Explicit status for local assumption clauses

Proofs require local assumptions to be recognisable.
Keeping the reason of local assumptions as Bcp simplfies
the code, since a proof is a clause, and allows to not have
to recreate the local unit clause that effectively propagates
the local assumptions.

With this fix, simplification of clauses is not required aymore for
levels between 0 (excluded) and base_level, so the partition function
can be simplified accordingly.
This commit is contained in:
Guillaume Bury 2016-08-17 19:20:05 +02:00
parent 7d57b3f1b5
commit 56f98d9a82
5 changed files with 83 additions and 57 deletions

View file

@ -292,8 +292,8 @@ module Make
Clauses that propagated false lits are remembered to reconstruct resolution proofs.
*)
let partition root atoms : atom list * clause list =
let rec partition_aux root trues unassigned falses history i =
let partition atoms : atom list * clause list =
let rec partition_aux trues unassigned falses history i =
if i >= Array.length atoms then
trues @ unassigned @ falses, history
else begin
@ -307,30 +307,28 @@ module Make
(arr_to_list atoms (i + 1)), history
else if a.neg.is_true then
let l = a.var.v_level in
if 0 <= l && l <= root then begin
if l = 0 then begin
match a.var.reason with
| None | Some Decision -> assert false
(* The var must have a reason, and it cannot be a decision/assumption,
its level is below root level. *)
| Some (Bcp cl) ->
partition_aux root trues unassigned falses (cl :: history) (i + 1)
partition_aux trues unassigned falses (cl :: history) (i + 1)
(* A var false at level 0 can be eliminated from the clause,
but we need to kepp in mind that we used another clause to simplify it. *)
| Some (Semantic n) when 0 <= n && n <= root ->
partition_aux root trues unassigned falses history (i + 1)
| Some (Semantic 0) ->
partition_aux trues unassigned falses history (i + 1)
(* Semantic propagations at level 0 are, well not easy to deal with,
this shouldn't really happen actually (because semantic propagations
at level 0 should come with a proof). *)
(* TODO: get a proof of the propagation. *)
| _ -> assert false
| None | Some (Decision | Semantic _ ) -> assert false
(* The var must have a reason, and it cannot be a decision/assumption,
since its level is 0. *)
end else
partition_aux root trues unassigned (a::falses) history (i + 1)
partition_aux trues unassigned (a::falses) history (i + 1)
else
partition_aux root trues (a::unassigned) falses history (i + 1)
partition_aux trues (a::unassigned) falses history (i + 1)
end
in
assert (0 <= root);
partition_aux root [] [] [] [] 0
partition_aux [] [] [] [] 0
(* Making a decision.
@ -445,7 +443,7 @@ module Make
be able to build a correct proof at the end of proof search. *)
let simpl_reason : reason -> reason = function
| (Bcp cl) as r ->
let l, history = partition env.base_level cl.atoms in
let l, history = partition cl.atoms in
begin match l with
| [ a ] ->
if history = [] then r
@ -471,7 +469,7 @@ module Make
if not a.is_true then begin
assert (a.var.v_level < 0 && a.var.reason = None && lvl >= 0);
let reason =
if lvl > env.base_level then reason
if lvl > 0 then reason
else simpl_reason reason
in
a.is_true <- true;
@ -596,7 +594,7 @@ module Make
c := res
| _ -> assert false
end
| None | Some Decision | Some Semantic _ -> ()
| None | Some (Decision | Semantic _ ) -> ()
end
done; assert false
with Exit ->
@ -636,7 +634,7 @@ module Make
while !cond do
begin match !c.cpremise with
| History _ -> clause_bump_activity !c
| Hyp | Lemma _ -> ()
| Hyp | Local | Lemma _ -> ()
end;
history := !c :: !history;
(* visit the current predecessors *)
@ -751,10 +749,10 @@ module Make
let vec = match init.cpremise with
| Hyp -> env.clauses_hyps
| Lemma _ -> env.clauses_learnt
| History _ -> assert false
| Local | History _ -> assert false
in
try
let atoms, history = partition 0 init.atoms in
let atoms, history = partition init.atoms in
let clause =
if history = [] then init
else make_clause ?tag:init.tag (fresh_name ()) atoms (History (init :: history))
@ -1147,14 +1145,14 @@ module Make
Log.debugf 10 "local assumption: @[%a@]" (fun k->k pp_atom a);
assert (decision_level () = env.base_level);
if a.is_true then ()
else if a.neg.is_true then begin
else
let c = make_clause (fresh_hname ()) [a] Local in
if a.neg.is_true then begin
(* conflict between assumptions: UNSAT *)
let c = make_clause (fresh_hname ()) [a] Hyp in
report_unsat c;
end else begin
(* make a decision, propagate *)
let level = decision_level() in
let c = make_clause (fresh_hname ()) [a] Hyp in
enqueue_bool a ~level (Bcp c);
end
in

