refactor: renaming `Eq{uiv,}_class

This commit is contained in:
Simon Cruanes 2019-02-08 19:45:20 -06:00
parent 0326c07c16
commit 40186a6c76
7 changed files with 9 additions and 9 deletions

View file

@ -1,7 +1,7 @@
open Solver_types
module N = Equiv_class
module N = Eq_class
type node = N.t
type repr = N.t

View file

@ -5,10 +5,10 @@ open Solver_types
type t
(** Global state of the congruence closure *)
type node = Equiv_class.t
type node = Eq_class.t
(** Node in the congruence closure *)
type repr = Equiv_class.t
type repr = Eq_class.t
(** Node that is currently a representative *)
type conflict = Theory.conflict

View file

@ -9,7 +9,7 @@ module Term = Term
module Value = Value
module Term_cell = Term_cell
module Ty = Ty
module Equiv_class = Equiv_class
module Eq_class = Eq_class
module Lit = Lit
module Explanation = Explanation
module Congruence_closure = Congruence_closure

View file

@ -41,10 +41,10 @@ module type ACTIONS = sig
(** Add toplevel clause to the SAT solver. This clause will
not be backtracked. *)
val find: Term.t -> Equiv_class.t
val find: Term.t -> Eq_class.t
(** Find representative of this term *)
val all_classes: Equiv_class.t Sequence.t
val all_classes: Eq_class.t Sequence.t
(** All current equivalence classes
(caution: linear in the number of terms existing in the solver) *)
end
@ -60,7 +60,7 @@ module type S = sig
val create : Term.state -> t
(** Instantiate the theory's state *)
val on_merge: t -> actions -> Equiv_class.t -> Equiv_class.t -> Explanation.t -> unit
val on_merge: t -> actions -> Eq_class.t -> Eq_class.t -> Explanation.t -> unit
(** Called when two classes are merged *)
val partial_check : t -> actions -> Lit.t Sequence.t -> unit

View file

@ -28,7 +28,7 @@ type t = {
(** congruence closure *)
mutable theories : theory_state list;
(** Set of theories *)
new_merges: (Equiv_class.t * Equiv_class.t * explanation) Vec.t;
new_merges: (Eq_class.t * Eq_class.t * explanation) Vec.t;
}
let[@inline] cc (t:t) = Lazy.force t.cc
@ -86,7 +86,7 @@ let add_formula (self:t) (lit:Lit.t) =
let t = Lit.view lit in
let lazy cc = self.cc in
let n = C_clos.add cc t in
Equiv_class.set_field Equiv_class.field_is_literal true n;
Eq_class.set_field Eq_class.field_is_literal true n;
()
(* propagation from the bool solver *)