refactor(cc): internal refactorings

This commit is contained in:
Simon Cruanes 2018-08-18 14:51:49 -05:00
parent b8445d0ca3
commit 1d212350ef

View file

@ -3,15 +3,17 @@ module Vec = Sidekick_sat.Vec
module Log = Sidekick_sat.Log
open Solver_types
type node = Equiv_class.t
type repr = Equiv_class.t
module N = Equiv_class
type node = N.t
type repr = N.t
type conflict = Theory.conflict
(** A signature is a shallow term shape where immediate subterms
are representative *)
module Signature = struct
type t = node Term.view
include Term_cell.Make_eq(Equiv_class)
include Term_cell.Make_eq(N)
end
module Sig_tbl = CCHashtbl.Make(Signature)
@ -51,6 +53,7 @@ type t = {
have the same signature *)
tasks: task Vec.t;
(* tasks to perform *)
on_backtrack:(unit->unit)->unit;
mutable ps_lits: Lit.Set.t;
(* proof state *)
ps_queue: (node*node) Vec.t;
@ -64,10 +67,7 @@ type t = {
several times.
See "fast congruence closure and extensions", Nieuwenhis&al, page 14 *)
let[@inline] on_backtrack cc f : unit =
let (module A) = cc.acts in
A.on_backtrack f
let[@inline] on_backtrack cc f : unit = cc.on_backtrack f
let[@inline] is_root_ (n:node) : bool = n.n_root == n
let[@inline] size_ (r:repr) =
@ -112,7 +112,7 @@ let[@inline] find st (n:node) : repr =
let[@inline] find_tn cc (t:term) : repr = get_ cc t |> find cc
let[@inline] same_class cc (n1:node)(n2:node): bool =
Equiv_class.equal (find cc n1) (find cc n2)
N.equal (find cc n1) (find cc n2)
(* compute signature *)
let signature cc (t:term): node Term.view option =
@ -120,7 +120,7 @@ let signature cc (t:term): node Term.view option =
begin match Term.view t with
| App_cst (_, a) when IArray.is_empty a -> None
| App_cst (c, _) when not @@ Cst.do_cc c -> None (* no CC *)
| App_cst (f, a) -> App_cst (f, IArray.map find a) |> CCOpt.return (* FIXME: relevance *)
| App_cst (f, a) -> Some (App_cst (f, IArray.map find a)) (* FIXME: relevance? *)
| Bool _ | If _
-> None (* no congruence for these *)
end
@ -146,16 +146,16 @@ let add_signature cc (t:term) (r:node): unit =
end
let push_pending cc t : unit =
if not @@ Equiv_class.get_field Equiv_class.field_is_pending t then (
Log.debugf 5 (fun k->k "(@[<hv1>cc.push_pending@ %a@])" Equiv_class.pp t);
Equiv_class.set_field Equiv_class.field_is_pending true t;
if not @@ N.get_field N.field_is_pending t then (
Log.debugf 5 (fun k->k "(@[<hv1>cc.push_pending@ %a@])" N.pp t);
N.set_field N.field_is_pending true t;
Vec.push cc.tasks (T_pending t)
)
let push_combine cc t u e : unit =
Log.debugf 5
(fun k->k "(@[<hv1>cc.push_combine@ :t1 %a@ :t2 %a@ :expl %a@])"
Equiv_class.pp t Equiv_class.pp u Explanation.pp e);
N.pp t N.pp u Explanation.pp e);
Vec.push cc.tasks @@ T_merge (t,u,e)
(* re-root the explanation tree of the equivalence class of [n]
@ -177,7 +177,7 @@ let raise_conflict (cc:t) (e:conflict): _ =
(* clear tasks queue *)
Vec.iter
(function
| T_pending n -> Equiv_class.set_field Equiv_class.field_is_pending false n
| T_pending n -> N.set_field N.field_is_pending false n
| T_merge _ -> ())
cc.tasks;
Vec.clear cc.tasks;
@ -259,8 +259,8 @@ let explain_loop (cc : t) : Lit.Set.t =
while not (Vec.is_empty cc.ps_queue) do
let a, b = Vec.pop_last cc.ps_queue in
Log.debugf 5
(fun k->k "(@[cc.explain_loop at@ %a@ %a@])" Equiv_class.pp a Equiv_class.pp b);
assert (Equiv_class.equal (find cc a) (find cc b));
(fun k->k "(@[cc.explain_loop at@ %a@ %a@])" N.pp a N.pp b);
assert (N.equal (find cc a) (find cc b));
let c = find_common_ancestor a b in
explain_along_path cc a c;
explain_along_path cc b c;
@ -296,6 +296,17 @@ let add_tag_n cc (n:node) (tag:int) (expl:explanation) : unit =
n.n_tags <- Util.Int_map.add tag (n,expl) n.n_tags;
)
let relevant_subterms (t:Term.t) : Term.t Sequence.t =
fun yield ->
match t.term_view with
| App_cst (c, a) when Cst.do_cc c -> IArray.iter yield a
| Bool _ | App_cst _ -> ()
| If (a,b,c) ->
(* TODO: relevancy? only [a] needs be decided for now *)
yield a;
yield b;
yield c
(* main CC algo: add terms from [pending] to the signature table,
check for collisions *)
let rec update_tasks (cc:t): unit =
@ -303,13 +314,13 @@ let rec update_tasks (cc:t): unit =
might have changed *)
while not (Vec.is_empty cc.tasks) do
let task = Vec.pop_last cc.tasks in
match task with
match task with
| T_pending n -> task_pending_ cc n
| T_merge (t,u,expl) -> task_merge_ cc t u expl
done
and task_pending_ cc n =
Equiv_class.set_field Equiv_class.field_is_pending false n;
N.set_field N.field_is_pending false n;
(* check if some parent collided *)
begin match find_by_signature cc n.n_term with
| None ->
@ -343,7 +354,7 @@ and task_pending_ cc n =
and task_merge_ cc a b e_ab : unit =
let ra = find cc a in
let rb = find cc b in
if not (Equiv_class.equal ra rb) then (
if not (N.equal ra rb) then (
assert (is_root_ ra);
assert (is_root_ rb);
(* We will merge [r_from] into [r_into].
