* pivot to exchange [x] and [y] *)
let pivot (t:t) (x:basic_var) (y:nbasic_var) (a:Q.t) : unit =
Profile.with_ "simplex.pivot" @@ fun () ->
(* swap values ([x] becomes assigned) *)
let val_x = value t x in
t.assign <- t.assign |> M.remove y |> M.add x val_x;
(* Matrixrix Pivot operation *)
let kx = index_basic t x in
let ky = index_nbasic t y in
y.assign <- None;
x.assign <- Some val_x;
(* Matrix Pivot operation *)
let kx = index_basic x in
let ky = index_nbasic y in
for j = 0 to Vec.length t.nbasic - 1 do
if Var.compare y (Vec.get t.nbasic j) = 0 then (
Matrix.set t.tab kx j Q.(one / a)
if y == Vec.get t.nbasic j then (
Matrix.set t.tab kx j Q.(inv a)
) else (
Matrix.set t.tab kx j Q.(neg (Matrix.get t.tab kx j) / a)
)
@ -481,8 +487,10 @@ module Make_inner
(* Switch x and y in basic and nbasic vars *)
Vec.set t.basic kx y;
Vec.set t.nbasic ky x;
t.idx_basic <- t.idx_basic |> M.remove x |> M.add y kx;
t.idx_nbasic <- t.idx_nbasic |> M.remove y |> M.add x ky;
x.idx_basic <- -1;
y.idx_basic <- kx;
x.idx_nbasic <- ky;
y.idx_nbasic <- -1;
()
(* find minimum element of [arr] (wrt [cmp]) that satisfies predicate [f] *)
@ -509,16 +517,26 @@ module Make_inner
(* check bounds *)
let check_bounds (t:t) : unit =
M.iter (fun x (l, u) -> if Erat.gt l.value u.value then raise (AbsurdBounds x)) t.bounds
iter_all_vars t
(fun x ->
let l = x.l_bound in
let u = x.u_bound in
if Erat.gt l.value u.value then raise (AbsurdBounds x))
let[@inline] compare_by_var x y = Var.compare x.var y.var
(* actual solving algorithm *)
let solve_aux (t:t) : unit =
Profile.instant
(Printf.sprintf "(simplex.solve :basic %d :non-basic %d)"
(Vec.length t.basic) (Vec.length t.nbasic));
check_bounds t;
(* select the smallest basic variable that is not satisfied in the current
assignment. *)
let rec aux_select_basic_var () =
match
find_min_filter ~cmp:Var.compare
Profile.with_ "simplex.select-basic-var" @@ fun () ->
find_min_filter ~cmp:compare_by_var
(fun x -> not (fst (is_within_bounds t x)))
t.basic
with
@ -533,7 +551,7 @@ module Make_inner
(* exchange [x] and [y] by pivoting *)
pivot t x y a;
(* assign [x], now a nbasic variable, to the faulty bound [v] *)
t.assign <- M.add x v t.assign;
x.assign <- Some v;
(* next iteration *)
aux_select_basic_var ()
| exception NoneSuitable ->
@ -552,11 +570,11 @@ module Make_inner
let cert_expr =
List.combine
(Vec.to_list (find_expr_basic t x))
(Vec.to_list t.nbasic)
(Vec.to_list t.nbasic |> CCList.map (fun x -> x.var))
in
Unsatisfiable { cert_var=x; cert_expr; } (* FIXME *)
Unsatisfiable { cert_var=x.var; cert_expr; } (* FIXME *)
| AbsurdBounds x ->
Unsatisfiable { cert_var=x; cert_expr=[]; }
Unsatisfiable { cert_var=x.var; cert_expr=[]; }
(* add [c·x] to [m] *)
let add_expr_ (x:var) (c:Q.t) (m:Q.t M.t) =
@ -565,8 +583,9 @@ module Make_inner
if Q.equal Q.zero c' then M.remove x m else M.add x c' m
(* dereference basic variables from [c·x], and add the result to [m] *)
let rec deref_var_ t x c m = match find_expr_basic_opt t x with
| None -> add_expr_ x c m
let rec deref_var_ t x c m =
match find_expr_basic_opt t x with
| None -> add_expr_ x.var c m
| Some expr_x ->
let m = ref m in
Vec.iteri
@ -594,9 +613,9 @@ module Make_inner
| Some reason -> reason :: acc
let check_cert (t:t) (c:cert) =
let x = c.cert_var in
let { value = low_x; reason = low_x_reason; },
{ value = up_x; reason = upp_x_reason; } = get_bounds t x in
let x = M.get c.cert_var t.var_states |> CCOpt.get_lazy (fun()->assert false) in
let { value = low_x; reason = low_x_reason; } = x.l_bound in
let { value = up_x; reason = upp_x_reason; } = x.u_bound in
begin match c.cert_expr with
| [] ->
if Erat.compare low_x up_x > 0
@ -609,7 +628,8 @@ module Make_inner
let low, low_unsat_core, up, up_unsat_core, expr_minus_x =
List.fold_left
(fun (l, luc, u, uuc, expr_minus_x) (c, y) ->
let ly, uy = scale_bounds c (get_bounds t y) in
let y = M.get y t.var_states |> CCOpt.get_lazy (fun ()->assert false) in
let ly, uy = scale_bounds c (get_bounds y) in
assert (Erat.compare ly.value uy.value <= 0);
let expr_minus_x = deref_var_ t y c expr_minus_x in
let luc = add_to_unsat_core luc ly.reason in
@ -637,51 +657,45 @@ module Make_inner
let fmt_cell = format_of_string "%*s| "
let pp_cert out (c:cert) = match c.cert_expr with
| [] -> Format.fprintf out "(@[inconsistent-bounds %a@])" Var.pp c.cert_var
| [] -> Fmt.fprintf out "(@[inconsistent-bounds %a@])" Var.pp c.cert_var
| _ ->
let pp_pair = Format.(hvbox ~i:2 @@ pair ~sep:(return "@ * ") Q.pp_print Var.pp) in
Format.fprintf out "(@[<hv>cert@ :var %a@ :linexp %a@])"
let pp_pair = Fmt.(hvbox ~i:2 @@ pair ~sep:(return "@ * ") Q.pp_print Var.pp) in
Fmt.fprintf out "(@[<hv>cert@ :var %a@ :linexp %a@])"
Var.pp c.cert_var
Format.(within "[" "]" @@ hvbox @@ list ~sep:(return "@ + ") pp_pair)
Fmt.(within "[" "]" @@ hvbox @@ list ~sep:(return "@ + ") pp_pair)
c.cert_expr
let pp_mat out t =
let open Format in
let open Fmt in
fprintf out "@[<v>";
(* header *)
fprintf out fmt_head !matrix_pp_width "";
Vec.iter (fun x -> fprintf out fmt_cell !matrix_pp_width (str_of_var x)) t.nbasic;
Vec.iter (fun x -> fprintf out fmt_cell !matrix_pp_width (str_of_var x.var)) t.nbasic;
fprintf out "@,";
(* rows *)
for i=0 to Matrix.n_row t.tab-1 do
if i>0 then fprintf out "@,";
let v = Vec.get t.basic i in
fprintf out fmt_head !matrix_pp_width (str_of_var v);
fprintf out fmt_head !matrix_pp_width (str_of_var v.var);
let row = Matrix.get_row t.tab i in
Vec.iter (fun q -> fprintf out fmt_cell !matrix_pp_width (str_of_q q)) row;
done;
fprintf out "@]"
let pp_assign =
let open Format in
let pp_pair =
