wip: reconstruct quip proof from binary proof-trace

This commit is contained in:
Simon Cruanes 2021-10-26 21:57:17 -04:00
parent d8518ae942
commit 4a30a06f87
No known key found for this signature in database
GPG key ID: 4AC01D0849AA62B6
10 changed files with 352 additions and 969 deletions

View file

@ -128,7 +128,6 @@ let emit_fun_ (self:t) (f:Fun.t) : term_id =
let id = alloc_id self in
Fun.Tbl.add self.map_fun f id;
let f_name = ID.to_string (Fun.id f) in
Format.printf "encode fun with name %S@." f_name;
emit_step_ self
Proof_ser.({ Step.id; view=Fun_decl {Fun_decl.f=f_name}});
id
@ -222,18 +221,19 @@ let lemma_rw_clause c ~using (self:t) =
let using = Iter.to_array using in
PS.(Step_view.Step_clause_rw {Step_clause_rw.c; using})
(* TODO *)
let with_defs _ _ (_pr:t) = dummy_step
(* not useful *)
let del_clause _ _ (_pr:t) = ()
let emit_unsat_core _ (_pr:t) = dummy_step (* TODO *)
(* TODO *)
let emit_unsat_core _ (_pr:t) = dummy_step
let emit_unsat c (self:t) : unit =
emit_no_return_ self @@ fun() ->
PS.(Step_view.Step_unsat {Step_unsat.c})
let lemma_lra _ _ = dummy_step
let lemma_bool_tauto lits (self:t) =
emit_ self @@ fun() ->
let lits = Iter.map (emit_lit_ self) lits |> Iter.to_array in
@ -244,6 +244,10 @@ let lemma_bool_c rule (ts:Term.t list) (self:t) =
let exprs = ts |> Util.array_of_list_map (emit_term_ self) in
PS.(Step_view.Step_bool_c {Step_bool_c.exprs; rule})
(* TODO *)
let lemma_lra _ _ = dummy_step
let lemma_bool_equiv _ _ _ = dummy_step
let lemma_ite_true ~ite:_ _ = dummy_step
@ -257,3 +261,7 @@ let lemma_isa_disj _ _ (_pr:t) = dummy_step
let lemma_cstor_inj _ _ _ (_pr:t) = dummy_step
let lemma_cstor_distinct _ _ (_pr:t) = dummy_step
let lemma_acyclicity _ (_pr:t) = dummy_step
module Unsafe_ = struct
let[@inline] id_of_proof_step_ (p:proof_step) : proof_step = p
end

View file

@ -78,3 +78,7 @@ val iter_steps_backward : t -> Proof_ser.Step.t Iter.t
This will yield nothing if the proof was disabled or used
a dummy backend. *)
module Unsafe_ : sig
val id_of_proof_step_ : proof_step -> Proof_ser.ID.t
end