@ -357,8 +368,8 @@ and task_merge_ cc a b e_ab : unit =
Log.debugf 5
(fun k->k "(@[<hv>cc.merge.distinct_conflict@ :tag %d@ \
@[:r1 %a@ :e1 %a@]@ @[:r2 %a@ :e2 %a@]@ :e_ab %a@])"
_i Equiv_class.pp n1 Explanation.pp e1
Equiv_class.pp n2 Explanation.pp e2 Explanation.pp e_ab);
_i N.pp n1 Explanation.pp e1
N.pp n2 Explanation.pp e2 Explanation.pp e_ab);
let lits = explain_unfold cc e1 in
let lits = explain_unfold ~init:lits cc e2 in
let lits = explain_unfold ~init:lits cc e_ab in
@ -373,7 +384,7 @@ and task_merge_ cc a b e_ab : unit =
(fun parent -> push_pending cc parent)
end;
(* perform [union ra rb] *)
Log.debugf 15 (fun k->k "(@[cc.merge@ :from %a@ :into %a@])" Equiv_class.pp r_from Equiv_class.pp r_into);
Log.debugf 15 (fun k->k "(@[cc.merge@ :from %a@ :into %a@])" N.pp r_from N.pp r_into);
begin
let r_into_old_parents = r_into.n_parents in
let r_into_old_tags = r_into.n_tags in
@ -412,7 +423,7 @@ and notify_merge cc (ra:repr) ~into:(rb:repr) (e:explanation): unit =
and add_new_term_ cc (t:term) : node =
assert (not @@ mem cc t);
Log.debugf 15 (fun k->k "(@[cc.add-term@ %a@])" Term.pp t);
let n = Equiv_class.make t in
let n = N.make t in
(* how to add a subterm *)
let add_to_parents_of_sub_node (sub:node) : unit =
let old_parents = sub.n_parents in
@ -426,15 +437,7 @@ and add_new_term_ cc (t:term) : node =
add_to_parents_of_sub_node n_u
in
(* register sub-terms, add [t] to their parent list *)
begin match t.term_view with
| App_cst (c, a) when Cst.do_cc c -> IArray.iter add_sub_t a
| Bool _ | App_cst _ -> ()
| If (a,b,c) ->
(* TODO: relevancy? only [a] needs be decided for now *)
add_sub_t a;
add_sub_t b;
add_sub_t c
end;
relevant_subterms t add_sub_t;
(* remove term when we backtrack *)
on_backtrack cc
(fun () ->
@ -493,7 +496,7 @@ let assert_distinct cc (l:term list) ~neq (lit:Lit.t) : unit =
let l = List.map (fun t -> t, add cc t |> find cc) l in
let coll =
Sequence.diagonal_l l
|> Sequence.find_pred (fun ((_,n1),(_,n2)) -> Equiv_class.equal n1 n2)
|> Sequence.find_pred (fun ((_,n1),(_,n2)) -> N.equal n1 n2)
in
begin match coll with
| Some ((t1,_n1),(t2,_n2)) ->
@ -508,17 +511,19 @@ let assert_distinct cc (l:term list) ~neq (lit:Lit.t) : unit =
end
let create ?(size=2048) ~actions (tst:Term.state) : t =
let nd = Equiv_class.dummy in
let nd = N.dummy in
let (module A : ACTIONS) = actions in
let cc = {
tst;
acts=actions;
tbl = Term.Tbl.create size;
signatures_tbl = Sig_tbl.create size;
tasks=Vec.make_empty (T_pending Equiv_class.dummy);
tasks=Vec.make_empty (T_pending N.dummy);
ps_lits=Lit.Set.empty;
on_backtrack=A.on_backtrack;
ps_queue=Vec.make_empty (nd,nd);
true_ = Equiv_class.dummy;
false_ = Equiv_class.dummy;
true_ = N.dummy;
false_ = N.dummy;
} in
cc.true_ <- add cc (Term.true_ tst);
cc.false_ <- add cc (Term.false_ tst);
@ -531,7 +536,7 @@ let final_check cc : unit =
(* model: map each uninterpreted equiv class to some ID *)
let mk_model (cc:t) (m:Model.t) : Model.t =
(* populate [repr -> value] table *)
let t_tbl = Equiv_class.Tbl.create 32 in
let t_tbl = N.Tbl.create 32 in
(* type -> default value *)
let ty_tbl = Ty.Tbl.create 8 in
Term.Tbl.values cc.tbl
@ -552,7 +557,7 @@ let mk_model (cc:t) (m:Model.t) : Model.t =
if not @@ Ty.Tbl.mem ty_tbl (Term.ty t) then (
Ty.Tbl.add ty_tbl (Term.ty t) v; (* also give a value to this type *)
);
Equiv_class.Tbl.add t_tbl r v
N.Tbl.add t_tbl r v
));
(* now map every uninterpreted term to its representative's value, and
create function tables *)
@ -568,20 +573,20 @@ let mk_model (cc:t) (m:Model.t) : Model.t =
else if Cst.is_undefined c && IArray.length args > 0 then (
(* update signature of [c] *)
let ty = Term.ty t in
let v = Equiv_class.Tbl.find t_tbl r in
let v = N.Tbl.find t_tbl r in
let args =
args
|> IArray.map (fun t -> Equiv_class.Tbl.find t_tbl @@ find_tn cc t)
|> IArray.map (fun t -> N.Tbl.find t_tbl @@ find_tn cc t)
|> IArray.to_list
in
let ty, l = Cst.Map.get_or c funs ~default:(ty,[]) in
m, Cst.Map.add c (ty, (args,v)::l) funs
) else (
let v = Equiv_class.Tbl.find t_tbl r in
let v = N.Tbl.find t_tbl r in
Model.add t v m, funs
)
| _ ->
let v = Equiv_class.Tbl.find t_tbl r in
let v = N.Tbl.find t_tbl r in
Model.add t v m, funs)
(m,Cst.Map.empty)
in
@ -593,7 +598,7 @@ let mk_model (cc:t) (m:Model.t) : Model.t =
(* domain element *)
Ty.Tbl.get_or_add ty_tbl ~k:ty
~f:(fun ty -> Value.mk_elt (ID.makef "ty_%d" @@ Ty.id ty) ty)
| Ty_atomic { def = Ty_def d; args; _} ->
| Ty_atomic { def = Ty_def d; args; _} ->
(* ask the theory for a default value *)
Ty.Tbl.get_or_add ty_tbl ~k:ty
~f:(fun _ty ->
@ -611,12 +616,12 @@ let mk_model (cc:t) (m:Model.t) : Model.t =
let pp_full out (cc:t) : unit =
let pp_n out n =
let pp_next out n =
if n==n.n_root then () else Fmt.fprintf out "@ :next %a" Equiv_class.pp n.n_root in
if n==n.n_root then () else Fmt.fprintf out "@ :next %a" N.pp n.n_root in
let pp_root out n =
let u = find cc n in if n==u||n.n_root==u then () else Fmt.fprintf out "@ :root %a" Equiv_class.pp u in
let u = find cc n in if n==u||n.n_root==u then () else Fmt.fprintf out "@ :root %a" N.pp u in
Fmt.fprintf out "(@[%a%a%a@])" Term.pp n.n_term pp_next n pp_root n
and pp_sig_e out (s,n) =
Fmt.fprintf out "(@[<1>%a@ -> %a@])" Signature.pp s Equiv_class.pp n
Fmt.fprintf out "(@[<1>%a@ -> %a@])" Signature.pp s N.pp n
in
Fmt.fprintf out
"(@[cc.state@ (@[<hv>:nodes@ %a@])@ (@[<hv>:sig@ %a@])@])"
@ -633,7 +638,7 @@ let check_invariants_ (cc:t) =
Term.Tbl.iter
(fun t n ->
assert (Term.equal t n.n_term);
assert (not @@ Equiv_class.get_field Equiv_class.field_is_pending n);
assert (not @@ N.get_field N.field_is_pending n);
relevant_subterms t
(fun u -> assert (Term.Tbl.mem cc.tbl u));
(* check proper signature *)