refactor: functorize(th-bool)

This commit is contained in:
Simon Cruanes 2019-05-27 17:03:05 -05:00
parent c36092d217
commit 28126eaebd
7 changed files with 123 additions and 316 deletions

View file

@ -1,24 +0,0 @@
(** {1 Signatures for booleans} *)
type 'a view =
| B_not of 'a
| B_and of 'a IArray.t
| B_or of 'a IArray.t
| B_imply of 'a IArray.t * 'a
| B_atom of 'a
(** {2 Interface for a representation of boolean terms} *)
module type BOOL_TERM = sig
type t
type state
val equal : t -> t -> bool
val hash : t -> int
val view_as_bool : t -> t view
(** View a term as a boolean formula *)
val make : state -> t view -> t
(** Build a boolean term from a formula view *)
end

View file

@ -1,135 +0,0 @@
module ID = Sidekick_smt.ID
module T = Sidekick_smt.Term
module Ty = Sidekick_smt.Ty
open Sidekick_smt.Solver_types
open Bool_intf
type term = T.t
type t = T.t
type state = T.state
type 'a view = 'a Bool_intf.view
exception Not_a_th_term
let id_and = ID.make "and"
let id_or = ID.make "or"
let id_imply = ID.make "=>"
let equal = T.equal
let hash = T.hash
let view_id cst_id args =
if ID.equal cst_id id_and then (
B_and args
) else if ID.equal cst_id id_or then (
B_or args
) else if ID.equal cst_id id_imply && IArray.length args >= 2 then (
(* conclusion is stored first *)
let len = IArray.length args in
B_imply (IArray.sub args 1 (len-1), IArray.get args 0)
) else (
raise_notrace Not_a_th_term
)
let view_as_bool (t:T.t) : T.t view =
match T.view t with
| Not u -> B_not u
| App_cst ({cst_id; _}, args) ->
(try view_id cst_id args with Not_a_th_term -> B_atom t)
| _ -> B_atom t
module C = struct
let get_ty _ _ = Ty.prop
let abs ~self _a =
match T.view self with
| Not u -> u, false
| _ -> self, true
let eval id args =
let module Value = Sidekick_smt.Value in
match view_id id args with
| B_not (V_bool b) -> Value.bool (not b)
| B_and a when IArray.for_all Value.is_true a -> Value.true_
| B_and a when IArray.exists Value.is_false a -> Value.false_
| B_or a when IArray.exists Value.is_true a -> Value.true_
| B_or a when IArray.for_all Value.is_false a -> Value.false_
| B_imply (_, V_bool true) -> Value.true_
| B_imply (a,_) when IArray.exists Value.is_false a -> Value.true_
| B_imply (a,b) when IArray.for_all Value.is_bool a && Value.is_bool b -> Value.false_
| B_atom v -> v
| B_not _ | B_and _ | B_or _ | B_imply _
-> Error.errorf "non boolean value in boolean connective"
(* no congruence closure for boolean terms *)
let relevant _id _ _ = false
let mk_cst ?(do_cc=false) id : cst =
{cst_id=id;
cst_view=Cst_def {
pp=None; abs; ty=get_ty; relevant; do_cc; eval=eval id; }; }
let not = T.not_
let and_ = mk_cst id_and
let or_ = mk_cst id_or
let imply = mk_cst id_imply
end
let as_id id (t:T.t) : T.t IArray.t option =
match T.view t with
| App_cst ({cst_id; _}, args) when ID.equal id cst_id -> Some args
| _ -> None
(* flatten terms of the given ID *)
let flatten_id op sign (l:T.t list) : T.t list =
CCList.flat_map
(fun t -> match as_id op t with
| Some args -> IArray.to_list args
| None when (sign && T.is_true t) || (not sign && T.is_false t) ->
[] (* idempotent *)
| None -> [t])
l
let and_l st l =
match flatten_id id_and true l with
| [] -> T.true_ st
| l when List.exists T.is_false l -> T.false_ st
| [x] -> x
| args -> T.app_cst st C.and_ (IArray.of_list args)
let or_l st l =
match flatten_id id_or false l with
| [] -> T.false_ st
| l when List.exists T.is_true l -> T.true_ st
| [x] -> x
| args -> T.app_cst st C.or_ (IArray.of_list args)
let and_ st a b = and_l st [a;b]
let or_ st a b = or_l st [a;b]
let and_a st a = and_l st (IArray.to_list a)
let or_a st a = or_l st (IArray.to_list a)
let eq = T.eq
let not_ = T.not_
let neq st a b = not_ st @@ eq st a b
let imply_a st xs y =
if IArray.is_empty xs then y
else T.app_cst st C.imply (IArray.append (IArray.singleton y) xs)
let imply_l st xs y = match xs with
| [] -> y
| _ -> T.app_cst st C.imply (IArray.of_list @@ y :: xs)
let imply st a b = imply_a st (IArray.singleton a) b
let make st = function
| B_atom t -> t
| B_and l -> and_a st l
| B_or l -> or_a st l
| B_imply (a,b) -> imply_a st a b
| B_not t -> not_ st t

