diff --git a/poster/poster.pdf b/poster/poster.pdf index 8f05dab2..0e76f6ad 100644 Binary files a/poster/poster.pdf and b/poster/poster.pdf differ diff --git a/poster/poster.tex b/poster/poster.tex index c7fa8852..e7466b1d 100644 --- a/poster/poster.tex +++ b/poster/poster.tex @@ -45,7 +45,7 @@ \msat{}: a SAT solving library in OCaml. Solves the \textbf{satisfibility} of propositional clauses. It is \textbf{Modular}: the user provides - the theory, and produces \textbf{formal proof}. + the theory. And it \textbf{produces formal proofs}. } \tblock{Conflict Driven Clause learning} @@ -97,14 +97,13 @@ \tblock{Other solvers} { - \\ \begin{center} \begin{tabular}{c@{\quad}|@{\quad}c@{\quad}|@{\quad}c@{\quad}|@{\quad}c} regstab & SAT & binary only & only pure SAT \\ \hline \begin{tabular}{c}\textbf{minisat}\\\textbf{sattools}\\ocaml-sat-solvers\end{tabular} & SAT & C bindings & only pure SAT \\ \hline Alt-ergo & SMT & binary only & Fixed theory \\ \hline \textbf{Alt-ergo-zero} & SMT & OCaml lib & Fixed theory \\ \hline - \begin{tabular}{c}ocamlyices\\yices2\end{tabular} & SMT & C bindings & Fixed theory \\ \hline + \begin{tabular}{c}ocamlyices\\yices2\end{tabular} & SMT & C bindings & Fixed theory \\ \end{tabular} \end{center} } @@ -158,7 +157,7 @@ pigeon/hole7 & 4.257 & 0.213 & 0.015 & 0.073 \\ \hline pigeon/hole8 & 31.450 & 0.941 & 0.096 & 2.488 \\ \hline pigeon/hole9 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 8.886 & 0.634 & 4.075 \\ \hline - pigeon/hole10 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 161.478 & \begin{tabular}{c}9.579 (minisat)\\160.376 (sattools)\end{tabular} & 72.050 \\ \hline + pigeon/hole10 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 161.478 & \begin{tabular}{c}9.579 (minisat)\\160.376 (sattools)\end{tabular} & 72.050 \\ \end{tabular} } diff --git a/poster/solver_intf.ml b/poster/solver_intf.ml index 6ab240f3..5793e389 100644 --- a/poster/solver_intf.ml +++ b/poster/solver_intf.ml @@ -1,4 +1,4 @@ -module Make(Th: Theory_intf)() : sig +module Make(Th: Theory_intf.S)() : sig type 'f sat_state = { eval : 'f -> bool; ... } type ('c,'p) unsat_state = { conflict: unit -> 'c; proof : unit -> 'p }