View file

@ -1,538 +1,141 @@
open Base_types
(* output proof *)
module P = Sidekick_quip.Proof
module T = Term
module Ty = Ty
type term = T.t
type ty = Ty.t
(* serialized proof trace *)
module PS = Sidekick_base_proof_trace.Proof_ser
type lit =
| L_eq of bool * term * term
| L_a of bool * term
type t = P.t
let lit_not = function
| L_eq (sign,a,b) -> L_eq(not sign,a,b)
| L_a (sign,t) -> L_a (not sign,t)
let pp_lit_with ~pp_t out =
let strsign = function true -> "+" | false -> "-" in
function
| L_eq (b,t,u) -> Fmt.fprintf out "(@[%s@ (@[=@ %a@ %a@])@])" (strsign b) pp_t t pp_t u
| L_a (b,t) -> Fmt.fprintf out "(@[%s@ %a@])" (strsign b) pp_t t
let pp_lit = pp_lit_with ~pp_t:Term.pp
let lit_a t = L_a (true,t)
let lit_na t = L_a (false,t)
let lit_eq t u = L_eq (true,t,u)
let lit_neq t u = L_eq (false,t,u)
let lit_mk b t = L_a (b,t)
let lit_sign = function L_a (b,_) | L_eq (b,_,_) -> b
type clause = lit list
type t =
| Unspecified
| Sorry (* NOTE: v. bad as we don't even specify the return *)
| Sorry_c of clause
| Named of string (* refers to previously defined clause *)
| Refl of term
| CC_lemma_imply of t list * term * term
| CC_lemma of clause
| Assertion of term
| Assertion_c of clause
| Drup_res of clause
| Hres of t * hres_step list
| Res of term * t * t
| Res1 of t * t
| DT_isa_split of ty * term list
| DT_isa_disj of ty * term * term
| DT_cstor_inj of Cstor.t * int * term list * term list (* [c t…=c u… |- t_i=u_i] *)
| Bool_true_is_true
| Bool_true_neq_false
| Bool_eq of term * term (* equal by pure boolean reasoning *)
| Bool_c of bool_c_name * term list (* boolean tautology *)
| Nn of t (* negation normalization *)
| Ite_true of term (* given [if a b c] returns [a=T |- if a b c=b] *)
| Ite_false of term
| LRA of clause
| Composite of {
(* some named (atomic) assumptions *)
assumptions: (string * lit) list;
steps: composite_step array; (* last proof_rule is the proof *)
}
and bool_c_name = string
and composite_step =
| S_step_c of {
name: string; (* name *)
res: clause; (* result of [proof] *)
proof: t; (* sub-proof *)
}
| S_define_t of term * term (* [const := t] *)
| S_define_t_name of string * term (* [const := t] *)
(* TODO: be able to name clauses, to be expanded at parsing.
note that this is not the same as [S_step_c] which defines an
explicit proof_rule with a conclusion and proofs that can be exploited
separately.
We could introduce that in Compress.rename
| S_define_c of string * clause (* [name := c] *)
*)
and hres_step =
| R of { pivot: term; p: t}
| R1 of t
| P of { lhs: term; rhs: term; p: t}
| P1 of t
let r p ~pivot : hres_step = R { pivot; p }
let r1 p = R1 p
let p p ~lhs ~rhs : hres_step = P { p; lhs; rhs }
let p1 p = P1 p
let stepc ~name res proof : composite_step = S_step_c {proof;name;res}
let deft c rhs : composite_step = S_define_t (c,rhs)
let deft_name c rhs : composite_step = S_define_t_name (c,rhs)
let is_trivial_refl = function
| Refl _ -> true
| _ -> false
let default=Unspecified
let sorry_c c = Sorry_c (Iter.to_rev_list c)
let sorry_c_l c = Sorry_c c
let sorry = Sorry
let refl t : t = Refl t
let ref_by_name name : t = Named name
let cc_lemma c : t = CC_lemma c
let cc_imply_l l t u : t =
let l = List.filter (fun p -> not (is_trivial_refl p)) l in
match l with
| [] -> refl t (* only possible way [t=u] *)
| l -> CC_lemma_imply (l, t, u)
let cc_imply2 h1 h2 t u : t = CC_lemma_imply ([h1; h2], t, u)
let assertion t = Assertion t
let assertion_c c = Assertion_c (Iter.to_rev_list c)
let assertion_c_l c = Assertion_c c
let composite_a ?(assms=[]) steps : t =
Composite {assumptions=assms; steps}
let composite_l ?(assms=[]) steps : t =
Composite {assumptions=assms; steps=Array.of_list steps}
let composite_iter ?(assms=[]) steps : t =
let steps = Iter.to_array steps in
Composite {assumptions=assms; steps}
let isa_split ty i = DT_isa_split (ty, Iter.to_rev_list i)
let isa_disj ty t u = DT_isa_disj (ty, t, u)
let cstor_inj c i t u = DT_cstor_inj (c, i, t, u)
let ite_true t = Ite_true t
let ite_false t = Ite_false t
let true_is_true : t = Bool_true_is_true
let true_neq_false : t = Bool_true_neq_false
let bool_eq a b : t = Bool_eq (a,b)
let bool_c name c : t = Bool_c (name, c)
let nn c : t = Nn c
let drup_res c : t = Drup_res c
let hres_l p l : t =
let l = List.filter (function (P1 (Refl _)) -> false | _ -> true) l in
if l=[] then p else Hres (p,l)
let hres_iter c i : t = hres_l c (Iter.to_list i)
let res ~pivot p1 p2 : t = Res (pivot,p1,p2)
let res1 p1 p2 : t = Res1 (p1,p2)
let lra_l c : t = LRA c
let lra c = LRA (Iter.to_rev_list c)
let iter_lit ~f_t = function
| L_eq (_,a,b) -> f_t a; f_t b
| L_a (_,t) -> f_t t
let iter_p (p:t) ~f_t ~f_step ~f_clause ~f_p : unit =
match p with
| Unspecified | Sorry -> ()
| Sorry_c c -> f_clause c
| Named _ -> ()
| Refl t -> f_t t
| CC_lemma_imply (ps, t, u) -> List.iter f_p ps; f_t t; f_t u
| CC_lemma c | Assertion_c c -> f_clause c
| Assertion t -> f_t t
| Drup_res c -> f_clause c
| Hres (i, l) ->
f_p i;
List.iter
(function
| R1 p -> f_p p
| P1 p -> f_p p
| R {pivot;p} -> f_p p; f_t pivot
| P {lhs;rhs;p} -> f_p p; f_t lhs; f_t rhs)
l
| Res (t,p1,p2) -> f_t t; f_p p1; f_p p2
| Res1 (p1,p2) -> f_p p1; f_p p2
| DT_isa_split (_, l) -> List.iter f_t l
| DT_isa_disj (_, t, u) -> f_t t; f_t u
| DT_cstor_inj (_, _c, ts, us) -> List.iter f_t ts; List.iter f_t us
| Bool_true_is_true | Bool_true_neq_false -> ()
| Bool_eq (t, u) -> f_t t; f_t u
| Bool_c (_, ts) -> List.iter f_t ts
| Nn p -> f_p p
| Ite_true t | Ite_false t -> f_t t
| LRA c -> f_clause c
| Composite { assumptions; steps } ->
List.iter (fun (_,lit) -> iter_lit ~f_t lit) assumptions;
Array.iter f_step steps;
(** {2 Compress by making more sharing explicit} *)
module Compress = struct
type 'a shared_status =
| First (* first occurrence of t *)
| Shared (* multiple occurrences observed *)
| Pre_named of 'a (* another proof_rule names it *)
| Named of 'a (* already named it *)
(* is [t] too small to be shared? *)
let rec is_small_ t =
match T.view t with
| T.Bool _ -> true
| T.App_fun (_, a) -> IArray.is_empty a (* only constants are small *)
| T.Not u -> is_small_ u
| T.Eq (_, _) | T.Ite (_, _, _) -> false
| T.LRA _ -> false
type name = N_s of string | N_t of T.t
type sharing_info = {
terms: name shared_status T.Tbl.t; (* sharing for non-small terms *)
}
let no_sharing : sharing_info =
{ terms = T.Tbl.create 8 }
(* traverse [p] and apply [f_t] to subterms (except to [c] in [c := rhs]) *)
let rec traverse_proof_ ?on_step ~f_t (p:t) : unit =
let recurse = traverse_proof_ ?on_step ~f_t in
let f_step s =
CCOpt.iter (fun f->f s) on_step;
traverse_step_ ~f_t s
in
iter_p p
~f_t
~f_clause:(traverse_clause_ ~f_t)
~f_step
~f_p:recurse
and traverse_step_ ~f_t = function
| S_define_t_name (_, rhs)
| S_define_t (_, rhs) -> f_t rhs
| S_step_c {name=_; res; proof} ->
traverse_clause_ ~f_t res; traverse_proof_ ~f_t proof
and traverse_clause_ ~f_t c : unit =
List.iter (iter_lit ~f_t) c
(** [find_sharing p] returns a {!sharing_info} which contains sharing information.
This information can be used during printing to reduce the
number of duplicated sub-terms that are printed. *)
let find_sharing p : sharing_info =
let self = {terms=T.Tbl.create 32} in
let traverse_t t =
T.iter_dag t
(fun u ->
if not (is_small_ u) then (
match T.Tbl.get self.terms u with
| None -> T.Tbl.add self.terms u First
| Some First -> T.Tbl.replace self.terms u Shared
| Some (Shared | Named _ | Pre_named _) -> ()
))
in
(* if a term is already name, remember that, do not rename it *)
let on_step = function
| S_define_t_name (n,rhs) ->
T.Tbl.replace self.terms rhs (Pre_named (N_s n));
| S_define_t (c,rhs) ->
T.Tbl.replace self.terms rhs (Pre_named (N_t c));
| S_step_c _ -> ()
in
traverse_proof_ p ~on_step ~f_t:traverse_t;
self
(** [renaming sharing p] returns a new proof [p'] with more definitions.
It also modifies [sharing] so that the newly defined objects are
mapped to {!Named}, which we can use during printing. *)
let rename sharing (p:t) : t =
let n = ref 0 in
let new_name () = incr n; Printf.sprintf "$t%d" !n in
match p with
| Composite {assumptions; steps} ->
(* now traverse again, renaming some things on the fly *)
let new_steps = Vec.create() in
(* definitions we can skip *)
let skip_name_s = Hashtbl.create 8 in
let skip_name_t = T.Tbl.create 8 in
(* traverse [t], and if there's a subterm that is shared but
not named yet, name it now.
*)
let traverse_t t : unit =
T.iter_dag_with ~order:T.Iter_dag.Post t
(fun u ->
match T.Tbl.get sharing.terms u with
| Some Shared ->
(* shared, but not named yet *)
let name = new_name() in
Vec.push new_steps (deft_name name u);
T.Tbl.replace sharing.terms u (Named (N_s name))
| Some (Pre_named name) ->
(* named later in the file, declare it earlier to preserve
a well ordering on definitions since we need it right now *)
Vec.push new_steps
(match name with
| N_s n -> Hashtbl.add skip_name_s n (); deft_name n u
| N_t t -> T.Tbl.add skip_name_t t (); deft t u);
T.Tbl.replace sharing.terms u (Named name)
| _ -> ())
in
(* introduce naming in [proof_rule], then push it into {!new_steps} *)
let process_step_ proof_rule =
traverse_step_ proof_rule ~f_t:traverse_t;
(* see if we print the proof_rule or skip it *)
begin match proof_rule with
| S_define_t (t,_) when T.Tbl.mem skip_name_t t -> ()
| S_define_t_name (s,_) when Hashtbl.mem skip_name_s s -> ()
| _ ->
Vec.push new_steps proof_rule;
end
in
Array.iter process_step_ steps;
composite_a ~assms:assumptions (Vec.to_array new_steps)
| p -> p (* TODO: warning? *)
module type CONV_ARG = sig
val proof : Proof.t
val unsat : Proof.proof_step
end
(** {2 Print to Quip}
module Make_lazy_tbl(T:sig type t end)() = struct
let lazy_tbl_ : T.t lazy_t Util.Int_tbl.t = Util.Int_tbl.create 32
Print to a format for checking by an external tool *)
module Quip = struct
module type OUT = sig
type out
type printer = out -> unit
val l : printer list -> printer
val iter_toplist : ('a -> printer) -> 'a Iter.t -> printer
(* list of steps, should be printed vertically if possible *)
val a : string -> printer
end
(** FInd step by its ID *)
let find (id:PS.ID.t) : T.t =
match Util.Int_tbl.get lazy_tbl_ (Int32.to_int id) with
| Some (lazy p) -> p
| None ->
Error.errorf "proof-quip: step `%a` was not reconstructed" PS.ID.pp id
(*
TODO: make sure we print terms properly
*)
module Make(Out : OUT) = struct
open Out
let rec pp_t sharing (t:Term.t) : printer =
match T.Tbl.get sharing.Compress.terms t with
| Some (Named (N_s s)) -> a s(* use the newly introduced name *)
| Some (Named (N_t t)) -> pp_t sharing t (* use name *)
| _ -> pp_t_nonshare_root sharing t
and pp_t_nonshare_root sharing t =
let pp_t = pp_t sharing in
match Term.view t with
| Bool true -> a"true"
| Bool false -> a"false"
| App_fun (c, args) when IArray.is_empty args -> a (ID.to_string (id_of_fun c))
| App_fun (c, args) ->
l(a (ID.to_string (id_of_fun c)) :: IArray.to_list_map pp_t args)
| Eq (t,u) -> l[a"=";pp_t t;pp_t u]
| Not u -> l[a"not";pp_t u]
| Ite (t1,t2,t3) -> l[a"ite";pp_t t1;pp_t t2;pp_t t3]
| LRA lra ->
begin match lra with
| LRA_pred (p, t1, t2) -> l[a (string_of_lra_pred p); pp_t t1; pp_t t2]
| LRA_op (p, t1, t2) -> l[a (string_of_lra_op p); pp_t t1; pp_t t2]
| LRA_mult (n, x) -> l[a"lra.*"; a(Q.to_string n);pp_t x]
| LRA_const q -> a(Q.to_string q)
| LRA_simplex_var v -> pp_t v
| LRA_simplex_pred (v, op, q) ->
l[a(Sidekick_arith_lra.S_op.to_string op); pp_t v; a(Q.to_string q)]
| LRA_other x -> pp_t x
end
let rec pp_ty ty : printer =
match Ty.view ty with
| Ty_bool -> a"Bool"
| Ty_real -> a"Real"
| Ty_atomic {def;args=[];finite=_} ->
let id = Ty.id_of_def def in
a(ID.to_string id)
| Ty_atomic {def;args;finite=_} ->
let id = Ty.id_of_def def in
l(a(ID.to_string id)::List.map pp_ty args)
let pp_l ppx xs = l (List.map ppx xs)
let pp_lit ~pp_t lit = match lit with
| L_a(b,t) -> l[a(if b then"+" else"-");pp_t t]
| L_eq(b,t,u) -> l[a(if b then"+" else"-");l[a"=";pp_t t;pp_t u]]
let pp_cl ~pp_t c =
l (a "cl" :: List.map (pp_lit ~pp_t) c)
let rec pp_rec (sharing:Compress.sharing_info) (self:t) : printer =
let pp_rec = pp_rec sharing in
let pp_t = pp_t sharing in
let pp_cl = pp_cl ~pp_t in
match self with
| Unspecified -> a "<unspecified>"
| Named s -> l[a "@"; a s]
| CC_lemma c -> l[a"ccl"; pp_cl c]
| CC_lemma_imply (hyps,t,u) ->
l[a"ccli"; pp_l pp_rec hyps; pp_t t; pp_t u]
| Refl t -> l[a"refl"; pp_t t]
| Sorry -> a"sorry"
| Sorry_c c -> l[a"sorry-c"; pp_cl c]
| Bool_true_is_true -> a"t-is-t"
| Bool_true_neq_false -> a"t-ne-f"
| Bool_eq (t1,t2) -> l[a"bool-eq";pp_t t1;pp_t t2]
| Bool_c (name,ts) -> l(a"bool-c" :: a name :: List.map pp_t ts)
| Nn p -> l[a"nn";pp_rec p]
| Assertion t -> l[a"assert";pp_t t]
| Assertion_c c -> l[a"assert-c";pp_cl c]
| Drup_res c -> l[a"drup";pp_cl c]
| Hres (c, steps) -> l[a"hres";pp_rec c;l(List.map (pp_hres_step sharing) steps)]
| Res (t,p1,p2) -> l[a"r";pp_t t;pp_rec p1;pp_rec p2]
| Res1 (p1,p2) -> l[a"r1";pp_rec p1;pp_rec p2]
| DT_isa_split (ty,cs) ->
l[a"dt.isa.split";pp_ty ty;l(a"cases"::List.map pp_t cs)]
| DT_isa_disj (ty,t,u) ->
l[a"dt.isa.disj";pp_ty ty;pp_t t;pp_t u]
| DT_cstor_inj (c,i,ts,us) ->
l[a"dt.cstor.inj";a(ID.to_string(Cstor.id c));
a(string_of_int i); l(List.map pp_t ts); l(List.map pp_t us)]
