feat: construct model from congruence closure after th-combination

we already obtain a model from theories, and saturate the congruence
closure with it, it's a shame not to use it.
This commit is contained in:
Simon Cruanes 2022-02-17 22:05:31 -05:00
parent a388c96fe3
commit 1946a5e7cf
No known key found for this signature in database
GPG key ID: EBFFF6F283F3A2B4
3 changed files with 132 additions and 112 deletions

View file

@ -1061,6 +1061,15 @@ module Make (A: CC_ARG)
cc.model_mode <- false;
)
let get_model_for_each_class self : _ Iter.t =
assert self.model_mode;
all_classes self
|> Iter.filter_map
(fun repr ->
match T_b_tbl.get self.t_to_val repr.n_term with
| Some (_,v) -> Some (repr, N.iter_class repr, v)
| None -> None)
(* assert that this boolean literal holds.
if a lit is [= a b], merge [a] and [b];
otherwise merge the atom with true/false *)

View file

@ -735,6 +735,9 @@ module type CC_S = sig
val with_model_mode : t -> (unit -> 'a) -> 'a
(** Enter model combination mode. *)
val get_model_for_each_class : t -> (repr * N.t Iter.t * value) Iter.t
(** In model combination mode, obtain classes with their values. *)
val check : t -> actions -> unit
(** Perform all pending operations done via {!assert_eq}, {!assert_lit}, etc.
Will use the {!actions} to propagate literals, declare conflicts, etc. *)

View file

@ -142,6 +142,28 @@ module Make(A : ARG)
module CC = Sidekick_cc.Make(CC_actions)
module N = CC.N
module Model = struct
type t =
| Empty
| Map of term Term.Tbl.t
let empty = Empty
let mem = function
| Empty -> fun _ -> false
| Map tbl -> Term.Tbl.mem tbl
let find = function
| Empty -> fun _ -> None
| Map tbl -> Term.Tbl.get tbl
let eval = find
let pp out = function
| Empty -> Fmt.string out "(model)"
| Map tbl ->
let pp_pair out (t,v) =
Fmt.fprintf out "(@[<1>%a@ := %a@])" Term.pp t Term.pp v
in
Fmt.fprintf out "(@[<hv>model@ %a@])"
(Util.pp_iter pp_pair) (Term.Tbl.to_iter tbl)
end
(* delayed actions. We avoid doing them on the spot because, when
triggered by a theory, they might go back to the theory "too early". *)
type delayed_action =
@ -285,6 +307,7 @@ module Make(A : ARG)
simp: Simplify.t;
preprocessed: unit Term.Tbl.t;
delayed_actions: delayed_action Queue.t;
mutable last_model: Model.t option;
mutable t_defs : (term*term) list; (* term definitions *)
mutable th_states : th_states; (** Set of theories *)
@ -560,14 +583,95 @@ module Make(A : ARG)
push_lvl_ self.th_states
let pop_levels (self:t) n : unit =
self.last_model <- None;
self.level <- self.level - n;
CC.pop_levels (cc self) n;
pop_lvls_ n self.th_states
(** {2 Model construction and theory combination} *)
(* make model from the congruence closure *)
let mk_model_ (self:t) : Model.t =
Log.debug 1 "(smt.solver.mk-model)";
Profile.with_ "smt-solver.mk-model" @@ fun () ->
let module M = Term.Tbl in
let {cc=lazy cc;
model_ask=model_ask_hooks; model_complete; _} = self in
let model = M.create 128 in
(* populate with information from the CC *)
CC.get_model_for_each_class cc
(fun (_, ts, v) ->
Iter.iter
(fun n ->
let t = N.term n in
M.replace model t v) ts);
(* complete model with theory specific values *)
let complete_with f =
f self
~add:(fun t u ->
if not (M.mem model t) then (
Log.debugf 20 (fun k->k "(@[smt.model-complete@ %a@ :with-val %a@])" Term.pp t Term.pp u);
M.replace model t u
));
in
List.iter complete_with model_complete;
(* compute a value for [n]. *)
let rec val_for_class (n:N.t) : term =
Log.debugf 5 (fun k->k "val-for-term %a" N.pp n);
let repr = CC.find cc n in
Log.debugf 5 (fun k->k "val-for-term.repr %a" N.pp repr);
(* see if a value is found already (always the case if it's a boolean) *)
match M.get model (N.term repr) with
| Some t_val ->
Log.debugf 5 (fun k->k "cached val is %a" Term.pp t_val);
t_val
| None ->
(* try each model hook *)
let rec try_hooks_ = function
| [] -> N.term repr
| h :: hooks ->
begin match h ~recurse:(fun _ n -> val_for_class n) self repr with
| None -> try_hooks_ hooks
| Some t -> t
end
in
let t_val =
match
(* look for a value in the model for any term in the class *)
N.iter_class repr
|> Iter.find_map (fun n -> M.get model (N.term n))
with
| Some v -> v
| None -> try_hooks_ model_ask_hooks
in
M.replace model (N.term repr) t_val; (* be sure to cache the value *)
Log.debugf 5 (fun k->k "val is %a" Term.pp t_val);
t_val
in
(* map terms of each CC class to the value computed for their class. *)
CC.all_classes cc
(fun repr ->
let t_val = val_for_class repr in (* value for this class *)
N.iter_class repr
(fun u ->
let t_u = N.term u in
if not (N.equal u repr) && not (Term.equal t_u t_val) then (
M.replace model t_u t_val;
)));
Model.Map model
(* do theory combination using the congruence closure. Each theory
can merge classes, *)
let check_th_combination_
(self:t) (acts:theory_actions) : (unit, th_combination_conflict) result =
(self:t) (acts:theory_actions) : (Model.t, th_combination_conflict) result =
let cc = cc self in
(* entier model mode, disabling most of congruence closure *)
CC.with_model_mode cc @@ fun () ->
@ -579,16 +683,17 @@ module Make(A : ARG)
CC.set_model_value cc t v
in
(* obtain classes of equal terms from the hook, and merge them *)
let add_th_equalities f : unit =
(* obtain assignments from the hook, and communicate them to the CC *)
let add_th_values f : unit =
let vals = f self acts in
Iter.iter set_val vals
in
try
List.iter add_th_equalities self.on_th_combination;
List.iter add_th_values self.on_th_combination;
CC.check cc acts;
Ok ()
let m = mk_model_ self in
Ok m
with Semantic_conflict c -> Error c
(* handle a literal assumed by the SAT solver *)
@ -608,11 +713,9 @@ module Make(A : ARG)
List.iter (fun f -> f self acts lits) self.on_final_check;
CC.check cc acts;
let new_work = has_delayed_actions self in
(* do actual theory combination if nothing changed by pure "final check" *)
if not new_work then (
match check_th_combination_ self acts with
| Ok () -> ()
begin match check_th_combination_ self acts with
| Ok m ->
self.last_model <- Some m
| Error {lits; semantic} ->
(* bad model, we add a clause to remove it *)
@ -642,7 +745,7 @@ module Make(A : ARG)
(Util.pp_list Lit.pp) c);
(* will add a delayed action *)
add_clause_temp self acts c pr;
);
end;
Perform_delayed_th.top self acts;
) else (
@ -691,6 +794,7 @@ module Make(A : ARG)
th_states=Ths_nil;
stat;
simp=Simplify.create tst ty_st ~proof;
last_model=None;
on_progress=(fun () -> ());
preprocess=[];
model_ask=[];
@ -745,28 +849,6 @@ module Make(A : ARG)
| U_asked_to_stop -> Fmt.string out {|"asked to stop by callback"|}
end [@@ocaml.warning "-37"]
module Model = struct
type t =
| Empty
| Map of term Term.Tbl.t
let empty = Empty
let mem = function
| Empty -> fun _ -> false
| Map tbl -> Term.Tbl.mem tbl
let find = function
| Empty -> fun _ -> None
| Map tbl -> Term.Tbl.get tbl
let eval = find
let pp out = function
| Empty -> Fmt.string out "(model)"
| Map tbl ->
let pp_pair out (t,v) =
Fmt.fprintf out "(@[<1>%a@ := %a@])" Term.pp t Term.pp v
in
Fmt.fprintf out "(@[<hv>model@ %a@])"
(Util.pp_iter pp_pair) (Term.Tbl.to_iter tbl)
end
type res =
| Sat of Model.t
| Unsat of {
@ -901,82 +983,6 @@ module Make(A : ARG)
let assert_term self t = assert_terms self [t]
let mk_model (self:t) (lits:lit Iter.t) : Model.t =
Log.debug 1 "(smt.solver.mk-model)";
Profile.with_ "smt-solver.mk-model" @@ fun () ->
let module M = Term.Tbl in
let model = M.create 128 in
let {Solver_internal.tst; cc=lazy cc;
model_ask=model_ask_hooks; model_complete; _} = self.si in
(* first, add all literals to the model using the given propositional model
[lits]. *)
lits
(fun lit ->
let t, sign = Lit.signed_term lit in
M.replace model t (Term.bool tst sign));
(* complete model with theory specific values *)
let complete_with f =
f self.si
~add:(fun t u ->
if not (M.mem model t) then (
Log.debugf 20 (fun k->k "(@[smt.model-complete@ %a@ :with-val %a@])" Term.pp t Term.pp u);
M.replace model t u
));
in
List.iter complete_with model_complete;
(* compute a value for [n]. *)
let rec val_for_class (n:N.t) : term =
Log.debugf 5 (fun k->k "val-for-term %a" N.pp n);
let repr = CC.find cc n in
Log.debugf 5 (fun k->k "val-for-term.repr %a" N.pp repr);
(* see if a value is found already (always the case if it's a boolean) *)
match M.get model (N.term repr) with
| Some t_val ->
Log.debugf 5 (fun k->k "cached val is %a" Term.pp t_val);
t_val
| None ->
(* try each model hook *)
let rec try_hooks_ = function
| [] -> N.term repr
| h :: hooks ->
begin match h ~recurse:(fun _ n -> val_for_class n) self.si repr with
| None -> try_hooks_ hooks
| Some t -> t
end
in
let t_val =
match
(* look for a value in the model for any term in the class *)
N.iter_class repr
|> Iter.find_map (fun n -> M.get model (N.term n))
with
| Some v -> v
| None -> try_hooks_ model_ask_hooks
in
M.replace model (N.term repr) t_val; (* be sure to cache the value *)
Log.debugf 5 (fun k->k "val is %a" Term.pp t_val);
t_val
in
(* map terms of each CC class to the value computed for their class. *)
Solver_internal.CC.all_classes (Solver_internal.cc self.si)
(fun repr ->
let t_val = val_for_class repr in (* value for this class *)
N.iter_class repr
(fun u ->
let t_u = N.term u in
if not (N.equal u repr) && not (Term.equal t_u t_val) then (
M.replace model t_u t_val;
)));
Model.Map model
exception Resource_exhausted = Sidekick_sat.Resource_exhausted
let solve
@ -1011,15 +1017,17 @@ module Make(A : ARG)
| Sat_solver.Sat (module SAT) ->
Log.debug 1 "(sidekick.smt-solver: SAT)";
Log.debugf 50
Log.debugf 5
(fun k->
let ppc out n =
Fmt.fprintf out "{@[<hv>class@ %a@]}" (Util.pp_iter N.pp) (N.iter_class n) in
k "(@[sidekick.smt-solver.classes@ (@[%a@])@])"
(Util.pp_iter ppc) (CC.all_classes @@ Solver_internal.cc self.si));
let _lits f = SAT.iter_trail f in
let m = mk_model self _lits in
let m = match self.si.last_model with
| Some m -> m
| None -> assert false
in
(* TODO: check model *)
let _ = check in