diff --git a/dev/sidekick-base/Sidekick_base_solver/Th_lra/A/Q/index.html b/dev/sidekick-base/Sidekick_base_solver/Th_lra/A/Q/index.html index 6a8ac36b..0e01653d 100644 --- a/dev/sidekick-base/Sidekick_base_solver/Th_lra/A/Q/index.html +++ b/dev/sidekick-base/Sidekick_base_solver/Th_lra/A/Q/index.html @@ -1,2 +1,2 @@ -
A.Qval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tval hash : t -> intval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitA.Qval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tval hash : t -> intval pp : t CCFormat.printerval infinity : tval minus_infinity : tval is_real : t -> boolval pp_approx : int -> Stdlib.Format.formatter -> t -> unitSidekick_arith.RATIONALinclude NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
Sidekick_arith.RATIONALinclude NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
1-A.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
1-A.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
Make.1-Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
Make.1-Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
S.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
S.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
ARG.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
ARG.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
A.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
A.Qinclude Sidekick_arith.NUMval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
Sidekick_zarith.Rationalinclude Sidekick_arith.NUM with type t = Q.tval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)
Sidekick_zarith.Rationalinclude Sidekick_arith.NUM with type t = Q.tval zero : tval one : tval minus_one : tval sign : t -> intval of_int : int -> tinclude Sidekick_sigs.EQ with type t := tinclude Sidekick_sigs.ORD with type t := tinclude Sidekick_sigs.HASH with type t := tval hash : t -> intinclude Sidekick_sigs.PRINT with type t := tval pp : t CCFormat.printerval infinity : t+infinity
val minus_infinity : tval is_real : t -> boolA proper real, not nan/infinity
val pp_approx : int -> Stdlib.Format.formatter -> t -> unitPretty print rational with given amount of precision (for example as a floating point number)