View file

@ -1,21 +0,0 @@
type 'a view = 'a Bool_intf.view
type term = Sidekick_smt.Term.t
include Bool_intf.BOOL_TERM
with type t = term
and type state = Sidekick_smt.Term.state
val and_ : state -> term -> term -> term
val or_ : state -> term -> term -> term
val not_ : state -> term -> term
val imply : state -> term -> term -> term
val imply_a : state -> term IArray.t -> term -> term
val imply_l : state -> term list -> term -> term
val eq : state -> term -> term -> term
val neq : state -> term -> term -> term
val and_a : state -> term IArray.t -> term
val and_l : state -> term list -> term
val or_a : state -> term IArray.t -> term
val or_l : state -> term list -> term

View file

@ -1,22 +1,129 @@
(** {1 Theory of Booleans} *)
type term = Sidekick_smt.Term.t
(** {2 Signatures for booleans} *)
module View = struct
type 'a t =
| B_not of 'a
| B_and of 'a IArray.t
| B_or of 'a IArray.t
| B_imply of 'a IArray.t * 'a
| B_atom of 'a
end
module Intf = Bool_intf
module Bool_term = Bool_term
module Th_dyn_tseitin = Th_dyn_tseitin
module type ARG = sig
module S : Sidekick_core.SOLVER
type 'a view = 'a Intf.view =
| B_not of 'a
| B_and of 'a IArray.t
| B_or of 'a IArray.t
| B_imply of 'a IArray.t * 'a
| B_atom of 'a
type term = S.A.Term.t
module type BOOL_TERM = Intf.BOOL_TERM
val view_as_bool : term -> term View.t
val mk_bool : S.A.Term.state -> term View.t -> term
end
(** Dynamic Tseitin transformation *)
let th_dynamic_tseitin =
let module Th = Th_dyn_tseitin.Make(Bool_term) in
Th.th
module type S = sig
module A : ARG
val theory : A.S.theory
end
(** Theory with dynamic reduction to clauses *)
module Make_dyn_tseitin(A : ARG)
(* : S with module A = A *)
= struct
(* TODO (long term): relevancy propagation *)
(* TODO: Tseitin on the fly when a composite boolean term is asserted.
--> maybe, cache the clause inside the literal *)
module A = A
module Solver = A.S.Internal
module T = Solver.A.Term
module Lit = Solver.A.Lit
type term = T.t
module T_tbl = CCHashtbl.Make(T)
type t = {
expanded: unit T_tbl.t; (* set of literals already expanded *)
}
let tseitin ~final (self:t) (solver:Solver.t) (lit:Lit.t) (lit_t:term) (v:term View.t) : unit =
Log.debugf 5 (fun k->k "(@[th_bool.tseitin@ %a@])" Lit.pp lit);
let expanded () = T_tbl.mem self.expanded lit_t in
let add_axiom c =
T_tbl.replace self.expanded lit_t ();
Solver.add_persistent_axiom solver c
in
match v with
| B_not _ -> assert false (* normalized *)
| B_atom _ -> () (* CC will manage *)
| B_and subs ->
if Lit.sign lit then (
(* propagate [lit => subs_i] *)
IArray.iter
(fun sub ->
let sublit = Solver.mk_lit solver sub in
Solver.propagate_l solver sublit [lit])
subs
) else if final && not @@ expanded () then (
(* axiom [¬lit => _i ¬ subs_i] *)
let subs = IArray.to_list subs in
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:false) subs in
add_axiom c
)
| B_or subs ->
if not @@ Lit.sign lit then (
(* propagate [¬lit => ¬subs_i] *)
IArray.iter
(fun sub ->
let sublit = Solver.mk_lit solver ~sign:false sub in
Solver.add_local_axiom solver [Lit.neg lit; sublit])
subs
) else if final && not @@ expanded () then (
(* axiom [lit => _i subs_i] *)
let subs = IArray.to_list subs in
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:true) subs in
add_axiom c
)
| B_imply (guard,concl) ->
if Lit.sign lit && final && not @@ expanded () then (
(* axiom [lit => _i ¬guard_i concl] *)
let guard = IArray.to_list guard in
let c =
Solver.mk_lit solver concl :: Lit.neg lit ::
List.map (Solver.mk_lit solver ~sign:false) guard in
add_axiom c
) else if not @@ Lit.sign lit then (
(* propagate [¬lit => ¬concl] *)
Solver.propagate_l solver (Solver.mk_lit solver ~sign:false concl) [lit];
(* propagate [¬lit => ∧_i guard_i] *)
IArray.iter
(fun sub ->
let sublit = Solver.mk_lit solver ~sign:true sub in
Solver.propagate_l solver sublit [lit])
guard
)
let check_ ~final self solver lits =
lits
(fun lit ->
let t = Lit.term lit in
match A.view_as_bool t with
| B_atom _ -> ()
| v -> tseitin ~final self solver lit t v)
let partial_check (self:t) acts (lits:Lit.t Iter.t) =
check_ ~final:false self acts lits
let final_check (self:t) acts (lits:Lit.t Iter.t) =
check_ ~final:true self acts lits
let create_and_setup (solver:Solver.t) : t =
let self = {expanded=T_tbl.create 24} in
Solver.on_final_check solver (final_check self);
Solver.on_partial_check solver (partial_check self);
self
let theory =
A.S.mk_theory ~name:"boolean" ~create_and_setup ()
end

View file

@ -1,104 +0,0 @@
(* TODO (long term): relevancy propagation *)
(* TODO: Tseitin on the fly when a composite boolean term is asserted.
--> maybe, cache the clause inside the literal *)
module Theory = Sidekick_smt.Theory
open Bool_intf
module type ARG = Bool_intf.BOOL_TERM
with type t = Sidekick_smt.Term.t
and type state = Sidekick_smt.Term.state
module Make(Term : ARG) = struct
type term = Term.t
module T_tbl = CCHashtbl.Make(Term)
module Lit = Sidekick_smt.Lit
type t = {
tst: Term.state;
expanded: unit T_tbl.t; (* set of literals already expanded *)
}
let tseitin ~final (self:t) (acts:Theory.actions) (lit:Lit.t) (lit_t:term) (v:term view) : unit =
let (module A) = acts in
Log.debugf 5 (fun k->k "(@[th_bool.tseitin@ %a@])" Lit.pp lit);
let expanded () = T_tbl.mem self.expanded lit_t in
let add_axiom c =
T_tbl.replace self.expanded lit_t ();
A.add_persistent_axiom c
in
match v with
| B_not _ -> assert false (* normalized *)
| B_atom _ -> () (* CC will manage *)
| B_and subs ->
if Lit.sign lit then (
(* propagate [lit => subs_i] *)
IArray.iter
(fun sub ->
let sublit = Lit.atom self.tst sub in
A.propagate_l sublit [lit])
subs
) else if final && not @@ expanded () then (
(* axiom [¬lit => _i ¬ subs_i] *)
let subs = IArray.to_list subs in
let c = Lit.neg lit :: List.map (Lit.atom self.tst ~sign:false) subs in
add_axiom c
)
| B_or subs ->
if not @@ Lit.sign lit then (
(* propagate [¬lit => ¬subs_i] *)
IArray.iter
(fun sub ->
let sublit = Lit.atom self.tst ~sign:false sub in
A.add_local_axiom [Lit.neg lit; sublit])
subs
) else if final && not @@ expanded () then (
(* axiom [lit => _i subs_i] *)
let subs = IArray.to_list subs in
let c = Lit.neg lit :: List.map (Lit.atom self.tst ~sign:true) subs in
add_axiom c
)
| B_imply (guard,concl) ->
if Lit.sign lit && final && not @@ expanded () then (
(* axiom [lit => _i ¬guard_i concl] *)
let guard = IArray.to_list guard in
let c = Lit.atom self.tst concl :: Lit.neg lit :: List.map (Lit.atom self.tst ~sign:false) guard in
add_axiom c
) else if not @@ Lit.sign lit then (
(* propagate [¬lit => ¬concl] *)
A.propagate_l (Lit.atom self.tst ~sign:false concl) [lit];
(* propagate [¬lit => ∧_i guard_i] *)
IArray.iter
(fun sub ->
let sublit = Lit.atom self.tst ~sign:true sub in
A.propagate_l sublit [lit])
guard
)
let check_ ~final self acts lits =
lits
(fun lit ->
let t = Lit.term lit in
match Term.view_as_bool t with
| B_atom _ -> ()
| v -> tseitin ~final self acts lit t v)
let partial_check (self:t) acts (lits:Lit.t Iter.t) =
check_ ~final:false self acts lits
let final_check (self:t) acts (lits:Lit.t Iter.t) =
check_ ~final:true self acts lits
let th =
Theory.make
~partial_check
~final_check
~name:"boolean"
~create:(fun tst -> {tst; expanded=T_tbl.create 24})
?mk_model:None (* entirely interpreted *)
()
end

View file

@ -1,16 +0,0 @@
(** {1 Dynamic Tseitin conversion}
This theory performs the conversion of boolean terms into clauses, on
the fly, during the proof search. It is a true CDCL(T)-style theory.
*)
module type ARG = Bool_intf.BOOL_TERM
with type t = Sidekick_smt.Term.t
and type state = Sidekick_smt.Term.state
module Make(Term : ARG) : sig
type term = Term.t
val th : Sidekick_smt.Theory.t
end

View file

@ -1,6 +1,6 @@
(library
(name Sidekick_th_bool)
(public_name sidekick.smt.th-bool)
(public_name sidekick.th-bool)
(libraries containers sidekick.core sidekick.util)
(flags :standard -open Sidekick_util))