within "(" ")" @@ hvbox @@ pair ~sep:(return "@ := ") Var.pp Erat.pp
let pp_vars =
let ppv out v =
Fmt.fprintf out "(@[var %a@ :assign %a@ :lbound %a@ :ubound %a@])"
Var.pp v.var (Fmt.Dump.option Erat.pp) v.assign
Erat.pp v.l_bound.value Erat.pp v.u_bound.value
in
map Var_map.to_iter @@ within "(" ")" @@ hvbox @@ iter pp_pair
let pp_bounds =
let open Format in
let pp_pairs out (x,(l,u)) =
fprintf out "(@[%a =< %a =< %a@])" Erat.pp l.value Var.pp x Erat.pp u.value
in
map Var_map.to_iter @@ within "(" ")" @@ hvbox @@ iter pp_pairs
Fmt.(within "(" ")" @@ hvbox @@ iter ppv)
let pp_full_state out (t:t) : unit =
(* print main matrix *)
Format.fprintf out
"(@[<hv>simplex@ :n-row %d :n-col %d@ :mat %a@ :assign %a@ :bounds %a@])"
(Matrix.n_row t.tab) (Matrix.n_col t.tab) pp_mat t pp_assign t.assign
pp_bounds t.bounds
Fmt.fprintf out
"(@[<hv>simplex@ :n-row %d :n-col %d@ :mat %a@ :vars %a @])"
(Matrix.n_row t.tab) (Matrix.n_col t.tab) pp_mat t
pp_vars (iter_all_vars t)
end
module Make(Var:VAR) =

View file

@ -50,9 +50,6 @@ module type S = sig
@param fresh the state for generating fresh variables on demand. *)
val create : param -> t
(** Returns a copy of the given system *)
val copy : t -> t
(** [add_eq s (x, eq)] adds the equation [x=eq] to [s] *)
val add_eq : t -> var * (Q.t * var) list -> unit

View file

@ -141,26 +141,25 @@ let check_sound =
let prop pb =
let simplex = Spl.create (Var.Fresh.create()) in
add_problem simplex pb;
let old_simp = Spl.copy simplex in
begin match Spl.solve simplex with
| Spl.Solution subst ->
if Problem.eval subst pb then true
else (
QC.Test.fail_reportf
"(@[<hv>bad-solution@ :problem %a@ :sol %a@ :simplex-after %a@ :simplex-before %a@])"
Problem.pp pb pp_subst subst Spl.pp_full_state simplex Spl.pp_full_state old_simp
"(@[<hv>bad-solution@ :problem %a@ :sol %a@ :simplex %a@])"
Problem.pp pb pp_subst subst Spl.pp_full_state simplex
)
| Spl.Unsatisfiable cert ->
begin match Spl.check_cert simplex cert with
| `Ok _ -> true
| `Bad_bounds (low, up) ->
QC.Test.fail_reportf
"(@[<hv>bad-certificat@ :problem %a@ :cert %a@ :low %s :up %s@ :simplex-after %a@ :simplex-before %a@])"
Problem.pp pb Spl.pp_cert cert low up Spl.pp_full_state simplex Spl.pp_full_state old_simp
"(@[<hv>bad-certificat@ :problem %a@ :cert %a@ :low %s :up %s@ :simplex %a@])"
Problem.pp pb Spl.pp_cert cert low up Spl.pp_full_state simplex
| `Diff_not_0 e ->
QC.Test.fail_reportf
"(@[<hv>bad-certificat@ :problem %a@ :cert %a@ :diff %a@ :simplex-after %a@ :simplex-before %a@])"
Problem.pp pb Spl.pp_cert cert Comb.pp (Comb.of_map e) Spl.pp_full_state simplex Spl.pp_full_state old_simp
"(@[<hv>bad-certificat@ :problem %a@ :cert %a@ :diff %a@ :simplex %a@])"
Problem.pp pb Spl.pp_cert cert Comb.pp (Comb.of_map e) Spl.pp_full_state simplex
end
end
in