View file

@ -83,23 +83,44 @@ module Make(St : Solver_types.S) = struct
assert St.(conclusion.cpremise <> History []);
conclusion
let prove_unsat c =
let l = Array.to_list c.St.atoms in
let l = List.map (fun a ->
match St.(a.var.reason) with
| Some St.Bcp d -> d
| _ -> assert false) l
let rec set_atom_proof a =
let aux acc b =
if equal_atoms a.St.neg b then acc
else set_atom_proof b :: acc
in
St.make_clause (fresh_pcl_name ()) [] (St.History (c :: l))
let prove_atom a =
if St.(a.is_true && a.var.v_level = 0) then begin
assert St.(a.var.v_level >= 0);
match St.(a.var.reason) with
| Some St.Bcp c ->
assert (Array.length St.(c.atoms) = 1 && equal_atoms a St.(c.atoms).(0));
Some c
Log.debugf 50 "Analysing: @[%a@ %a@]"
(fun k -> k St.pp_atom a St.pp_clause c);
if Array.length c.St.atoms = 1 then begin
Log.debugf 30 "Old reason: @[%a@]" (fun k -> k St.pp_atom a);
c
end else begin
assert (a.St.neg.St.is_true);
let r = St.History (c :: (Array.fold_left aux [] c.St.atoms)) in
let c' = St.make_clause (fresh_pcl_name ()) [a.St.neg] r in
a.St.var.St.reason <- Some St.(Bcp c');
Log.debugf 30 "New reason: @[%a@ %a@]"
(fun k -> k St.pp_atom a St.pp_clause c');
c'
end
| _ -> assert false
end else
let prove_unsat conflict =
if Array.length conflict.St.atoms = 0 then conflict
else begin
Log.debugf 3 "Proving unsat from: @[%a@]" (fun k -> k St.pp_clause conflict);
let l = Array.fold_left (fun acc a -> set_atom_proof a :: acc) [] conflict.St.atoms in
let res = St.make_clause (fresh_pcl_name ()) [] (St.History (conflict :: l)) in
Log.debugf 5 "Proof found: @[%a@]" (fun k -> k St.pp_clause res);
res
end
let prove_atom a =
if St.(a.is_true && a.var.v_level = 0) then
Some (set_atom_proof a)
else
None
(* Interface exposed *)
@ -110,6 +131,7 @@ module Make(St : Solver_types.S) = struct
}
and step =
| Hypothesis
| Assumption
| Lemma of lemma
| Resolution of proof * proof * atom
@ -138,6 +160,8 @@ module Make(St : Solver_types.S) = struct
{conclusion; step = Lemma l; }
| St.Hyp ->
{ conclusion; step = Hypothesis; }
| St.Local ->
{ conclusion; step = Assumption; }
| St.History [] ->
assert false
| St.History [ c ] ->
@ -163,7 +187,7 @@ module Make(St : Solver_types.S) = struct
if not c.St.visited then begin
c.St.visited <- true;
match c.St.cpremise with
| St.Hyp | St.Lemma _ -> aux (c :: res) acc r
| St.Hyp | St.Local | St.Lemma _ -> aux (c :: res) acc r
| St.History h ->
let l = List.fold_left (fun acc c ->
if not c.St.visited then c :: acc else acc) r h in

View file

@ -27,6 +27,7 @@ module type S = sig
}
and step =
| Hypothesis
| Assumption
| Lemma of lemma
| Resolution of proof * proof * atom
(** Lazy type for proof trees. Proofs are persistent objects, and can be

View file

@ -72,6 +72,7 @@ module McMake (E : Expr_intf.S)(Dummy : sig end) = struct
and premise =
| Hyp
| Local
| Lemma of proof
| History of clause list
@ -277,6 +278,7 @@ module McMake (E : Expr_intf.S)(Dummy : sig end) = struct
let pp_premise out = function
| Hyp -> Format.fprintf out "hyp"
| Local -> Format.fprintf out "local"
| Lemma _ -> Format.fprintf out "th_lemma"
| History v -> List.iter (fun {name=name} -> Format.fprintf out "%s,@ " name) v

View file

@ -67,6 +67,7 @@ module type S = sig
and premise =
| Hyp
| Local
| Lemma of proof
| History of clause list