| Ite_true t -> l[a"ite-true"; pp_t t]
| Ite_false t -> l[a"ite-false"; pp_t t]
| LRA c -> l[a"lra";pp_cl c]
| Composite {steps; assumptions} ->
let pp_ass (n,ass) : printer =
l[a"assuming";a n;pp_lit ~pp_t ass] in
l[a"steps";l(List.map pp_ass assumptions);
iter_toplist (pp_composite_step sharing) (Iter.of_array steps)]
and pp_composite_step sharing proof_rule : printer =
let pp_t = pp_t sharing in
let pp_cl = pp_cl ~pp_t in
match proof_rule with
| S_step_c {name;res;proof} ->
l[a"stepc";a name;pp_cl res;pp_rec sharing proof]
| S_define_t (c,rhs) ->
(* disable sharing for [rhs], otherwise it'd print [c] *)
l[a"deft";pp_t c; pp_t_nonshare_root sharing rhs]
| S_define_t_name (c,rhs) ->
l[a"deft";a c; pp_t_nonshare_root sharing rhs]
(*
| S_define_t (name, t) ->
Fmt.fprintf out "(@[deft %s %a@])" name Term.pp t
*)
and pp_hres_step sharing = function
| R {pivot; p} -> l[a"r";pp_t sharing pivot; pp_rec sharing p]
| R1 p -> l[a"r1";pp_rec sharing p]
| P {p; lhs; rhs} ->
l[a"r"; pp_t sharing lhs; pp_t sharing rhs; pp_rec sharing p]
| P1 p -> l[a"p1"; pp_rec sharing p]
(* toplevel wrapper *)
let pp self : printer =
(* find sharing *)
let sharing = Profile.with1 "proof.find-sharing" Compress.find_sharing self in
(* introduce names *)
let self = Profile.with2 "proof.rename" Compress.rename sharing self in
(* now print *)
l[a"quip"; a"1"; pp_rec sharing self]
let pp_debug ~sharing self : printer =
if sharing then pp self
else pp_rec Compress.no_sharing self
end
module Out_csexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iter (fun x->x out) prs;
output_char out ')'
let a s out = Printf.fprintf out "%d:%s" (String.length s) s
let iter_toplist f it out =
output_char out '(';
it (fun x -> f x out);
output_char out ')'
end
module Out_sexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iteri (fun i x->if i>0 then output_char out ' ';x out) prs;
output_char out ')'
let a =
let buf = Buffer.create 128 in
fun s out ->
Buffer.clear buf;
CCSexp.to_buf buf (`Atom s);
Buffer.output_buffer out buf
let iter_toplist f it out =
output_char out '(';
let first=ref true in
it (fun x -> if !first then first := false else output_char out '\n'; f x out);
output_char out ')'
end
type out_format = Sexp | CSexp
let default_out_format = Sexp
let out_format_ = match Sys.getenv "PROOF_FMT" with
| "csexp" -> CSexp
| "sexp" -> Sexp
| s -> failwith (Printf.sprintf "unknown proof format %S" s)
| exception _ -> default_out_format
let output oc (self:t) : unit =
match out_format_ with
| Sexp -> let module M = Make(Out_sexp) in M.pp self oc
| CSexp ->
(* canonical sexp *)
let module M = Make(Out_csexp) in M.pp self oc
(** Add entry *)
let add id (e:T.t lazy_t) =
assert (not (Util.Int_tbl.mem lazy_tbl_ (Int32.to_int id)));
Util.Int_tbl.add lazy_tbl_ (Int32.to_int id) e
end
let pp_debug ~sharing out p =
let module Out = struct
type out = Format.formatter
type printer = out -> unit
let l prs out =
Fmt.fprintf out "(@[";
List.iteri(fun i x -> if i>0 then Fmt.fprintf out "@ "; x out) prs;
Fmt.fprintf out "@])"
let a s out = Fmt.string out s
let iter_toplist f it out =
Fmt.fprintf out "(@[<v>";
let first=ref true in
it (fun x -> if !first then first := false else Fmt.fprintf out "@ "; f x out);
Fmt.fprintf out "@])"
end
in
let module M = Quip.Make(Out) in
M.pp_debug ~sharing p out
module Conv(X : CONV_ARG) : sig
val reconstruct : unit -> t
end = struct
(* Steps we need to decode.
Invariant: the IDs of these steps must be lower than the current processed
ID (we start from the end) *)
let needed_steps_ = Util.Int_tbl.create 128
let of_proof _ _ : t = Sorry
let add_needed_step (id:PS.ID.t) : unit =
Util.Int_tbl.replace needed_steps_ (Int32.to_int id) ()
let output = Quip.output
let unsat_id = Proof.Unsafe_.id_of_proof_step_ X.unsat
(* start with the unsat step *)
let () = add_needed_step unsat_id
(* store reconstructed proofs, but lazily because their dependencies
(sub-steps, terms, etc.) might not have come up in the reverse stream yet. *)
module L_proofs = Make_lazy_tbl(struct type t = P.t end)()
(* store reconstructed terms *)
module L_terms = Make_lazy_tbl(struct type t = P.term end)()
(* list of toplevel steps, in the final proof order *)
let top_steps_ : P.composite_step lazy_t list ref = ref []
let add_top_step s = top_steps_ := s :: !top_steps_
let conv_lit (lit:PS.Lit.t) : P.Lit.t lazy_t =
let v = Int32.abs lit in
add_needed_step v;
lazy (
let t = L_terms.find v in
let sign = lit > Int32.zero in
(* reconstruct literal *)
P.Lit.mk sign t
)
let conv_clause (c:PS.Clause.t) : P.clause lazy_t =
let lits =
c.lits
|> Util.array_to_list_map conv_lit
in
lazy (List.map Lazy.force lits)
(* process a step of the trace *)
let process_step_ (step: PS.Step.t) : unit =
let lid = step.id in
let id = Int32.to_int lid in
if Util.Int_tbl.mem needed_steps_ id then (
Log.debugf 1 (fun k->k"(@[proof-quip.process-needed-step@ %a@])" PS.Step.pp step);
Util.Int_tbl.remove needed_steps_ id;
(* now process the step *)
begin match step.view with
| PS.Step_view.Step_input i ->
let c = conv_clause i.PS.Step_input.c in
let name = Printf.sprintf "c%d" id in
let step = lazy (
let lazy c = c in
P.S_step_c {name; res=c; proof=P.assertion_c_l c}
) in
add_top_step step;
(* refer to the step by name now *)
L_proofs.add lid (lazy (P.ref_by_name name));
| PS.Step_view.Step_unsat us -> () (* TODO *)
| PS.Step_view.Step_rup rup -> () (* TODO *)
| PS.Step_view.Step_bridge_lit_expr _ -> assert false
| PS.Step_view.Step_cc cc -> () (* TODO *)
| PS.Step_view.Step_preprocess _ -> () (* TODO *)
| PS.Step_view.Step_clause_rw _ -> () (* TODO *)
| PS.Step_view.Step_bool_tauto _ -> () (* TODO *)
| PS.Step_view.Step_bool_c _ -> () (* TODO *)
| PS.Step_view.Step_proof_p1 _ -> () (* TODO *)
| PS.Step_view.Step_true _ -> () (* TODO *)
| PS.Step_view.Fun_decl _ -> () (* TODO *)
| PS.Step_view.Expr_def _ -> () (* TODO *)
| PS.Step_view.Expr_bool _ -> () (* TODO *)
| PS.Step_view.Expr_if _ -> () (* TODO *)
| PS.Step_view.Expr_not _ -> () (* TODO *)
| PS.Step_view.Expr_eq _ -> () (* TODO *)
| PS.Step_view.Expr_app _ -> () (* TODO *)
end
)
let reconstruct_once_ = lazy (
Profile.with_ "proof-quip.reconstruct" @@ fun () ->
Proof.iter_steps_backward X.proof process_step_;
()
)
let reconstruct () : t =
Lazy.force reconstruct_once_;
let steps = Util.array_of_list_map Lazy.force !top_steps_ in
P.composite_a steps
end
let of_proof (self:Proof.t) ~(unsat:Proof.proof_step) : P.t =
let module C = Conv(struct
let proof = self
let unsat = unsat
end) in
C.reconstruct()
type out_format = Sidekick_quip.out_format =
| Sexp
| CSexp
let output = Sidekick_quip.output

View file

@ -1,22 +1,13 @@
(** Export to Quip from {!module:Proof}.
(** Proofs of unsatisfiability exported in Quip
Proofs are used in sidekick when the problem is found {b unsatisfiable}.
A proof collects inferences made by the solver into a list of steps,
each with its own kind of justification (e.g. "by congruence"),
and outputs it in some kind of format.
Currently we target {{: https://c-cube.github.io/quip-book/ } Quip}
as an {b experimental} proof backend.
*)
open Base_types
We use {!Sidekick_quip} but do not export anything from it. *)
type t
(** The state holding the whole proof. *)
val pp_debug : sharing:bool -> t Fmt.printer
val of_proof : Proof.t -> unsat:Proof.proof_step -> t
val of_proof : Proof.t -> Proof.proof_step -> t
type out_format = Sidekick_quip.out_format =
| Sexp
| CSexp
val output : out_channel -> t -> unit
val output : ?fmt:out_format -> out_channel -> t -> unit

View file

@ -3,7 +3,7 @@
(public_name sidekick-base)
(synopsis "Base term definitions for the standalone SMT solver and library")
(libraries containers iter sidekick.core sidekick.util sidekick.lit
sidekick-base.proof-trace
sidekick-base.proof-trace sidekick.quip
sidekick.arith-lra sidekick.th-bool-static sidekick.th-data
sidekick.zarith
zarith)

View file

@ -1,430 +1,193 @@
(** A reference to a previously defined object in the proof *)
type id = int
module Proof = Proof
open Proof
module Ty = struct
type t =
| Bool
| Arrow of t array * t
| App of string * t array
| Ref of id
let equal : t -> t -> bool = (=)
let hash : t -> int = CCHash.poly
let[@inline] view (self:t) : t = self
let rec pp out (self:t) =
match self with
| Bool -> Fmt.string out "Bool"
| Arrow (args, ret) ->
Fmt.fprintf out "(@[->@ %a@ %a@])" (Util.pp_array pp) args pp ret
| App (c, [||]) -> Fmt.string out c
| App (c, args) ->
Fmt.fprintf out "(@[%s@ %a@])" c (Util.pp_array pp) args
| Ref id -> Fmt.fprintf out "@@%d" id
end
module Fun = struct
type t = string
let pp out (self:t) = Fmt.string out self
let equal : t -> t -> bool = (=)
let hash : t -> int = CCHash.poly
end
module Cstor = Fun
module T = struct
type t =
| Bool of bool
| App_fun of Fun.t * t array
| App_ho of t * t
| Ite of t * t * t
| Not of t
| Eq of t * t
| Ref of id
let[@inline] view (self:t) : t = self
let equal : t -> t -> bool = (=)
let hash : t -> int = CCHash.poly
let rec pp out = function
| Bool b -> Fmt.bool out b
| Ite (a,b,c) -> Fmt.fprintf out "(@[if@ %a@ %a@ %a@])" pp a pp b pp c
| App_fun (f,[||]) -> Fmt.string out f
| App_fun (f,args) ->
Fmt.fprintf out "(@[%a@ %a@])" Fun.pp f (Util.pp_array pp) args
| App_ho (f,a) -> Fmt.fprintf out "(@[%a@ %a@])" pp f pp a
| Not a -> Fmt.fprintf out "(@[not@ %a@])" pp a
| Eq (a,b) -> Fmt.fprintf out "(@[=@ %a@ %a@])" pp a pp b
| Ref id -> Fmt.fprintf out "@@%d" id
module As_key = struct
type nonrec t = t
let hash = hash
let equal = equal
end
module Tbl = CCHashtbl.Make(As_key)
end
type term = T.t
type ty = Ty.t
type lit =
| L_eq of bool * term * term
| L_a of bool * term
let lit_not = function
| L_eq (sign,a,b) -> L_eq(not sign,a,b)
| L_a (sign,t) -> L_a (not sign,t)
let pp_lit_with ~pp_t out =
let strsign = function true -> "+" | false -> "-" in
function
| L_eq (b,t,u) -> Fmt.fprintf out "(@[%s@ (@[=@ %a@ %a@])@])" (strsign b) pp_t t pp_t u
| L_a (b,t) -> Fmt.fprintf out "(@[%s@ %a@])" (strsign b) pp_t t
let pp_lit = pp_lit_with ~pp_t:T.pp
let lit_a t = L_a (true,t)
let lit_na t = L_a (false,t)
let lit_eq t u = L_eq (true,t,u)
let lit_neq t u = L_eq (false,t,u)
let lit_mk b t = L_a (b,t)
let lit_sign = function L_a (b,_) | L_eq (b,_,_) -> b
type clause = lit list
type t =
| Unspecified
| Sorry (* NOTE: v. bad as we don't even specify the return *)
| Sorry_c of clause
| Named of string (* refers to previously defined clause *)
| Refl of term
| CC_lemma_imply of t list * term * term
| CC_lemma of clause
| Assertion of term
| Assertion_c of clause
| Drup_res of clause
| Hres of t * hres_step list
| Res of term * t * t
| Res1 of t * t
| DT_isa_split of ty * term list
| DT_isa_disj of ty * term * term
| DT_cstor_inj of Cstor.t * int * term list * term list (* [c t…=c u… |- t_i=u_i] *)
| Bool_true_is_true
| Bool_true_neq_false
| Bool_eq of term * term (* equal by pure boolean reasoning *)
| Bool_c of bool_c_name * term list (* boolean tautology *)
| Nn of t (* negation normalization *)
| Ite_true of term (* given [if a b c] returns [a=T |- if a b c=b] *)
| Ite_false of term
| LRA of clause
| Composite of {
(* some named (atomic) assumptions *)
assumptions: (string * lit) list;
steps: composite_step array; (* last proof_rule is the proof *)
}
and bool_c_name = string
and composite_step =
| S_step_c of {
name: string; (* name *)
res: clause; (* result of [proof] *)
proof: t; (* sub-proof *)
}
| S_define_t of term * term (* [const := t] *)
| S_define_t_name of string * term (* [const := t] *)
and hres_step =
| R of { pivot: term; p: t}
| R1 of t
| P of { lhs: term; rhs: term; p: t}
| P1 of t
let r p ~pivot : hres_step = R { pivot; p }
let r1 p = R1 p
let p p ~lhs ~rhs : hres_step = P { p; lhs; rhs }
let p1 p = P1 p
let stepc ~name res proof : composite_step = S_step_c {proof;name;res}
let deft c rhs : composite_step = S_define_t (c,rhs)
let deft_name c rhs : composite_step = S_define_t_name (c,rhs)
let is_trivial_refl = function
| Refl _ -> true
| _ -> false
let default=Unspecified
let sorry_c c = Sorry_c (Iter.to_rev_list c)
let sorry_c_l c = Sorry_c c
let sorry = Sorry
let refl t : t = Refl t
let ref_by_name name : t = Named name
let cc_lemma c : t = CC_lemma c
let cc_imply_l l t u : t =
let l = List.filter (fun p -> not (is_trivial_refl p)) l in
match l with
| [] -> refl t (* only possible way [t=u] *)
| l -> CC_lemma_imply (l, t, u)
let cc_imply2 h1 h2 t u : t = CC_lemma_imply ([h1; h2], t, u)
let assertion t = Assertion t
let assertion_c c = Assertion_c (Iter.to_rev_list c)
let assertion_c_l c = Assertion_c c
let composite_a ?(assms=[]) steps : t =
Composite {assumptions=assms; steps}
let composite_l ?(assms=[]) steps : t =
Composite {assumptions=assms; steps=Array.of_list steps}
let composite_iter ?(assms=[]) steps : t =
let steps = Iter.to_array steps in
Composite {assumptions=assms; steps}
let isa_split ty i = DT_isa_split (ty, Iter.to_rev_list i)
let isa_disj ty t u = DT_isa_disj (ty, t, u)
let cstor_inj c i t u = DT_cstor_inj (c, i, t, u)
let ite_true t = Ite_true t
let ite_false t = Ite_false t
let true_is_true : t = Bool_true_is_true
let true_neq_false : t = Bool_true_neq_false
let bool_eq a b : t = Bool_eq (a,b)
let bool_c name c : t = Bool_c (name, c)
let nn c : t = Nn c
let drup_res c : t = Drup_res c
let hres_l p l : t =
let l = List.filter (function (P1 (Refl _)) -> false | _ -> true) l in
if l=[] then p else Hres (p,l)
let hres_iter c i : t = hres_l c (Iter.to_list i)
let res ~pivot p1 p2 : t = Res (pivot,p1,p2)
let res1 p1 p2 : t = Res1 (p1,p2)
let lra_l c : t = LRA c
let lra c = LRA (Iter.to_rev_list c)
let iter_lit ~f_t = function
| L_eq (_,a,b) -> f_t a; f_t b
| L_a (_,t) -> f_t t
let iter_p (p:t) ~f_t ~f_step ~f_clause ~f_p : unit =
match p with
| Unspecified | Sorry -> ()
| Sorry_c c -> f_clause c
| Named _ -> ()
| Refl t -> f_t t
| CC_lemma_imply (ps, t, u) -> List.iter f_p ps; f_t t; f_t u
| CC_lemma c | Assertion_c c -> f_clause c
| Assertion t -> f_t t
| Drup_res c -> f_clause c
| Hres (i, l) ->
f_p i;
List.iter
(function
| R1 p -> f_p p
| P1 p -> f_p p
| R {pivot;p} -> f_p p; f_t pivot
| P {lhs;rhs;p} -> f_p p; f_t lhs; f_t rhs)
l
| Res (t,p1,p2) -> f_t t; f_p p1; f_p p2
| Res1 (p1,p2) -> f_p p1; f_p p2
| DT_isa_split (_, l) -> List.iter f_t l
| DT_isa_disj (_, t, u) -> f_t t; f_t u
| DT_cstor_inj (_, _c, ts, us) -> List.iter f_t ts; List.iter f_t us
| Bool_true_is_true | Bool_true_neq_false -> ()
| Bool_eq (t, u) -> f_t t; f_t u
| Bool_c (_, ts) -> List.iter f_t ts
| Nn p -> f_p p
| Ite_true t | Ite_false t -> f_t t
| LRA c -> f_clause c
| Composite { assumptions; steps } ->
List.iter (fun (_,lit) -> iter_lit ~f_t lit) assumptions;
Array.iter f_step steps;
type t = Proof.t
(** {2 Print to Quip}
Print to a format for checking by an external tool *)
module Quip = struct
module type OUT = sig
type out
type printer = out -> unit
val l : printer list -> printer
val iter_toplist : ('a -> printer) -> 'a Iter.t -> printer
(* list of steps, should be printed vertically if possible *)
val a : string -> printer
end
module type OUT = sig
type out
type printer = out -> unit
val l : printer list -> printer
val iter_toplist : ('a -> printer) -> 'a Iter.t -> printer
(* list of steps, should be printed vertically if possible *)
val a : string -> printer
end
(** Build a printer that uses {!Out} *)
module Make_printer(Out : OUT) = struct
open Out
let rec pp_t t =
match T.view t with
| T.Bool true -> a"true"
| T.Bool false -> a"false"
| T.App_fun (c, [||]) -> a c
| T.App_fun (c, args) ->
l(a c :: Util.array_to_list_map pp_t args)
| T.Ref i -> l[a"@"; a(string_of_int i)]
| T.App_ho(f,a) -> l[pp_t f;pp_t a]
| T.Eq (t,u) -> l[a"=";pp_t t;pp_t u]
| T.Not u -> l[a"not";pp_t u]
| T.Ite (t1,t2,t3) -> l[a"ite";pp_t t1;pp_t t2;pp_t t3]
(*
| T.LRA lra ->
begin match lra with
| LRA_pred (p, t1, t2) -> l[a (string_of_lra_pred p); pp_t t1; pp_t t2]
| LRA_op (p, t1, t2) -> l[a (string_of_lra_op p); pp_t t1; pp_t t2]
| LRA_mult (n, x) -> l[a"lra.*"; a(Q.to_string n);pp_t x]
| LRA_const q -> a(Q.to_string q)
| LRA_simplex_var v -> pp_t v
| LRA_simplex_pred (v, op, q) ->
l[a(Sidekick_arith_lra.S_op.to_string op); pp_t v; a(Q.to_string q)]
| LRA_other x -> pp_t x
end
*)
let rec pp_ty ty : printer =
match Ty.view ty with
| Ty.Bool -> a"Bool"
| Ty.App (c,[||]) ->
a c
| Ty.App (c,args) ->
l(a c::Util.array_to_list_map pp_ty args)
| Ty.Ref i -> l[a "@"; a (string_of_int i)]
| Ty.Arrow (args,b) ->
l (a "->" :: Util.array_to_list_map pp_ty args @ [pp_ty b])
let pp_l ppx xs = l (List.map ppx xs)
let pp_lit ~pp_t lit = match lit with
| Lit.L_a(b,t) -> l[a(if b then"+" else"-");pp_t t]
| Lit.L_eq(b,t,u) -> l[a(if b then"+" else"-");l[a"=";pp_t t;pp_t u]]
let pp_cl ~pp_t c =
l (a "cl" :: List.map (pp_lit ~pp_t) c)
let rec pp_rec (self:t) : printer =
let pp_cl = pp_cl ~pp_t in
match self with
| Unspecified -> a "<unspecified>"
| Named s -> l[a "@"; a s]
| CC_lemma c -> l[a"ccl"; pp_cl c]
| CC_lemma_imply (hyps,t,u) ->
l[a"ccli"; pp_l pp_rec hyps; pp_t t; pp_t u]
| Refl t -> l[a"refl"; pp_t t]
| Sorry -> a"sorry"
| Sorry_c c -> l[a"sorry-c"; pp_cl c]
| Bool_true_is_true -> a"t-is-t"
| Bool_true_neq_false -> a"t-ne-f"
| Bool_eq (t1,t2) -> l[a"bool-eq";pp_t t1;pp_t t2]
| Bool_c (name,ts) -> l(a"bool-c" :: a name :: List.map pp_t ts)
| Nn p -> l[a"nn";pp_rec p]
| Assertion t -> l[a"assert";pp_t t]
| Assertion_c c -> l[a"assert-c";pp_cl c]
| Drup_res c -> l[a"drup";pp_cl c]
| Hres (c, steps) -> l[a"hres";pp_rec c;l(List.map pp_hres_step steps)]
| Res (t,p1,p2) -> l[a"r";pp_t t;pp_rec p1;pp_rec p2]
| Res1 (p1,p2) -> l[a"r1";pp_rec p1;pp_rec p2]
| DT_isa_split (ty,cs) ->
l[a"dt.isa.split";pp_ty ty;l(a"cases"::List.map pp_t cs)]
| DT_isa_disj (ty,t,u) ->
l[a"dt.isa.disj";pp_ty ty;pp_t t;pp_t u]
| DT_cstor_inj (c,i,ts,us) ->
l[a"dt.cstor.inj";a c;
a(string_of_int i); l(List.map pp_t ts); l(List.map pp_t us)]
| Ite_true t -> l[a"ite-true"; pp_t t]
| Ite_false t -> l[a"ite-false"; pp_t t]
| LRA c -> l[a"lra";pp_cl c]
| Composite {steps; assumptions} ->
let pp_ass (n,ass) : printer =
l[a"assuming";a n;pp_lit ~pp_t ass] in
l[a"steps";l(List.map pp_ass assumptions);
iter_toplist pp_composite_step (Iter.of_array steps)]
and pp_composite_step proof_rule : printer =
let pp_cl = pp_cl ~pp_t in
match proof_rule with
| S_step_c {name;res;proof} ->
l[a"stepc";a name;pp_cl res;pp_rec proof]
| S_define_t (c,rhs) ->
(* disable sharing for [rhs], otherwise it'd print [c] *)
l[a"deft";pp_t c; pp_t rhs]
| S_define_t_name (c,rhs) ->
l[a"deft";a c; pp_t rhs]
(*
TODO: make sure we print terms properly
| S_define_t (name, t) ->
Fmt.fprintf out "(@[deft %s %a@])" name Term.pp t
*)
module Make(Out : OUT) = struct
open Out
and pp_hres_step = function
| R {pivot; p} -> l[a"r";pp_t pivot; pp_rec p]
| R1 p -> l[a"r1";pp_rec p]
| P {p; lhs; rhs} ->
l[a"r"; pp_t lhs; pp_t rhs; pp_rec p]
| P1 p -> l[a"p1"; pp_rec p]
let rec pp_t t =
match T.view t with
| T.Bool true -> a"true"
| T.Bool false -> a"false"
| T.App_fun (c, [||]) -> a c
| T.App_fun (c, args) ->
l(a c :: Util.array_to_list_map pp_t args)
| T.Ref i -> l[a"@"; a(string_of_int i)]
| T.App_ho(f,a) -> l[pp_t f;pp_t a]
| T.Eq (t,u) -> l[a"=";pp_t t;pp_t u]
| T.Not u -> l[a"not";pp_t u]
| T.Ite (t1,t2,t3) -> l[a"ite";pp_t t1;pp_t t2;pp_t t3]
(*
| T.LRA lra ->
begin match lra with
| LRA_pred (p, t1, t2) -> l[a (string_of_lra_pred p); pp_t t1; pp_t t2]
| LRA_op (p, t1, t2) -> l[a (string_of_lra_op p); pp_t t1; pp_t t2]
| LRA_mult (n, x) -> l[a"lra.*"; a(Q.to_string n);pp_t x]
| LRA_const q -> a(Q.to_string q)
| LRA_simplex_var v -> pp_t v
| LRA_simplex_pred (v, op, q) ->
l[a(Sidekick_arith_lra.S_op.to_string op); pp_t v; a(Q.to_string q)]
| LRA_other x -> pp_t x
end
*)
(* toplevel wrapper *)
let pp self : printer =
fun out ->
Profile.with_ "quip.print" @@ fun () ->
l[a"quip"; a"1"; pp_rec self] out
let rec pp_ty ty : printer =
match Ty.view ty with
| Ty.Bool -> a"Bool"
| Ty.App (c,[||]) ->
a c
| Ty.App (c,args) ->
l(a c::Util.array_to_list_map pp_ty args)
| Ty.Ref i -> l[a "@"; a (string_of_int i)]
| Ty.Arrow (args,b) ->
l (a "->" :: Util.array_to_list_map pp_ty args @ [pp_ty b])
let pp_l ppx xs = l (List.map ppx xs)
let pp_lit ~pp_t lit = match lit with
| L_a(b,t) -> l[a(if b then"+" else"-");pp_t t]
| L_eq(b,t,u) -> l[a(if b then"+" else"-");l[a"=";pp_t t;pp_t u]]
let pp_cl ~pp_t c =
l (a "cl" :: List.map (pp_lit ~pp_t) c)
let rec pp_rec (self:t) : printer =
let pp_cl = pp_cl ~pp_t in
match self with
| Unspecified -> a "<unspecified>"
| Named s -> l[a "@"; a s]
| CC_lemma c -> l[a"ccl"; pp_cl c]
| CC_lemma_imply (hyps,t,u) ->
l[a"ccli"; pp_l pp_rec hyps; pp_t t; pp_t u]
| Refl t -> l[a"refl"; pp_t t]
| Sorry -> a"sorry"
| Sorry_c c -> l[a"sorry-c"; pp_cl c]
| Bool_true_is_true -> a"t-is-t"
| Bool_true_neq_false -> a"t-ne-f"
| Bool_eq (t1,t2) -> l[a"bool-eq";pp_t t1;pp_t t2]
| Bool_c (name,ts) -> l(a"bool-c" :: a name :: List.map pp_t ts)
| Nn p -> l[a"nn";pp_rec p]
| Assertion t -> l[a"assert";pp_t t]
| Assertion_c c -> l[a"assert-c";pp_cl c]
| Drup_res c -> l[a"drup";pp_cl c]
| Hres (c, steps) -> l[a"hres";pp_rec c;l(List.map pp_hres_step steps)]
| Res (t,p1,p2) -> l[a"r";pp_t t;pp_rec p1;pp_rec p2]
| Res1 (p1,p2) -> l[a"r1";pp_rec p1;pp_rec p2]
| DT_isa_split (ty,cs) ->
l[a"dt.isa.split";pp_ty ty;l(a"cases"::List.map pp_t cs)]
| DT_isa_disj (ty,t,u) ->
l[a"dt.isa.disj";pp_ty ty;pp_t t;pp_t u]
| DT_cstor_inj (c,i,ts,us) ->
l[a"dt.cstor.inj";a c;
a(string_of_int i); l(List.map pp_t ts); l(List.map pp_t us)]
| Ite_true t -> l[a"ite-true"; pp_t t]
| Ite_false t -> l[a"ite-false"; pp_t t]
| LRA c -> l[a"lra";pp_cl c]
| Composite {steps; assumptions} ->
let pp_ass (n,ass) : printer =
l[a"assuming";a n;pp_lit ~pp_t ass] in
l[a"steps";l(List.map pp_ass assumptions);
iter_toplist pp_composite_step (Iter.of_array steps)]
and pp_composite_step proof_rule : printer =
let pp_cl = pp_cl ~pp_t in
match proof_rule with
| S_step_c {name;res;proof} ->
l[a"stepc";a name;pp_cl res;pp_rec proof]
| S_define_t (c,rhs) ->
(* disable sharing for [rhs], otherwise it'd print [c] *)
l[a"deft";pp_t c; pp_t rhs]
| S_define_t_name (c,rhs) ->
l[a"deft";a c; pp_t rhs]
(*
| S_define_t (name, t) ->
Fmt.fprintf out "(@[deft %s %a@])" name Term.pp t
*)
and pp_hres_step = function
| R {pivot; p} -> l[a"r";pp_t pivot; pp_rec p]
| R1 p -> l[a"r1";pp_rec p]
| P {p; lhs; rhs} ->
l[a"r"; pp_t lhs; pp_t rhs; pp_rec p]
| P1 p -> l[a"p1"; pp_rec p]
(* toplevel wrapper *)
let pp self : printer =
fun out ->
Profile.with_ "quip.print" @@ fun () ->
l[a"quip"; a"1"; pp_rec self] out
let pp_debug self : printer = pp self
end
module Out_csexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iter (fun x->x out) prs;
output_char out ')'
let a s out = Printf.fprintf out "%d:%s" (String.length s) s
let iter_toplist f it out =
output_char out '(';
it (fun x -> f x out);
output_char out ')'
end
module Out_sexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iteri (fun i x->if i>0 then output_char out ' ';x out) prs;
output_char out ')'
let a =
let buf = Buffer.create 128 in
fun s out ->
Buffer.clear buf;
CCSexp.to_buf buf (`Atom s);
Buffer.output_buffer out buf
let iter_toplist f it out =
output_char out '(';
let first=ref true in
it (fun x -> if !first then first := false else output_char out '\n'; f x out);
output_char out ')'
end
type out_format = Sexp | CSexp
let default_out_format = Sexp
let out_format_ = match Sys.getenv "PROOF_FMT" with
| "csexp" -> CSexp
| "sexp" -> Sexp
| s -> failwith (Printf.sprintf "unknown proof format %S" s)
| exception _ -> default_out_format
let output oc (self:t) : unit =
match out_format_ with
| Sexp -> let module M = Make(Out_sexp) in M.pp self oc
| CSexp ->
(* canonical sexp *)
let module M = Make(Out_csexp) in M.pp self oc
let pp_debug self : printer = pp self
end
(** Output to canonical S-expressions *)
module Out_csexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iter (fun x->x out) prs;
output_char out ')'
let a s out = Printf.fprintf out "%d:%s" (String.length s) s
let iter_toplist f it out =
output_char out '(';
it (fun x -> f x out);
output_char out ')'
end
(** Output to classic S-expressions *)
module Out_sexp = struct
type out = out_channel
type printer = out -> unit
let l prs out =
output_char out '(';
List.iteri (fun i x->if i>0 then output_char out ' ';x out) prs;
output_char out ')'
let a =
let buf = Buffer.create 128 in
fun s out ->
Buffer.clear buf;
CCSexp.to_buf buf (`Atom s);
Buffer.output_buffer out buf
let iter_toplist f it out =
output_char out '(';
let first=ref true in
it (fun x -> if !first then first := false else output_char out '\n'; f x out);
output_char out ')'
end
type out_format = Sexp | CSexp
let string_of_out_format = function
| Sexp -> "sexp"
| CSexp -> "csexp"
let pp_out_format out f = Fmt.string out (string_of_out_format f)
let default_out_format = Sexp
let output ?(fmt=Sexp) oc (self:t) : unit =
match fmt with
| Sexp ->
let module M = Make_printer(Out_sexp) in
M.pp self oc
| CSexp ->
let module M = Make_printer(Out_csexp) in
M.pp self oc
let pp_debug out p =
let module Out = struct
type out = Format.formatter
@ -441,10 +204,6 @@ let pp_debug out p =
Fmt.fprintf out "@])"
end
in
let module M = Quip.Make(Out) in
let module M = Make_printer(Out) in
M.pp_debug p out
let of_proof _ _ : t = Sorry
let output = Quip.output

View file

@ -5,9 +5,21 @@
as an {b experimental} proof backend.
*)
type t
module Proof = Proof
type t = Proof.t
(** The state holding the whole proof. *)
val pp_debug : t Fmt.printer
(** What format to use to serialize the proof? *)
type out_format =
| Sexp
(** S-expressions *)
val output : out_channel -> t -> unit
| CSexp
(** Canonical S-expressions *)
val pp_out_format : out_format Fmt.printer
val output : ?fmt:out_format -> out_channel -> t -> unit
val pp_debug : t Fmt.printer

View file

@ -180,11 +180,11 @@ let solve
| Some file ->
begin match unsat_proof_step() with
| None -> ()
| Some step ->
| Some unsat_step ->
let proof = Solver.proof s in
let proof_quip =
Profile.with_ "proof.to-quip" @@ fun () ->
Proof_quip.of_proof proof step
Proof_quip.of_proof proof ~unsat:unsat_step
in
Profile.with_ "proof.write-file"
(fun () ->

View file

@ -37,6 +37,9 @@ let array_of_list_map f l =
let array_to_list_map f arr =
CCList.init (Array.length arr) (fun i -> f arr.(i))
let lazy_map f x = lazy (let (lazy x) = x in f x)
let lazy_map2 f x y = lazy (let (lazy x) = x and (lazy y) = y in f x y)
let setup_gc () =
let g = Gc.get () in
Gc.set {

View file

@ -21,6 +21,9 @@ val array_of_list_map : ('a -> 'b) -> 'a list -> 'b array
val array_to_list_map : ('a -> 'b) -> 'a array -> 'b list
val lazy_map : ('a -> 'b) -> 'a lazy_t -> 'b lazy_t
val lazy_map2 : ('a -> 'b -> 'c) -> 'a lazy_t -> 'b lazy_t -> 'c lazy_t
val setup_gc : unit -> unit
(** Change parameters of the GC *)