mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
Removed module alias for SAT expressions
This commit is contained in:
parent
1d8fa08f92
commit
4159a34c20
9 changed files with 95 additions and 94 deletions
|
|
@ -38,7 +38,6 @@ An instanciation of a pure sat solver is also provided:
|
|||
|
||||
{!modules:
|
||||
Sat
|
||||
Expr_sat
|
||||
}
|
||||
|
||||
Lastly, mSAT also provides an implementation of Tseitin's CNF conversion:
|
||||
|
|
|
|||
|
|
@ -29,5 +29,4 @@ Tseitin
|
|||
|
||||
# Pure Sat solver
|
||||
Sat
|
||||
Expr_sat
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,6 @@ backend/Backend_intf
|
|||
|
||||
# SAT solver frontend
|
||||
sat/Sat
|
||||
sat/Expr_sat
|
||||
#sat/Type_sat
|
||||
|
||||
# SMT solver frontend
|
||||
|
|
|
|||
|
|
@ -1,64 +0,0 @@
|
|||
(*
|
||||
MSAT is free software, using the Apache license, see file LICENSE
|
||||
Copyright 2016 Guillaume Bury
|
||||
Copyright 2016 Simon Cruanes
|
||||
*)
|
||||
|
||||
exception Bad_atom
|
||||
|
||||
type t = int
|
||||
type proof = unit
|
||||
|
||||
let max_lit = max_int
|
||||
let max_fresh = ref (-1)
|
||||
let max_index = ref 0
|
||||
|
||||
let _make i =
|
||||
if i <> 0 && (abs i) < max_lit then begin
|
||||
max_index := max !max_index (abs i);
|
||||
i
|
||||
end else
|
||||
raise Bad_atom
|
||||
|
||||
let dummy = 0
|
||||
|
||||
let neg a = - a
|
||||
|
||||
let norm a =
|
||||
abs a, if a < 0 then
|
||||
Formula_intf.Negated
|
||||
else
|
||||
Formula_intf.Same_sign
|
||||
|
||||
let abs = abs
|
||||
|
||||
let sign i = i > 0
|
||||
|
||||
let apply_sign b i = if b then i else neg i
|
||||
|
||||
let set_sign b i = if b then abs i else neg (abs i)
|
||||
|
||||
let hash (a:int) = a land max_int
|
||||
let equal (a:int) b = a=b
|
||||
let compare (a:int) b = Pervasives.compare a b
|
||||
|
||||
let make i = _make (2 * i)
|
||||
|
||||
let fresh, iter =
|
||||
let create () =
|
||||
incr max_fresh;
|
||||
_make (2 * !max_fresh + 1)
|
||||
in
|
||||
let iter: (t -> unit) -> unit = fun f ->
|
||||
for j = 1 to !max_index do
|
||||
f j
|
||||
done
|
||||
in
|
||||
create, iter
|
||||
|
||||
let print fmt a =
|
||||
Format.fprintf fmt "%s%s%d"
|
||||
(if a < 0 then "~" else "")
|
||||
(if a mod 2 = 0 then "v" else "f")
|
||||
((abs a) / 2)
|
||||
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
(*
|
||||
MSAT is free software, using the Apache license, see file LICENSE
|
||||
Copyright 2016 Guillaume Bury
|
||||
Copyright 2016 Simon Cruanes
|
||||
*)
|
||||
|
||||
(** SAT Formulas
|
||||
|
||||
This modules implements formuals adequate for use in a pure SAT Solver.
|
||||
Atomic formuals are represented using integers, that should allow
|
||||
near optimal efficiency (both in terms of space and time).
|
||||
*)
|
||||
|
||||
include Formula_intf.S
|
||||
(** This modules implements the requirements for implementing an SAT Solver. *)
|
||||
|
||||
val make : int -> t
|
||||
(** Make a proposition from an integer. *)
|
||||
|
||||
val fresh : unit -> t
|
||||
(** Make a fresh atom *)
|
||||
|
||||
|
|
@ -3,7 +3,79 @@ MSAT is free software, using the Apache license, see file LICENSE
|
|||
Copyright 2016 Guillaume Bury
|
||||
*)
|
||||
|
||||
module Expr = Expr_sat
|
||||
module Expr = struct
|
||||
|
||||
exception Bad_atom
|
||||
(** Exception raised if an atom cannot be created *)
|
||||
|
||||
type proof
|
||||
(** A empty type for proofs *)
|
||||
|
||||
type t = int
|
||||
(** Atoms are represented as integers. [-i] begin the negation of [i].
|
||||
Additionally, since we nee dot be able to create fresh atoms, we
|
||||
use even integers for user-created atoms, and odd integers for the
|
||||
fresh atoms. *)
|
||||
|
||||
let max_lit = max_int
|
||||
|
||||
(* Counters *)
|
||||
let max_index = ref 0
|
||||
let max_fresh = ref (-1)
|
||||
|
||||
(** Internal function for creating atoms.
|
||||
Updates the internal counters *)
|
||||
let _make i =
|
||||
if i <> 0 && (abs i) < max_lit then begin
|
||||
max_index := max !max_index (abs i);
|
||||
i
|
||||
end else
|
||||
raise Bad_atom
|
||||
|
||||
(** A dummy atom *)
|
||||
let dummy = 0
|
||||
|
||||
(** *)
|
||||
let neg a = - a
|
||||
|
||||
let norm a =
|
||||
abs a, if a < 0 then
|
||||
Formula_intf.Negated
|
||||
else
|
||||
Formula_intf.Same_sign
|
||||
|
||||
let abs = abs
|
||||
|
||||
let sign i = i > 0
|
||||
|
||||
let apply_sign b i = if b then i else neg i
|
||||
|
||||
let set_sign b i = if b then abs i else neg (abs i)
|
||||
|
||||
let hash (a:int) = a land max_int
|
||||
let equal (a:int) b = a=b
|
||||
let compare (a:int) b = Pervasives.compare a b
|
||||
|
||||
let make i = _make (2 * i)
|
||||
|
||||
let fresh () =
|
||||
incr max_fresh;
|
||||
_make (2 * !max_fresh + 1)
|
||||
|
||||
(*
|
||||
let iter: (t -> unit) -> unit = fun f ->
|
||||
for j = 1 to !max_index do
|
||||
f j
|
||||
done
|
||||
*)
|
||||
|
||||
let print fmt a =
|
||||
Format.fprintf fmt "%s%s%d"
|
||||
(if a < 0 then "~" else "")
|
||||
(if a mod 2 = 0 then "v" else "f")
|
||||
((abs a) / 2)
|
||||
|
||||
end
|
||||
|
||||
module Make(Dummy : sig end) =
|
||||
Solver.Make(Expr)(Solver.DummyTheory(Expr))(struct end)
|
||||
|
|
|
|||
|
|
@ -9,9 +9,26 @@ Copyright 2016 Guillaume Bury
|
|||
atomic propositions.
|
||||
*)
|
||||
|
||||
module Expr = Expr_sat
|
||||
module Expr : sig
|
||||
(** SAT Formulas
|
||||
|
||||
This modules implements formuals adequate for use in a pure SAT Solver.
|
||||
Atomic formuals are represented using integers, that should allow
|
||||
near optimal efficiency (both in terms of space and time).
|
||||
*)
|
||||
|
||||
include Formula_intf.S
|
||||
(** This modules implements the requirements for implementing an SAT Solver. *)
|
||||
|
||||
val make : int -> t
|
||||
(** Make a proposition from an integer. *)
|
||||
|
||||
val fresh : unit -> t
|
||||
(** Make a fresh atom *)
|
||||
|
||||
end
|
||||
(** The module defining formulas *)
|
||||
|
||||
module Make(Dummy : sig end) : Solver.S with type St.formula = Expr_sat.t
|
||||
module Make(Dummy : sig end) : Solver.S with type St.formula = Expr.t
|
||||
(** A functor that can generate as many solvers as needed. *)
|
||||
|
||||
|
|
|
|||
|
|
@ -17,7 +17,8 @@ module type S = Solver_intf.S
|
|||
module DummyTheory(F : Formula_intf.S) :
|
||||
Theory_intf.S with type formula = F.t
|
||||
and type proof = F.proof
|
||||
(** Simple case where the proof type is [unit] and the theory is empty *)
|
||||
(** Simple case where the proof type is the one given in the formula interface
|
||||
and the theory is empty *)
|
||||
|
||||
module Make (F : Formula_intf.S)
|
||||
(Th : Theory_intf.S with type formula = F.t
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ Copyright 2014 Simon Cruanes
|
|||
|
||||
(* Tests that require the API *)
|
||||
|
||||
module F = Expr_sat
|
||||
module F = Sat.Expr
|
||||
module T = Tseitin.Make(F)
|
||||
|
||||
let (|>) x f = f x
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue