mirror of
https://github.com/c-cube/sidekick.git
synced 2026-01-25 10:56:41 -05:00
refactor: functorize(th-bool)
This commit is contained in:
parent
c36092d217
commit
28126eaebd
7 changed files with 123 additions and 316 deletions
|
|
@ -1,24 +0,0 @@
|
||||||
|
|
||||||
(** {1 Signatures for booleans} *)
|
|
||||||
|
|
||||||
type 'a view =
|
|
||||||
| B_not of 'a
|
|
||||||
| B_and of 'a IArray.t
|
|
||||||
| B_or of 'a IArray.t
|
|
||||||
| B_imply of 'a IArray.t * 'a
|
|
||||||
| B_atom of 'a
|
|
||||||
|
|
||||||
(** {2 Interface for a representation of boolean terms} *)
|
|
||||||
module type BOOL_TERM = sig
|
|
||||||
type t
|
|
||||||
type state
|
|
||||||
|
|
||||||
val equal : t -> t -> bool
|
|
||||||
val hash : t -> int
|
|
||||||
|
|
||||||
val view_as_bool : t -> t view
|
|
||||||
(** View a term as a boolean formula *)
|
|
||||||
|
|
||||||
val make : state -> t view -> t
|
|
||||||
(** Build a boolean term from a formula view *)
|
|
||||||
end
|
|
||||||
|
|
@ -1,135 +0,0 @@
|
||||||
|
|
||||||
module ID = Sidekick_smt.ID
|
|
||||||
module T = Sidekick_smt.Term
|
|
||||||
module Ty = Sidekick_smt.Ty
|
|
||||||
open Sidekick_smt.Solver_types
|
|
||||||
|
|
||||||
open Bool_intf
|
|
||||||
|
|
||||||
type term = T.t
|
|
||||||
type t = T.t
|
|
||||||
type state = T.state
|
|
||||||
|
|
||||||
type 'a view = 'a Bool_intf.view
|
|
||||||
|
|
||||||
exception Not_a_th_term
|
|
||||||
|
|
||||||
let id_and = ID.make "and"
|
|
||||||
let id_or = ID.make "or"
|
|
||||||
let id_imply = ID.make "=>"
|
|
||||||
|
|
||||||
let equal = T.equal
|
|
||||||
let hash = T.hash
|
|
||||||
|
|
||||||
let view_id cst_id args =
|
|
||||||
if ID.equal cst_id id_and then (
|
|
||||||
B_and args
|
|
||||||
) else if ID.equal cst_id id_or then (
|
|
||||||
B_or args
|
|
||||||
) else if ID.equal cst_id id_imply && IArray.length args >= 2 then (
|
|
||||||
(* conclusion is stored first *)
|
|
||||||
let len = IArray.length args in
|
|
||||||
B_imply (IArray.sub args 1 (len-1), IArray.get args 0)
|
|
||||||
) else (
|
|
||||||
raise_notrace Not_a_th_term
|
|
||||||
)
|
|
||||||
|
|
||||||
let view_as_bool (t:T.t) : T.t view =
|
|
||||||
match T.view t with
|
|
||||||
| Not u -> B_not u
|
|
||||||
| App_cst ({cst_id; _}, args) ->
|
|
||||||
(try view_id cst_id args with Not_a_th_term -> B_atom t)
|
|
||||||
| _ -> B_atom t
|
|
||||||
|
|
||||||
module C = struct
|
|
||||||
|
|
||||||
let get_ty _ _ = Ty.prop
|
|
||||||
|
|
||||||
let abs ~self _a =
|
|
||||||
match T.view self with
|
|
||||||
| Not u -> u, false
|
|
||||||
| _ -> self, true
|
|
||||||
|
|
||||||
let eval id args =
|
|
||||||
let module Value = Sidekick_smt.Value in
|
|
||||||
match view_id id args with
|
|
||||||
| B_not (V_bool b) -> Value.bool (not b)
|
|
||||||
| B_and a when IArray.for_all Value.is_true a -> Value.true_
|
|
||||||
| B_and a when IArray.exists Value.is_false a -> Value.false_
|
|
||||||
| B_or a when IArray.exists Value.is_true a -> Value.true_
|
|
||||||
| B_or a when IArray.for_all Value.is_false a -> Value.false_
|
|
||||||
| B_imply (_, V_bool true) -> Value.true_
|
|
||||||
| B_imply (a,_) when IArray.exists Value.is_false a -> Value.true_
|
|
||||||
| B_imply (a,b) when IArray.for_all Value.is_bool a && Value.is_bool b -> Value.false_
|
|
||||||
| B_atom v -> v
|
|
||||||
| B_not _ | B_and _ | B_or _ | B_imply _
|
|
||||||
-> Error.errorf "non boolean value in boolean connective"
|
|
||||||
|
|
||||||
(* no congruence closure for boolean terms *)
|
|
||||||
let relevant _id _ _ = false
|
|
||||||
|
|
||||||
let mk_cst ?(do_cc=false) id : cst =
|
|
||||||
{cst_id=id;
|
|
||||||
cst_view=Cst_def {
|
|
||||||
pp=None; abs; ty=get_ty; relevant; do_cc; eval=eval id; }; }
|
|
||||||
|
|
||||||
let not = T.not_
|
|
||||||
let and_ = mk_cst id_and
|
|
||||||
let or_ = mk_cst id_or
|
|
||||||
let imply = mk_cst id_imply
|
|
||||||
end
|
|
||||||
|
|
||||||
let as_id id (t:T.t) : T.t IArray.t option =
|
|
||||||
match T.view t with
|
|
||||||
| App_cst ({cst_id; _}, args) when ID.equal id cst_id -> Some args
|
|
||||||
| _ -> None
|
|
||||||
|
|
||||||
(* flatten terms of the given ID *)
|
|
||||||
let flatten_id op sign (l:T.t list) : T.t list =
|
|
||||||
CCList.flat_map
|
|
||||||
(fun t -> match as_id op t with
|
|
||||||
| Some args -> IArray.to_list args
|
|
||||||
| None when (sign && T.is_true t) || (not sign && T.is_false t) ->
|
|
||||||
[] (* idempotent *)
|
|
||||||
| None -> [t])
|
|
||||||
l
|
|
||||||
|
|
||||||
let and_l st l =
|
|
||||||
match flatten_id id_and true l with
|
|
||||||
| [] -> T.true_ st
|
|
||||||
| l when List.exists T.is_false l -> T.false_ st
|
|
||||||
| [x] -> x
|
|
||||||
| args -> T.app_cst st C.and_ (IArray.of_list args)
|
|
||||||
|
|
||||||
let or_l st l =
|
|
||||||
match flatten_id id_or false l with
|
|
||||||
| [] -> T.false_ st
|
|
||||||
| l when List.exists T.is_true l -> T.true_ st
|
|
||||||
| [x] -> x
|
|
||||||
| args -> T.app_cst st C.or_ (IArray.of_list args)
|
|
||||||
|
|
||||||
let and_ st a b = and_l st [a;b]
|
|
||||||
let or_ st a b = or_l st [a;b]
|
|
||||||
let and_a st a = and_l st (IArray.to_list a)
|
|
||||||
let or_a st a = or_l st (IArray.to_list a)
|
|
||||||
let eq = T.eq
|
|
||||||
let not_ = T.not_
|
|
||||||
|
|
||||||
let neq st a b = not_ st @@ eq st a b
|
|
||||||
|
|
||||||
let imply_a st xs y =
|
|
||||||
if IArray.is_empty xs then y
|
|
||||||
else T.app_cst st C.imply (IArray.append (IArray.singleton y) xs)
|
|
||||||
|
|
||||||
let imply_l st xs y = match xs with
|
|
||||||
| [] -> y
|
|
||||||
| _ -> T.app_cst st C.imply (IArray.of_list @@ y :: xs)
|
|
||||||
|
|
||||||
let imply st a b = imply_a st (IArray.singleton a) b
|
|
||||||
|
|
||||||
let make st = function
|
|
||||||
| B_atom t -> t
|
|
||||||
| B_and l -> and_a st l
|
|
||||||
| B_or l -> or_a st l
|
|
||||||
| B_imply (a,b) -> imply_a st a b
|
|
||||||
| B_not t -> not_ st t
|
|
||||||
|
|
@ -1,21 +0,0 @@
|
||||||
|
|
||||||
type 'a view = 'a Bool_intf.view
|
|
||||||
|
|
||||||
type term = Sidekick_smt.Term.t
|
|
||||||
|
|
||||||
include Bool_intf.BOOL_TERM
|
|
||||||
with type t = term
|
|
||||||
and type state = Sidekick_smt.Term.state
|
|
||||||
|
|
||||||
val and_ : state -> term -> term -> term
|
|
||||||
val or_ : state -> term -> term -> term
|
|
||||||
val not_ : state -> term -> term
|
|
||||||
val imply : state -> term -> term -> term
|
|
||||||
val imply_a : state -> term IArray.t -> term -> term
|
|
||||||
val imply_l : state -> term list -> term -> term
|
|
||||||
val eq : state -> term -> term -> term
|
|
||||||
val neq : state -> term -> term -> term
|
|
||||||
val and_a : state -> term IArray.t -> term
|
|
||||||
val and_l : state -> term list -> term
|
|
||||||
val or_a : state -> term IArray.t -> term
|
|
||||||
val or_l : state -> term list -> term
|
|
||||||
|
|
@ -1,22 +1,129 @@
|
||||||
|
|
||||||
(** {1 Theory of Booleans} *)
|
(** {1 Theory of Booleans} *)
|
||||||
|
|
||||||
type term = Sidekick_smt.Term.t
|
(** {2 Signatures for booleans} *)
|
||||||
|
module View = struct
|
||||||
|
type 'a t =
|
||||||
|
| B_not of 'a
|
||||||
|
| B_and of 'a IArray.t
|
||||||
|
| B_or of 'a IArray.t
|
||||||
|
| B_imply of 'a IArray.t * 'a
|
||||||
|
| B_atom of 'a
|
||||||
|
end
|
||||||
|
|
||||||
module Intf = Bool_intf
|
module type ARG = sig
|
||||||
module Bool_term = Bool_term
|
module S : Sidekick_core.SOLVER
|
||||||
module Th_dyn_tseitin = Th_dyn_tseitin
|
|
||||||
|
|
||||||
type 'a view = 'a Intf.view =
|
type term = S.A.Term.t
|
||||||
| B_not of 'a
|
|
||||||
| B_and of 'a IArray.t
|
|
||||||
| B_or of 'a IArray.t
|
|
||||||
| B_imply of 'a IArray.t * 'a
|
|
||||||
| B_atom of 'a
|
|
||||||
|
|
||||||
module type BOOL_TERM = Intf.BOOL_TERM
|
val view_as_bool : term -> term View.t
|
||||||
|
val mk_bool : S.A.Term.state -> term View.t -> term
|
||||||
|
end
|
||||||
|
|
||||||
(** Dynamic Tseitin transformation *)
|
module type S = sig
|
||||||
let th_dynamic_tseitin =
|
module A : ARG
|
||||||
let module Th = Th_dyn_tseitin.Make(Bool_term) in
|
val theory : A.S.theory
|
||||||
Th.th
|
end
|
||||||
|
|
||||||
|
(** Theory with dynamic reduction to clauses *)
|
||||||
|
module Make_dyn_tseitin(A : ARG)
|
||||||
|
(* : S with module A = A *)
|
||||||
|
= struct
|
||||||
|
(* TODO (long term): relevancy propagation *)
|
||||||
|
|
||||||
|
(* TODO: Tseitin on the fly when a composite boolean term is asserted.
|
||||||
|
--> maybe, cache the clause inside the literal *)
|
||||||
|
|
||||||
|
module A = A
|
||||||
|
module Solver = A.S.Internal
|
||||||
|
module T = Solver.A.Term
|
||||||
|
module Lit = Solver.A.Lit
|
||||||
|
|
||||||
|
type term = T.t
|
||||||
|
|
||||||
|
module T_tbl = CCHashtbl.Make(T)
|
||||||
|
|
||||||
|
type t = {
|
||||||
|
expanded: unit T_tbl.t; (* set of literals already expanded *)
|
||||||
|
}
|
||||||
|
|
||||||
|
let tseitin ~final (self:t) (solver:Solver.t) (lit:Lit.t) (lit_t:term) (v:term View.t) : unit =
|
||||||
|
Log.debugf 5 (fun k->k "(@[th_bool.tseitin@ %a@])" Lit.pp lit);
|
||||||
|
let expanded () = T_tbl.mem self.expanded lit_t in
|
||||||
|
let add_axiom c =
|
||||||
|
T_tbl.replace self.expanded lit_t ();
|
||||||
|
Solver.add_persistent_axiom solver c
|
||||||
|
in
|
||||||
|
match v with
|
||||||
|
| B_not _ -> assert false (* normalized *)
|
||||||
|
| B_atom _ -> () (* CC will manage *)
|
||||||
|
| B_and subs ->
|
||||||
|
if Lit.sign lit then (
|
||||||
|
(* propagate [lit => subs_i] *)
|
||||||
|
IArray.iter
|
||||||
|
(fun sub ->
|
||||||
|
let sublit = Solver.mk_lit solver sub in
|
||||||
|
Solver.propagate_l solver sublit [lit])
|
||||||
|
subs
|
||||||
|
) else if final && not @@ expanded () then (
|
||||||
|
(* axiom [¬lit => ∨_i ¬ subs_i] *)
|
||||||
|
let subs = IArray.to_list subs in
|
||||||
|
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:false) subs in
|
||||||
|
add_axiom c
|
||||||
|
)
|
||||||
|
| B_or subs ->
|
||||||
|
if not @@ Lit.sign lit then (
|
||||||
|
(* propagate [¬lit => ¬subs_i] *)
|
||||||
|
IArray.iter
|
||||||
|
(fun sub ->
|
||||||
|
let sublit = Solver.mk_lit solver ~sign:false sub in
|
||||||
|
Solver.add_local_axiom solver [Lit.neg lit; sublit])
|
||||||
|
subs
|
||||||
|
) else if final && not @@ expanded () then (
|
||||||
|
(* axiom [lit => ∨_i subs_i] *)
|
||||||
|
let subs = IArray.to_list subs in
|
||||||
|
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:true) subs in
|
||||||
|
add_axiom c
|
||||||
|
)
|
||||||
|
| B_imply (guard,concl) ->
|
||||||
|
if Lit.sign lit && final && not @@ expanded () then (
|
||||||
|
(* axiom [lit => ∨_i ¬guard_i ∨ concl] *)
|
||||||
|
let guard = IArray.to_list guard in
|
||||||
|
let c =
|
||||||
|
Solver.mk_lit solver concl :: Lit.neg lit ::
|
||||||
|
List.map (Solver.mk_lit solver ~sign:false) guard in
|
||||||
|
add_axiom c
|
||||||
|
) else if not @@ Lit.sign lit then (
|
||||||
|
(* propagate [¬lit => ¬concl] *)
|
||||||
|
Solver.propagate_l solver (Solver.mk_lit solver ~sign:false concl) [lit];
|
||||||
|
(* propagate [¬lit => ∧_i guard_i] *)
|
||||||
|
IArray.iter
|
||||||
|
(fun sub ->
|
||||||
|
let sublit = Solver.mk_lit solver ~sign:true sub in
|
||||||
|
Solver.propagate_l solver sublit [lit])
|
||||||
|
guard
|
||||||
|
)
|
||||||
|
|
||||||
|
let check_ ~final self solver lits =
|
||||||
|
lits
|
||||||
|
(fun lit ->
|
||||||
|
let t = Lit.term lit in
|
||||||
|
match A.view_as_bool t with
|
||||||
|
| B_atom _ -> ()
|
||||||
|
| v -> tseitin ~final self solver lit t v)
|
||||||
|
|
||||||
|
let partial_check (self:t) acts (lits:Lit.t Iter.t) =
|
||||||
|
check_ ~final:false self acts lits
|
||||||
|
|
||||||
|
let final_check (self:t) acts (lits:Lit.t Iter.t) =
|
||||||
|
check_ ~final:true self acts lits
|
||||||
|
|
||||||
|
let create_and_setup (solver:Solver.t) : t =
|
||||||
|
let self = {expanded=T_tbl.create 24} in
|
||||||
|
Solver.on_final_check solver (final_check self);
|
||||||
|
Solver.on_partial_check solver (partial_check self);
|
||||||
|
self
|
||||||
|
|
||||||
|
let theory =
|
||||||
|
A.S.mk_theory ~name:"boolean" ~create_and_setup ()
|
||||||
|
end
|
||||||
|
|
|
||||||
|
|
@ -1,104 +0,0 @@
|
||||||
|
|
||||||
(* TODO (long term): relevancy propagation *)
|
|
||||||
|
|
||||||
(* TODO: Tseitin on the fly when a composite boolean term is asserted.
|
|
||||||
--> maybe, cache the clause inside the literal *)
|
|
||||||
|
|
||||||
module Theory = Sidekick_smt.Theory
|
|
||||||
open Bool_intf
|
|
||||||
|
|
||||||
module type ARG = Bool_intf.BOOL_TERM
|
|
||||||
with type t = Sidekick_smt.Term.t
|
|
||||||
and type state = Sidekick_smt.Term.state
|
|
||||||
|
|
||||||
module Make(Term : ARG) = struct
|
|
||||||
type term = Term.t
|
|
||||||
|
|
||||||
module T_tbl = CCHashtbl.Make(Term)
|
|
||||||
module Lit = Sidekick_smt.Lit
|
|
||||||
|
|
||||||
type t = {
|
|
||||||
tst: Term.state;
|
|
||||||
expanded: unit T_tbl.t; (* set of literals already expanded *)
|
|
||||||
}
|
|
||||||
|
|
||||||
let tseitin ~final (self:t) (acts:Theory.actions) (lit:Lit.t) (lit_t:term) (v:term view) : unit =
|
|
||||||
let (module A) = acts in
|
|
||||||
Log.debugf 5 (fun k->k "(@[th_bool.tseitin@ %a@])" Lit.pp lit);
|
|
||||||
let expanded () = T_tbl.mem self.expanded lit_t in
|
|
||||||
let add_axiom c =
|
|
||||||
T_tbl.replace self.expanded lit_t ();
|
|
||||||
A.add_persistent_axiom c
|
|
||||||
in
|
|
||||||
match v with
|
|
||||||
| B_not _ -> assert false (* normalized *)
|
|
||||||
| B_atom _ -> () (* CC will manage *)
|
|
||||||
| B_and subs ->
|
|
||||||
if Lit.sign lit then (
|
|
||||||
(* propagate [lit => subs_i] *)
|
|
||||||
IArray.iter
|
|
||||||
(fun sub ->
|
|
||||||
let sublit = Lit.atom self.tst sub in
|
|
||||||
A.propagate_l sublit [lit])
|
|
||||||
subs
|
|
||||||
) else if final && not @@ expanded () then (
|
|
||||||
(* axiom [¬lit => ∨_i ¬ subs_i] *)
|
|
||||||
let subs = IArray.to_list subs in
|
|
||||||
let c = Lit.neg lit :: List.map (Lit.atom self.tst ~sign:false) subs in
|
|
||||||
add_axiom c
|
|
||||||
)
|
|
||||||
| B_or subs ->
|
|
||||||
if not @@ Lit.sign lit then (
|
|
||||||
(* propagate [¬lit => ¬subs_i] *)
|
|
||||||
IArray.iter
|
|
||||||
(fun sub ->
|
|
||||||
let sublit = Lit.atom self.tst ~sign:false sub in
|
|
||||||
A.add_local_axiom [Lit.neg lit; sublit])
|
|
||||||
subs
|
|
||||||
) else if final && not @@ expanded () then (
|
|
||||||
(* axiom [lit => ∨_i subs_i] *)
|
|
||||||
let subs = IArray.to_list subs in
|
|
||||||
let c = Lit.neg lit :: List.map (Lit.atom self.tst ~sign:true) subs in
|
|
||||||
add_axiom c
|
|
||||||
)
|
|
||||||
| B_imply (guard,concl) ->
|
|
||||||
if Lit.sign lit && final && not @@ expanded () then (
|
|
||||||
(* axiom [lit => ∨_i ¬guard_i ∨ concl] *)
|
|
||||||
let guard = IArray.to_list guard in
|
|
||||||
let c = Lit.atom self.tst concl :: Lit.neg lit :: List.map (Lit.atom self.tst ~sign:false) guard in
|
|
||||||
add_axiom c
|
|
||||||
) else if not @@ Lit.sign lit then (
|
|
||||||
(* propagate [¬lit => ¬concl] *)
|
|
||||||
A.propagate_l (Lit.atom self.tst ~sign:false concl) [lit];
|
|
||||||
(* propagate [¬lit => ∧_i guard_i] *)
|
|
||||||
IArray.iter
|
|
||||||
(fun sub ->
|
|
||||||
let sublit = Lit.atom self.tst ~sign:true sub in
|
|
||||||
A.propagate_l sublit [lit])
|
|
||||||
guard
|
|
||||||
)
|
|
||||||
|
|
||||||
let check_ ~final self acts lits =
|
|
||||||
lits
|
|
||||||
(fun lit ->
|
|
||||||
let t = Lit.term lit in
|
|
||||||
match Term.view_as_bool t with
|
|
||||||
| B_atom _ -> ()
|
|
||||||
| v -> tseitin ~final self acts lit t v)
|
|
||||||
|
|
||||||
let partial_check (self:t) acts (lits:Lit.t Iter.t) =
|
|
||||||
check_ ~final:false self acts lits
|
|
||||||
|
|
||||||
let final_check (self:t) acts (lits:Lit.t Iter.t) =
|
|
||||||
check_ ~final:true self acts lits
|
|
||||||
|
|
||||||
let th =
|
|
||||||
Theory.make
|
|
||||||
~partial_check
|
|
||||||
~final_check
|
|
||||||
~name:"boolean"
|
|
||||||
~create:(fun tst -> {tst; expanded=T_tbl.create 24})
|
|
||||||
?mk_model:None (* entirely interpreted *)
|
|
||||||
()
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
@ -1,16 +0,0 @@
|
||||||
|
|
||||||
(** {1 Dynamic Tseitin conversion}
|
|
||||||
|
|
||||||
This theory performs the conversion of boolean terms into clauses, on
|
|
||||||
the fly, during the proof search. It is a true CDCL(T)-style theory.
|
|
||||||
*)
|
|
||||||
|
|
||||||
module type ARG = Bool_intf.BOOL_TERM
|
|
||||||
with type t = Sidekick_smt.Term.t
|
|
||||||
and type state = Sidekick_smt.Term.state
|
|
||||||
|
|
||||||
module Make(Term : ARG) : sig
|
|
||||||
type term = Term.t
|
|
||||||
|
|
||||||
val th : Sidekick_smt.Theory.t
|
|
||||||
end
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
(library
|
(library
|
||||||
(name Sidekick_th_bool)
|
(name Sidekick_th_bool)
|
||||||
(public_name sidekick.smt.th-bool)
|
(public_name sidekick.th-bool)
|
||||||
(libraries containers sidekick.core sidekick.util)
|
(libraries containers sidekick.core sidekick.util)
|
||||||
(flags :standard -open Sidekick_util))
|
(flags :standard -open Sidekick_util))
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue