mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-07 11:45:41 -05:00
wip: refactor(lra): import Simplex from funarith, replace FM with it
This commit is contained in:
parent
df25e84a01
commit
5ff0fff85b
12 changed files with 1473 additions and 431 deletions
|
|
@ -17,6 +17,7 @@ depends: [
|
|||
"ocaml" { >= "4.03" }
|
||||
"zarith"
|
||||
"alcotest" {with-test}
|
||||
"qcheck" {with-test & >= "0.16" }
|
||||
]
|
||||
tags: [ "sat" "smt" ]
|
||||
homepage: "https://github.com/c-cube/sidekick"
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ module Fmt = CCFormat
|
|||
|
||||
module CC_view = Sidekick_core.CC_view
|
||||
|
||||
type lra_pred = Sidekick_arith_lra.FM.Pred.t = Lt | Leq | Geq | Gt | Neq | Eq
|
||||
type lra_pred = Sidekick_arith_lra.Predicate.t = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
type lra_op = Sidekick_arith_lra.op = Plus | Minus
|
||||
|
||||
type 'a lra_view = 'a Sidekick_arith_lra.lra_view =
|
||||
|
|
|
|||
|
|
@ -1,408 +0,0 @@
|
|||
|
||||
|
||||
module type ARG = sig
|
||||
(** terms *)
|
||||
module T : sig
|
||||
type t
|
||||
|
||||
val equal : t -> t -> bool
|
||||
val hash : t -> int
|
||||
val compare : t -> t -> int
|
||||
val pp : t Fmt.printer
|
||||
end
|
||||
|
||||
type tag
|
||||
val pp_tag : tag Fmt.printer
|
||||
end
|
||||
|
||||
module Pred : sig
|
||||
type t = Lt | Leq | Geq | Gt | Neq | Eq
|
||||
|
||||
val neg : t -> t
|
||||
val pp : t Fmt.printer
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = Lt | Leq | Geq | Gt | Neq | Eq
|
||||
let to_string = function
|
||||
| Lt -> "<"
|
||||
| Leq -> "<="
|
||||
| Eq -> "="
|
||||
| Neq -> "!="
|
||||
| Gt -> ">"
|
||||
| Geq -> ">="
|
||||
|
||||
let neg = function
|
||||
| Leq -> Gt
|
||||
| Lt -> Geq
|
||||
| Eq -> Neq
|
||||
| Neq -> Eq
|
||||
| Geq -> Lt
|
||||
| Gt -> Leq
|
||||
|
||||
let pp out p = Fmt.string out (to_string p)
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
module A : ARG
|
||||
|
||||
type t
|
||||
|
||||
type term = A.T.t
|
||||
|
||||
module LE : sig
|
||||
type t
|
||||
|
||||
val const : Q.t -> t
|
||||
val zero : t
|
||||
val var : term -> t
|
||||
val neg : t -> t
|
||||
|
||||
val find_exn : term -> t -> Q.t
|
||||
val find : term -> t -> Q.t option
|
||||
val mem : term -> t -> bool
|
||||
|
||||
(* val map : (term -> term) -> t -> t *)
|
||||
|
||||
module Infix : sig
|
||||
val (+) : t -> t -> t
|
||||
val (-) : t -> t -> t
|
||||
val ( * ) : Q.t -> t -> t
|
||||
end
|
||||
include module type of Infix
|
||||
|
||||
val pp : t Fmt.printer
|
||||
end
|
||||
|
||||
(** {3 Arithmetic constraint} *)
|
||||
module Constr : sig
|
||||
type t
|
||||
|
||||
val pp : t Fmt.printer
|
||||
val mk : ?tag:A.tag -> Pred.t -> LE.t -> LE.t -> t
|
||||
val is_absurd : t -> bool
|
||||
end
|
||||
|
||||
val create : unit -> t
|
||||
|
||||
val assert_c : t -> Constr.t -> unit
|
||||
|
||||
type res =
|
||||
| Sat
|
||||
| Unsat of A.tag list
|
||||
|
||||
val solve : t -> res
|
||||
end
|
||||
|
||||
module Make(A : ARG)
|
||||
: S with module A = A
|
||||
= struct
|
||||
module A = A
|
||||
module T = A.T
|
||||
|
||||
module T_set = CCSet.Make(A.T)
|
||||
module T_map = CCMap.Make(A.T)
|
||||
|
||||
type term = A.T.t
|
||||
|
||||
module LE = struct
|
||||
module M = T_map
|
||||
|
||||
type t = {
|
||||
le: Q.t M.t;
|
||||
const: Q.t;
|
||||
}
|
||||
|
||||
let const x : t = {const=x; le=M.empty}
|
||||
let zero = const Q.zero
|
||||
let var x : t = {const=Q.zero; le=M.singleton x Q.one}
|
||||
|
||||
let[@inline] find_exn v le = M.find v le.le
|
||||
let[@inline] find v le = M.get v le.le
|
||||
let[@inline] mem v le = M.mem v le.le
|
||||
|
||||
let[@inline] remove v le : t = {le with le=M.remove v le.le}
|
||||
|
||||
let neg a : t =
|
||||
{const=Q.neg a.const;
|
||||
le=M.map Q.neg a.le; }
|
||||
|
||||
let (+) a b : t =
|
||||
{const = Q.(a.const + b.const);
|
||||
le=M.merge_safe a.le b.le
|
||||
~f:(fun _ -> function
|
||||
| `Left x | `Right x -> Some x
|
||||
| `Both (x,y) ->
|
||||
let z = Q.(x + y) in
|
||||
if Q.sign z = 0 then None else Some z)
|
||||
}
|
||||
|
||||
let (-) a b : t =
|
||||
{const = Q.(a.const - b.const);
|
||||
le=M.merge_safe a.le b.le
|
||||
~f:(fun _ -> function
|
||||
| `Left x -> Some x
|
||||
| `Right x -> Some (Q.neg x)
|
||||
| `Both (x,y) ->
|
||||
let z = Q.(x - y) in
|
||||
if Q.sign z = 0 then None else Some z)
|
||||
}
|
||||
|
||||
let ( * ) x a : t =
|
||||
if Q.sign x = 0 then const Q.zero
|
||||
else (
|
||||
{const=Q.( a.const * x );
|
||||
le=M.map (fun y -> Q.(x * y)) a.le
|
||||
}
|
||||
)
|
||||
|
||||
let max_var self : T.t option =
|
||||
M.keys self.le |> Iter.max ~lt:(fun a b -> T.compare a b < 0)
|
||||
|
||||
(* ensure coeff of [v] is 1 *)
|
||||
let normalize_wrt (v:T.t) le : t =
|
||||
let q = find_exn v le in
|
||||
Q.inv q * le
|
||||
|
||||
module Infix = struct
|
||||
let (+) = (+)
|
||||
let (-) = (-)
|
||||
let ( * ) = ( * )
|
||||
end
|
||||
|
||||
let vars self = T_map.keys self.le
|
||||
|
||||
let pp out (self:t) : unit =
|
||||
let pp_pair out (e,q) =
|
||||
if Q.equal Q.one q then T.pp out e
|
||||
else Fmt.fprintf out "%a * %a" Q.pp_print q T.pp e
|
||||
in
|
||||
let pp_sum out le =
|
||||
(Util.pp_iter ~sep:" + " pp_pair) out (M.to_iter le)
|
||||
in
|
||||
if Q.sign self.const = 0 then (
|
||||
Fmt.fprintf out "(@[%a@])" pp_sum self.le
|
||||
) else (
|
||||
Fmt.fprintf out "(@[%a@ + %a@])" Q.pp_print self.const pp_sum self.le
|
||||
)
|
||||
end
|
||||
|
||||
(** {2 Constraints} *)
|
||||
module Constr = struct
|
||||
type t = {
|
||||
pred: Pred.t;
|
||||
le: LE.t;
|
||||
tag: A.tag list;
|
||||
}
|
||||
|
||||
let pp out (c:t) : unit =
|
||||
Fmt.fprintf out "(@[constr@ :le %a@ :pred %s 0@])"
|
||||
LE.pp c.le (Pred.to_string c.pred)
|
||||
|
||||
let mk_ ~tag pred le : t = {pred; tag; le; }
|
||||
let mk ?tag pred l1 l2 : t =
|
||||
mk_ ~tag:(CCOpt.to_list tag) pred LE.(l1 - l2)
|
||||
|
||||
let is_absurd (self:t) : bool =
|
||||
T_map.is_empty self.le.le &&
|
||||
let c = self.le.const in
|
||||
begin match self.pred with
|
||||
| Leq -> Q.compare c Q.zero > 0
|
||||
| Lt -> Q.compare c Q.zero >= 0
|
||||
| Geq -> Q.compare c Q.zero < 0
|
||||
| Gt -> Q.compare c Q.zero <= 0
|
||||
| Eq -> Q.compare c Q.zero <> 0
|
||||
| Neq -> Q.compare c Q.zero = 0
|
||||
end
|
||||
|
||||
let is_trivial (self:t) : bool =
|
||||
T_map.is_empty self.le.le && not (is_absurd self)
|
||||
|
||||
(* nornalize and return maximum variable *)
|
||||
let normalize (self:t) : t =
|
||||
match self.pred with
|
||||
| Geq -> mk_ ~tag:self.tag Leq (LE.neg self.le)
|
||||
| Gt -> mk_ ~tag:self.tag Lt (LE.neg self.le)
|
||||
| _ -> self
|
||||
|
||||
let find_max (self:t) : T.t option * bool =
|
||||
match LE.max_var self.le with
|
||||
| None -> None, true
|
||||
| Some t -> Some t, Q.sign (T_map.find t self.le.le) > 0
|
||||
end
|
||||
|
||||
(** constraints for a variable (where the variable is maximal) *)
|
||||
type c_for_var = {
|
||||
occ_pos: Constr.t list;
|
||||
occ_eq: Constr.t list;
|
||||
occ_neg: Constr.t list;
|
||||
}
|
||||
|
||||
type system = {
|
||||
empties: Constr.t list; (* no variables, check first *)
|
||||
idx: c_for_var T_map.t;
|
||||
(* map [t] to [cft] where [cft] are normalized constraints whose
|
||||
maximum term is [t], with positive sign for [cft.occ_pos]
|
||||
and negative for [cft.neg_pos] respectively. *)
|
||||
}
|
||||
|
||||
type t = {
|
||||
mutable cs: Constr.t list;
|
||||
mutable sys: system;
|
||||
}
|
||||
|
||||
let empty_sys : system = {empties=[]; idx=T_map.empty}
|
||||
let empty_c_for_v : c_for_var =
|
||||
{ occ_pos=[]; occ_neg=[]; occ_eq=[] }
|
||||
|
||||
let create () : t = {
|
||||
cs=[];
|
||||
sys=empty_sys;
|
||||
}
|
||||
|
||||
let add_sys (sys:system) (c:Constr.t) : system =
|
||||
assert (match c.pred with Eq|Leq|Lt -> true | _ -> false);
|
||||
if Constr.is_trivial c then (
|
||||
Log.debugf 10 (fun k->k"(@[FM.drop-trivial@ %a@])" Constr.pp c);
|
||||
sys
|
||||
) else (
|
||||
match Constr.find_max c with
|
||||
| None, _ -> {sys with empties=c :: sys.empties}
|
||||
| Some v, occ_pos ->
|
||||
Log.debugf 30 (fun k->k "(@[FM.add-sys %a@ :max_var %a@ :occurs-pos %B@])"
|
||||
Constr.pp c T.pp v occ_pos);
|
||||
let cs = T_map.get_or ~default:empty_c_for_v v sys.idx in
|
||||
let cs =
|
||||
if c.pred = Eq then {cs with occ_eq = c :: cs.occ_eq}
|
||||
else if occ_pos then {cs with occ_pos = c :: cs.occ_pos}
|
||||
else {cs with occ_neg = c :: cs.occ_neg }
|
||||
in
|
||||
let idx = T_map.add v cs sys.idx in
|
||||
{sys with idx}
|
||||
)
|
||||
|
||||
let assert_c (self:t) c0 : unit =
|
||||
Log.debugf 10 (fun k->k "(@[FM.add-constr@ %a@ :tags %a@])"
|
||||
Constr.pp c0 (Fmt.Dump.list A.pp_tag) c0.tag);
|
||||
let c = Constr.normalize c0 in
|
||||
if c.pred <> c0.pred then (
|
||||
Log.debugf 30 (fun k->k "(@[FM.normalized %a@])" Constr.pp c);
|
||||
);
|
||||
assert (match c.pred with Eq | Leq | Lt -> true | _ -> false);
|
||||
self.cs <- c :: self.cs;
|
||||
self.sys <- add_sys self.sys c;
|
||||
()
|
||||
|
||||
let pp_system out (self:system) : unit =
|
||||
let pp_idxkv out (t,{occ_eq; occ_pos; occ_neg}) =
|
||||
Fmt.fprintf out "(@[for-var %a@ :occ-eq %a@ :occ-pos %a@ :occ-neg %a@])"
|
||||
T.pp t
|
||||
(Fmt.Dump.list Constr.pp) occ_eq
|
||||
(Fmt.Dump.list Constr.pp) occ_pos
|
||||
(Fmt.Dump.list Constr.pp) occ_neg
|
||||
in
|
||||
Fmt.fprintf out "(@[:empties %a@ :idx (@[%a@])@])"
|
||||
(Fmt.Dump.list Constr.pp) self.empties
|
||||
(Util.pp_iter pp_idxkv) (T_map.to_iter self.idx)
|
||||
|
||||
(* TODO: be able to provide a model for SAT *)
|
||||
type res =
|
||||
| Sat
|
||||
| Unsat of A.tag list
|
||||
|
||||
(* replace [x] with [by] inside [le] *)
|
||||
let subst_le (x:T.t) (le:LE.t) ~by:(le1:LE.t) : LE.t =
|
||||
let q = LE.find_exn x le in
|
||||
let le = LE.remove x le in
|
||||
LE.( le + q * le1 )
|
||||
|
||||
let subst_constr x c ~by : Constr.t =
|
||||
let c = {c with Constr.le=subst_le x ~by c.Constr.le} in
|
||||
Constr.normalize c
|
||||
|
||||
let rec solve_ (self:system) : res =
|
||||
Log.debugf 50
|
||||
(fun k->k "(@[FM.solve-rec@ :sys %a@])" pp_system self);
|
||||
begin match List.find Constr.is_absurd self.empties with
|
||||
| c ->
|
||||
Log.debugf 10 (fun k->k"(@[FM.unsat@ :by-absurd %a@])" Constr.pp c);
|
||||
Unsat c.tag
|
||||
| exception Not_found ->
|
||||
(* need to process biggest variable first *)
|
||||
match T_map.max_binding_opt self.idx with
|
||||
| None -> Sat
|
||||
| Some (v, {occ_eq=c0 :: ceq'; occ_pos; occ_neg}) ->
|
||||
(* at least one equality constraint, use it as a substitution *)
|
||||
|
||||
(* remove [v] from [idx] *)
|
||||
let sys = {self with idx=T_map.remove v self.idx} in
|
||||
|
||||
(* substitute using [c0] in the other constraints containing [v] *)
|
||||
assert (c0.pred = Eq);
|
||||
let c0 = LE.normalize_wrt v c0.le in
|
||||
(* turn equation [c0] into [v = rhs] *)
|
||||
let rhs = LE.neg @@ LE.remove v c0 in
|
||||
Log.debugf 50
|
||||
(fun k->k "(@[FM.subst-from-eq@ :v %a@ :rhs %a@])"
|
||||
T.pp v LE.pp rhs);
|
||||
|
||||
(* perform substitution in other constraints. Note that [v] cannot
|
||||
occur in constraints in the rest of [sys] because it's the
|
||||
maximal variable of the system, so it would be the maximum
|
||||
variable of these other constraints too.
|
||||
*)
|
||||
let new_sys =
|
||||
[Iter.of_list ceq'; Iter.of_list occ_pos; Iter.of_list occ_neg]
|
||||
|> Iter.of_list
|
||||
|> Iter.flatten
|
||||
|> Iter.map (subst_constr v ~by:rhs)
|
||||
|> Iter.fold add_sys sys
|
||||
in
|
||||
solve_ new_sys
|
||||
|
||||
| Some (v, {occ_eq=[]; occ_pos=l_pos; occ_neg=l_neg}) ->
|
||||
Log.debugf 10
|
||||
(fun k->k "(@[@{<yellow>FM.pivot@}@ :v %a@ :lpos %a@ :lneg %a@])"
|
||||
T.pp v (Fmt.Dump.list Constr.pp) l_pos
|
||||
(Fmt.Dump.list Constr.pp) l_neg);
|
||||
|
||||
(* remove [v] *)
|
||||
let sys = {self with idx=T_map.remove v self.idx} in
|
||||
|
||||
(* TODO: store all lower bound constraints for [v], so we can use
|
||||
their max to build the model once we have values for lower
|
||||
variables *)
|
||||
|
||||
let new_sys =
|
||||
Iter.product (Iter.of_list l_pos) (Iter.of_list l_neg)
|
||||
|> Iter.map
|
||||
(fun (c1,c2) ->
|
||||
let q1 = LE.find_exn v c1.Constr.le in
|
||||
let q2 = LE.find_exn v c2.Constr.le in
|
||||
assert (Q.sign q1 > 0 && Q.sign q2 < 0);
|
||||
let le = LE.( c1.Constr.le + (Q.(q1 / abs q2) * c2.Constr.le) ) in
|
||||
Log.debugf 50 (fun k->k "coeff=%a; le: %a" Q.pp_print (Q.inv q1) LE.pp le);
|
||||
let pred = match c1.Constr.pred, c2.Constr.pred with
|
||||
| Lt, _ | _, Lt -> Pred.Lt
|
||||
| Leq, Leq -> Pred.Leq
|
||||
| _ ->
|
||||
Log.debugf 1
|
||||
(fun k->k "unexpected pair in pivot@ :c1 %a@ :c2 %a"
|
||||
Constr.pp c1 Constr.pp c2);
|
||||
assert false
|
||||
in
|
||||
let c = Constr.mk_ ~tag:(c1.tag @ c2.tag) pred le in
|
||||
Log.debugf 50 (fun k->k "(@[FM.resolve@ %a@ %a@ :yields@ %a@])"
|
||||
Constr.pp c1 Constr.pp c2 Constr.pp c);
|
||||
assert (not (LE.mem v c.Constr.le));
|
||||
c)
|
||||
|> Iter.fold add_sys sys
|
||||
in
|
||||
solve_ new_sys
|
||||
end
|
||||
|
||||
let solve (self:t) : res =
|
||||
Log.debugf 5
|
||||
(fun k->k"(@[<hv>@{<Green>FM.solve@}@ %a@])" (Util.pp_list Constr.pp) self.cs);
|
||||
solve_ self.sys
|
||||
end
|
||||
|
||||
220
src/arith/lra/linear_expr.ml
Normal file
220
src/arith/lra/linear_expr.ml
Normal file
|
|
@ -0,0 +1,220 @@
|
|||
(*
|
||||
copyright (c) 2014-2018, Guillaume Bury, Simon Cruanes
|
||||
*)
|
||||
|
||||
module type COEFF = Linear_expr_intf.COEFF
|
||||
module type VAR = Linear_expr_intf.VAR
|
||||
module type FRESH = Linear_expr_intf.FRESH
|
||||
module type VAR_GEN = Linear_expr_intf.VAR_GEN
|
||||
module type VAR_EXTENDED = Linear_expr_intf.VAR_EXTENDED
|
||||
|
||||
module type S = Linear_expr_intf.S
|
||||
|
||||
type bool_op = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
module Make(C : COEFF)(Var : VAR) = struct
|
||||
module C = C
|
||||
module Var_map = CCMap.Make(Var)
|
||||
module Var = Var
|
||||
|
||||
type var = Var.t
|
||||
type subst = C.t Var_map.t
|
||||
|
||||
(** Linear combination of variables. *)
|
||||
module Comb = struct
|
||||
(* A map from variables to their coefficient in the linear combination. *)
|
||||
type t = C.t Var_map.t
|
||||
|
||||
let compare = Var_map.compare C.compare
|
||||
|
||||
let empty = Var_map.empty
|
||||
|
||||
let is_empty = Var_map.is_empty
|
||||
|
||||
let monomial c x =
|
||||
if C.equal c C.zero then empty else Var_map.singleton x c
|
||||
|
||||
let monomial1 x = Var_map.singleton x C.one
|
||||
|
||||
let add c x e =
|
||||
let c' = Var_map.get_or ~default:C.zero x e in
|
||||
let c' = C.(c + c') in
|
||||
if C.equal C.zero c' then Var_map.remove x e else Var_map.add x c' e
|
||||
|
||||
let[@inline] map2 ~fr ~f a b =
|
||||
Var_map.merge_safe
|
||||
~f:(fun _ rhs -> match rhs with
|
||||
| `Left x -> Some x
|
||||
| `Right x -> Some (fr x)
|
||||
| `Both (x,y) -> f x y)
|
||||
a b
|
||||
|
||||
let[@inline] some_if_nzero x =
|
||||
if C.equal C.zero x then None else Some x
|
||||
|
||||
let filter_map ~f m =
|
||||
Var_map.fold
|
||||
(fun x y m -> match f y with
|
||||
| None -> m
|
||||
| Some z -> Var_map.add x z m)
|
||||
m Var_map.empty
|
||||
|
||||
module Infix = struct
|
||||
let (+) = map2 ~fr:(fun x->x) ~f:(fun a b -> some_if_nzero C.(a + b))
|
||||
let (-) = map2 ~fr:C.neg ~f:(fun a b -> some_if_nzero C.(a - b))
|
||||
let ( * ) q = filter_map ~f:(fun x -> some_if_nzero C.(x * q))
|
||||
end
|
||||
|
||||
include Infix
|
||||
|
||||
let of_list l = List.fold_left (fun e (c,x) -> add c x e) empty l
|
||||
let to_list e = Var_map.bindings e |> List.rev_map CCPair.swap
|
||||
|
||||
let to_map e = e
|
||||
let of_map e = Var_map.filter (fun _ c -> not (C.equal C.zero c)) e
|
||||
|
||||
let pp_pair =
|
||||
Fmt.(pair ~sep:(return "@ * ") C.pp Var.pp)
|
||||
|
||||
let pp out (e:t) =
|
||||
Fmt.(hovbox @@ list ~sep:(return "@ + ") pp_pair) out (to_list e)
|
||||
|
||||
let eval (subst : subst) (e:t) : C.t =
|
||||
Var_map.fold
|
||||
(fun x c acc -> C.(acc + c * (Var_map.find x subst)))
|
||||
e C.zero
|
||||
end
|
||||
|
||||
(** A linear arithmetic expression, composed of a combination of variables
|
||||
with coefficients and a constant offset. *)
|
||||
module Expr = struct
|
||||
type t = {
|
||||
const : C.t;
|
||||
comb : Comb.t
|
||||
}
|
||||
|
||||
let[@inline] const e = e.const
|
||||
let[@inline] comb e = e.comb
|
||||
|
||||
let compare e e' =
|
||||
CCOrd.(C.compare e.const e'.const
|
||||
<?> (Comb.compare, e.comb, e'.comb))
|
||||
|
||||
let pp fmt e =
|
||||
Format.fprintf fmt "@[<hov>%a@ + %a" Comb.pp e.comb C.pp e.const
|
||||
|
||||
let[@inline] make comb const : t = { comb; const; }
|
||||
|
||||
let of_const = make Comb.empty
|
||||
let of_comb c = make c C.zero
|
||||
let monomial c x = of_comb (Comb.monomial c x)
|
||||
let monomial1 x = of_comb (Comb.monomial1 x)
|
||||
let of_list c l = make (Comb.of_list l) c
|
||||
let zero = of_const C.zero
|
||||
|
||||
let is_zero e = C.equal C.zero e.const && Comb.is_empty e.comb
|
||||
|
||||
let map2 f g e e' = make (f e.comb e'.comb) (g e.const e'.const)
|
||||
|
||||
module Infix = struct
|
||||
let (+) = map2 Comb.(+) C.(+)
|
||||
let (-) = map2 Comb.(-) C.(-)
|
||||
let ( * ) c e =
|
||||
if C.equal C.zero c
|
||||
then zero
|
||||
else make Comb.(c * e.comb) C.(c * e.const)
|
||||
end
|
||||
include Infix
|
||||
|
||||
let eval subst e = C.(e.const + Comb.eval subst e.comb)
|
||||
end
|
||||
|
||||
module Constr = struct
|
||||
type op = bool_op = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
(** Constraints are expressions implicitly compared to zero. *)
|
||||
type t = {
|
||||
expr: Expr.t;
|
||||
op: op;
|
||||
}
|
||||
|
||||
let compare c c' =
|
||||
CCOrd.(compare c.op c'.op
|
||||
<?> (Expr.compare, c.expr, c'.expr))
|
||||
|
||||
let pp_op out o =
|
||||
Fmt.string out (match o with
|
||||
| Leq -> "=<" | Geq -> ">=" | Lt -> "<"
|
||||
| Gt -> ">" | Eq -> "=" | Neq -> "!=")
|
||||
|
||||
let pp out c =
|
||||
Format.fprintf out "(@[%a@ %a 0@])"
|
||||
Expr.pp c.expr pp_op c.op
|
||||
|
||||
let op t = t.op
|
||||
let expr t = t.expr
|
||||
|
||||
let[@inline] of_expr expr op = { expr; op; }
|
||||
|
||||
let make comb op const = of_expr (Expr.make comb (C.neg const)) op
|
||||
|
||||
let geq e c = make e Geq c
|
||||
let leq e c = make e Leq c
|
||||
let gt e c = make e Gt c
|
||||
let lt e c = make e Lt c
|
||||
let eq e c = make e Eq c
|
||||
let neq e c = make e Neq c
|
||||
|
||||
let geq0 e = of_expr e Geq
|
||||
let leq0 e = of_expr e Leq
|
||||
let gt0 e = of_expr e Gt
|
||||
let lt0 e = of_expr e Lt
|
||||
let eq0 e = of_expr e Eq
|
||||
let neq0 e = of_expr e Neq
|
||||
|
||||
let[@inline] split {expr = {Expr.const; comb}; op} =
|
||||
comb, op, C.neg const
|
||||
|
||||
let eval subst c =
|
||||
let v = Expr.eval subst c.expr in
|
||||
begin match c.op with
|
||||
| Leq -> C.compare v C.zero <= 0
|
||||
| Geq -> C.compare v C.zero >= 0
|
||||
| Lt -> C.compare v C.zero < 0
|
||||
| Gt -> C.compare v C.zero > 0
|
||||
| Eq -> C.compare v C.zero = 0
|
||||
| Neq -> C.compare v C.zero <> 0
|
||||
end
|
||||
end
|
||||
end[@@inline]
|
||||
|
||||
module Make_var_gen(Var : VAR)
|
||||
: VAR_EXTENDED with type user_var = Var.t
|
||||
and type lit = Var.lit
|
||||
= struct
|
||||
type user_var = Var.t
|
||||
|
||||
type t =
|
||||
| User of user_var
|
||||
| Internal of int
|
||||
|
||||
let compare (a:t) b : int = match a, b with
|
||||
| User a, User b -> Var.compare a b
|
||||
| User _, Internal _ -> -1
|
||||
| Internal _, User _ -> 1
|
||||
| Internal i, Internal j -> CCInt.compare i j
|
||||
|
||||
let pp out = function
|
||||
| User v -> Var.pp out v
|
||||
| Internal i -> Format.fprintf out "internal_v_%d" i
|
||||
|
||||
type lit = Var.lit
|
||||
let pp_lit = Var.pp_lit
|
||||
|
||||
module Fresh = struct
|
||||
type t = int ref
|
||||
let create() = ref 0
|
||||
let copy r = ref !r
|
||||
let fresh r = Internal (CCRef.get_then_incr r)
|
||||
end
|
||||
end[@@inline]
|
||||
26
src/arith/lra/linear_expr.mli
Normal file
26
src/arith/lra/linear_expr.mli
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
(*
|
||||
copyright (c) 2014-2018, Guillaume Bury, Simon Cruanes
|
||||
*)
|
||||
|
||||
(** Arithmetic expressions *)
|
||||
|
||||
module type COEFF = Linear_expr_intf.COEFF
|
||||
|
||||
module type VAR = Linear_expr_intf.VAR
|
||||
module type FRESH = Linear_expr_intf.FRESH
|
||||
module type VAR_GEN = Linear_expr_intf.VAR_GEN
|
||||
module type VAR_EXTENDED = Linear_expr_intf.VAR_EXTENDED
|
||||
|
||||
module type S = Linear_expr_intf.S
|
||||
|
||||
type nonrec bool_op = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
module Make(C : COEFF)(Var : VAR)
|
||||
: S with module C = C
|
||||
and module Var = Var
|
||||
and module Var_map = CCMap.Make(Var)
|
||||
|
||||
module Make_var_gen(Var : VAR)
|
||||
: VAR_EXTENDED
|
||||
with type user_var = Var.t
|
||||
and type lit = Var.lit
|
||||
306
src/arith/lra/linear_expr_intf.ml
Normal file
306
src/arith/lra/linear_expr_intf.ml
Normal file
|
|
@ -0,0 +1,306 @@
|
|||
|
||||
(*
|
||||
copyright (c) 2014-2018, Guillaume Bury, Simon Cruanes
|
||||
*)
|
||||
|
||||
(** {1 Linear expressions interface} *)
|
||||
|
||||
(** {2 Coefficients}
|
||||
|
||||
Coefficients are used in expressions. They usually
|
||||
are either rationals, or integers.
|
||||
*)
|
||||
module type COEFF = sig
|
||||
type t
|
||||
|
||||
val equal : t -> t -> bool
|
||||
(** Equality on coefficients. *)
|
||||
|
||||
val compare : t -> t -> int
|
||||
(** Comparison on coefficients. *)
|
||||
|
||||
val pp : t Fmt.printer
|
||||
(** Printer for coefficients. *)
|
||||
|
||||
val zero : t
|
||||
(** The zero coefficient. *)
|
||||
|
||||
val one : t
|
||||
(** The one coefficient (to rule them all, :p). *)
|
||||
|
||||
val neg : t -> t
|
||||
(** Unary negation *)
|
||||
|
||||
val (+) : t -> t -> t
|
||||
val (-) : t -> t -> t
|
||||
val ( * ) : t -> t -> t
|
||||
(** Standard operations on coefficients. *)
|
||||
end
|
||||
|
||||
(** {2 Variable interface}
|
||||
|
||||
Standard interface for variables that are meant to be used
|
||||
in expressions.
|
||||
*)
|
||||
module type VAR = sig
|
||||
type t
|
||||
(** Variable type. *)
|
||||
|
||||
val compare : t -> t -> int
|
||||
(** Standard comparison function on variables. *)
|
||||
|
||||
val pp : t Fmt.printer
|
||||
(** Printer for variables. *)
|
||||
|
||||
type lit
|
||||
|
||||
val pp_lit : lit Fmt.printer
|
||||
end
|
||||
|
||||
(** {2 Fresh variables}
|
||||
|
||||
Standard interface for variables with an infinite number
|
||||
of 'fresh' variables. A 'fresh' variable should be distinct
|
||||
from any other.
|
||||
*)
|
||||
module type FRESH = sig
|
||||
type var
|
||||
(** The type of variables. *)
|
||||
|
||||
type t
|
||||
(** A type of state for creating fresh variables. *)
|
||||
|
||||
val copy : t -> t
|
||||
(** Copy state *)
|
||||
|
||||
val fresh : t -> var
|
||||
(** Create a fresh variable using an existing variable as base.
|
||||
TODO: need some explaining, about the difference with {!create}. *)
|
||||
end
|
||||
|
||||
(** {2 Generative Variable interface}
|
||||
|
||||
Standard interface for variables that are meant to be used
|
||||
in expressions. Furthermore, fresh variables can be generated
|
||||
(which is useful to refactor and/or put problems in specific
|
||||
formats used by algorithms).
|
||||
*)
|
||||
module type VAR_GEN = sig
|
||||
include VAR
|
||||
|
||||
(** Generate fresh variables on demand *)
|
||||
module Fresh : FRESH with type var := t
|
||||
end
|
||||
|
||||
module type VAR_EXTENDED = sig
|
||||
type user_var (** original variables *)
|
||||
|
||||
type t =
|
||||
| User of user_var
|
||||
| Internal of int
|
||||
|
||||
include VAR_GEN with type t := t
|
||||
end
|
||||
|
||||
type bool_op = Predicate.t = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
(** {2 Linear expressions & formulas} *)
|
||||
|
||||
(** Linear expressions & formulas.
|
||||
|
||||
This modules defines linear expressions (which are linear
|
||||
combinations of variables), and linear constraints, where
|
||||
the value of a linear expressions is constrained.
|
||||
*)
|
||||
module type S = sig
|
||||
module C : COEFF
|
||||
(** Coeficients used. Can be integers as well as rationals. *)
|
||||
|
||||
module Var : VAR
|
||||
(** Variables used in expressions. *)
|
||||
|
||||
type var = Var.t
|
||||
(** The type of variables appearing in expressions. *)
|
||||
|
||||
module Var_map : CCMap.S with type key = var
|
||||
(** Maps from variables, used for expressions as well as substitutions. *)
|
||||
|
||||
type subst = C.t Var_map.t
|
||||
(** Type for substitutions. *)
|
||||
|
||||
(** Combinations.
|
||||
|
||||
This module defines linear combnations as mapping from variables
|
||||
to coefficients. This allows for very fast computations.
|
||||
*)
|
||||
module Comb : sig
|
||||
type t = private C.t Var_map.t
|
||||
(** The type of linear combinations. *)
|
||||
|
||||
val compare : t -> t -> int
|
||||
(** Comparisons on linear combinations. *)
|
||||
|
||||
val pp : t Fmt.printer
|
||||
(** Printer for linear combinations. *)
|
||||
|
||||
val is_empty : t -> bool
|
||||
(** Is the given expression empty ?*)
|
||||
|
||||
(** {5 Creation} *)
|
||||
|
||||
val empty : t
|
||||
(** The empty linear combination. *)
|
||||
|
||||
val monomial : C.t -> var -> t
|
||||
(** [monome n v] creates the linear combination [n * v] *)
|
||||
|
||||
val monomial1 : var -> t
|
||||
(** [monome1 v] creates the linear combination [1 * v] *)
|
||||
|
||||
val add : C.t -> var -> t -> t
|
||||
(** [add n v t] adds the monome [n * v] to the combination [t]. *)
|
||||
|
||||
|
||||
(** Infix operations on combinations
|
||||
|
||||
This module defines usual operations on linear combinations,
|
||||
as infix operators to ease reading of complex computations. *)
|
||||
module Infix : sig
|
||||
val (+) : t -> t -> t
|
||||
(** Addition between combinations. *)
|
||||
|
||||
val (-) : t -> t -> t
|
||||
(** Substraction between combinations. *)
|
||||
|
||||
val ( * ) : C.t -> t -> t
|
||||
(** Multiplication by a constant. *)
|
||||
end
|
||||
include module type of Infix
|
||||
(** Include the previous module. *)
|
||||
|
||||
val of_list : (C.t * var) list -> t
|
||||
|
||||
val to_list : t -> (C.t * var) list
|
||||
(** Converters to and from lists of monomes. *)
|
||||
|
||||
val of_map : C.t Var_map.t -> t
|
||||
|
||||
val to_map : t -> C.t Var_map.t
|
||||
|
||||
(** {5 Semantics} *)
|
||||
|
||||
val eval : subst -> t -> C.t
|
||||
(** Evaluate a linear combination given a substitution for its variables.
|
||||
TODO: document potential exceptions raised ?*)
|
||||
end
|
||||
|
||||
(** {2 Linear expressions.} *)
|
||||
|
||||
(** Linear expressions represent linear arithmetic expressions as
|
||||
a linear combination and a constant. *)
|
||||
module Expr : sig
|
||||
type t
|
||||
(** The type of linear expressions. *)
|
||||
|
||||
val comb : t -> Comb.t
|
||||
val const : t -> C.t
|
||||
|
||||
val is_zero : t -> bool
|
||||
|
||||
val compare : t -> t -> int
|
||||
(** Standard comparison function on expressions. *)
|
||||
|
||||
val pp : t Fmt.printer
|
||||
(** Standard printing function on expressions. *)
|
||||
|
||||
val zero : t
|
||||
(** The expression [2]. *)
|
||||
|
||||
val of_const : C.t -> t
|
||||
(** The constant expression. *)
|
||||
|
||||
val of_comb : Comb.t -> t
|
||||
(** Combination without constant *)
|
||||
|
||||
val of_list : C.t -> (C.t * Var.t) list -> t
|
||||
|
||||
val make : Comb.t -> C.t -> t
|
||||
(** [make c n] makes the linear expression [c + n]. *)
|
||||
|
||||
val monomial : C.t -> var -> t
|
||||
|
||||
val monomial1 : var -> t
|
||||
|
||||
(** Infix operations on expressions
|
||||
|
||||
This module defines usual operations on linear expressions,
|
||||
as infix operators to ease reading of complex computations. *)
|
||||
module Infix : sig
|
||||
val (+) : t -> t -> t
|
||||
(** Addition between expressions. *)
|
||||
|
||||
val (-) : t -> t -> t
|
||||
(** Substraction between expressions. *)
|
||||
|
||||
val ( * ) : C.t -> t -> t
|
||||
(** Multiplication by a constant. *)
|
||||
end
|
||||
include module type of Infix
|
||||
(** Include the previous module. *)
|
||||
|
||||
(** {5 Semantics} *)
|
||||
|
||||
val eval : subst -> t -> C.t
|
||||
(** Evaluate a linear expression given a substitution for its variables.
|
||||
TODO: document potential exceptions raised ?*)
|
||||
end
|
||||
|
||||
(** {2 Linear constraints.}
|
||||
|
||||
Represents constraints on linear expressions. *)
|
||||
module Constr : sig
|
||||
type op = bool_op
|
||||
(** Arithmetic comparison operators. *)
|
||||
|
||||
type t = {
|
||||
expr: Expr.t;
|
||||
op: op;
|
||||
}
|
||||
(** Linear constraints. Expressions are implicitly compared to zero. *)
|
||||
|
||||
val compare : t -> t -> int
|
||||
(** Standard comparison function. *)
|
||||
|
||||
val pp : t Fmt.printer
|
||||
(** Standard printing function. *)
|
||||
|
||||
val of_expr : Expr.t -> bool_op -> t
|
||||
val make : Comb.t -> bool_op -> C.t -> t
|
||||
(** Create a constraint from a linear expression/combination and a constant. *)
|
||||
|
||||
val geq : Comb.t -> C.t -> t
|
||||
val leq : Comb.t -> C.t -> t
|
||||
val gt: Comb.t -> C.t -> t
|
||||
val lt : Comb.t -> C.t -> t
|
||||
val eq : Comb.t -> C.t -> t
|
||||
val neq : Comb.t -> C.t -> t
|
||||
|
||||
val geq0 : Expr.t -> t
|
||||
val leq0 : Expr.t -> t
|
||||
val gt0 : Expr.t -> t
|
||||
val lt0 : Expr.t -> t
|
||||
val eq0 : Expr.t -> t
|
||||
val neq0 : Expr.t -> t
|
||||
|
||||
val op : t -> bool_op
|
||||
val expr : t -> Expr.t
|
||||
(** Extract the given part from a constraint. *)
|
||||
|
||||
val split : t -> Comb.t * bool_op * C.t
|
||||
(** Split the linear combinations from the constant *)
|
||||
|
||||
val eval : subst -> t -> bool
|
||||
(** Evaluate the given constraint under a substitution. *)
|
||||
end
|
||||
end
|
||||
|
||||
17
src/arith/lra/predicate.ml
Normal file
17
src/arith/lra/predicate.ml
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
|
||||
type t = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
let neg = function
|
||||
| Leq -> Gt
|
||||
| Lt -> Geq
|
||||
| Eq -> Neq
|
||||
| Neq -> Eq
|
||||
| Geq -> Lt
|
||||
| Gt -> Leq
|
||||
|
||||
let to_string = function
|
||||
| Leq -> "=<" | Geq -> ">=" | Lt -> "<"
|
||||
| Gt -> ">" | Eq -> "=" | Neq -> "!="
|
||||
|
||||
let pp out (self:t) = Fmt.string out (to_string self)
|
||||
|
||||
|
|
@ -6,9 +6,11 @@
|
|||
|
||||
open Sidekick_core
|
||||
|
||||
module FM = Fourier_motzkin
|
||||
module Simplex = Simplex
|
||||
module Predicate = Predicate
|
||||
module Linear_expr = Linear_expr
|
||||
|
||||
type pred = FM.Pred.t = Lt | Leq | Geq | Gt | Neq | Eq
|
||||
type pred = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
type op = Plus | Minus
|
||||
|
||||
type 'a lra_view =
|
||||
|
|
@ -31,6 +33,7 @@ module type ARG = sig
|
|||
module S : Sidekick_core.SOLVER
|
||||
|
||||
type term = S.T.Term.t
|
||||
type ty = S.T.Ty.t
|
||||
|
||||
val view_as_lra : term -> term lra_view
|
||||
(** Project the term into the theory view *)
|
||||
|
|
@ -38,11 +41,17 @@ module type ARG = sig
|
|||
val mk_lra : S.T.Term.state -> term lra_view -> term
|
||||
(** Make a term from the given theory view *)
|
||||
|
||||
val ty_lra : S.T.Term.state -> ty
|
||||
|
||||
module Gensym : sig
|
||||
type t
|
||||
|
||||
val create : S.T.Term.state -> t
|
||||
|
||||
val tst : t -> S.T.Term.state
|
||||
|
||||
val copy : t -> t
|
||||
|
||||
val fresh_term : t -> pre:string -> S.T.Ty.t -> term
|
||||
(** Make a fresh term of the given type *)
|
||||
end
|
||||
|
|
@ -65,15 +74,32 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
module Lit = A.S.Solver_internal.Lit
|
||||
module SI = A.S.Solver_internal
|
||||
|
||||
(* the fourier motzkin module *)
|
||||
module FM_A = FM.Make(struct
|
||||
module T = T
|
||||
type tag = Lit.t
|
||||
let pp_tag = Lit.pp
|
||||
end)
|
||||
module SimpVar
|
||||
: Linear_expr.VAR_GEN
|
||||
with type t = A.term
|
||||
and type Fresh.t = A.Gensym.t
|
||||
and type lit = Lit.t
|
||||
= struct
|
||||
type t = A.term
|
||||
let pp = A.S.T.Term.pp
|
||||
let compare = A.S.T.Term.compare
|
||||
type lit = Lit.t
|
||||
let pp_lit = Lit.pp
|
||||
module Fresh = struct
|
||||
type t = A.Gensym.t
|
||||
let copy = A.Gensym.copy
|
||||
let fresh (st:t) =
|
||||
let ty = A.ty_lra (A.Gensym.tst st) in
|
||||
A.Gensym.fresh_term ~pre:"_lra" st ty
|
||||
end
|
||||
end
|
||||
|
||||
module SimpSolver = Simplex.Make_full(SimpVar)
|
||||
|
||||
(* linear expressions *)
|
||||
module LE = FM_A.LE
|
||||
module LComb = SimpSolver.L.Comb
|
||||
module LE = SimpSolver.L.Expr
|
||||
module LConstr = SimpSolver.L.Constr
|
||||
|
||||
type state = {
|
||||
tst: T.state;
|
||||
|
|
@ -144,13 +170,13 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
mk_lit t
|
||||
|
||||
let pp_pred_def out (p,l1,l2) : unit =
|
||||
Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" FM.Pred.pp p LE.pp l1 LE.pp l2
|
||||
Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" Predicate.pp p LE.pp l1 LE.pp l2
|
||||
|
||||
(* turn the term into a linear expression. Apply [f] on leaves. *)
|
||||
let rec as_linexp ~f (t:T.t) : LE.t =
|
||||
let open LE.Infix in
|
||||
match A.view_as_lra t with
|
||||
| LRA_other _ -> LE.var (f t)
|
||||
| LRA_other _ -> LE.monomial1 (f t)
|
||||
| LRA_pred _ ->
|
||||
Error.errorf "type error: in linexp, LRA predicate %a" T.pp t
|
||||
| LRA_op (op, t1, t2) ->
|
||||
|
|
@ -163,7 +189,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
| LRA_mult (n, x) ->
|
||||
let t = as_linexp ~f x in
|
||||
LE.( n * t )
|
||||
| LRA_const q -> LE.const q
|
||||
| LRA_const q -> LE.of_const q
|
||||
|
||||
(* TODO: keep the linexps until they're asserted;
|
||||
TODO: but use simplification in preprocess
|
||||
|
|
@ -219,15 +245,15 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|
||||
let final_check_ (self:state) si (acts:SI.actions) (trail:_ Iter.t) : unit =
|
||||
Log.debug 5 "(th-lra.final-check)";
|
||||
let fm = FM_A.create() in
|
||||
let simplex = SimpSolver.create self.gensym in
|
||||
(* first, add definitions *)
|
||||
begin
|
||||
List.iter
|
||||
(fun (t,le) ->
|
||||
let open LE.Infix in
|
||||
let le = le - LE.var t in
|
||||
let c = FM_A.Constr.mk ?tag:None Eq (LE.var t) le in
|
||||
FM_A.assert_c fm c)
|
||||
let le = le - LE.monomial1 t in
|
||||
let c = LConstr.eq0 le in
|
||||
SimpSolver.add_constr simplex c)
|
||||
self.t_defs
|
||||
end;
|
||||
(* add trail *)
|
||||
|
|
@ -240,28 +266,34 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
begin match T.Tbl.find self.pred_defs t with
|
||||
| exception Not_found -> ()
|
||||
| (pred, a, b) ->
|
||||
let pred = if sign then pred else FM.Pred.neg pred in
|
||||
(* FIXME: generic negation+printer in Linear_expr_intf;
|
||||
actually move predicates to their own module *)
|
||||
let pred = if sign then pred else Predicate.neg pred in
|
||||
if pred = Neq then (
|
||||
Log.debugf 50 (fun k->k "skip neq in %a" T.pp t);
|
||||
) else (
|
||||
let c = FM_A.Constr.mk ~tag:lit pred a b in
|
||||
FM_A.assert_c fm c;
|
||||
(* TODO: tag *)
|
||||
let c = LConstr.of_expr LE.(a-b) pred in
|
||||
SimpSolver.add_constr simplex c;
|
||||
)
|
||||
end)
|
||||
end;
|
||||
Log.debug 5 "lra: call arith solver";
|
||||
begin match FM_A.solve fm with
|
||||
| FM_A.Sat ->
|
||||
begin match SimpSolver.solve simplex with
|
||||
| SimpSolver.Solution _m ->
|
||||
Log.debug 5 "lra: solver returns SAT";
|
||||
() (* TODO: get a model + model combination *)
|
||||
| FM_A.Unsat lits ->
|
||||
| SimpSolver.Unsatisfiable _cert ->
|
||||
(* we tagged assertions with their lit, so the certificate being an
|
||||
unsat core translates directly into a conflict clause *)
|
||||
assert false
|
||||
(* TODO
|
||||
Log.debugf 5 (fun k->k"lra: solver returns UNSAT@ with cert %a"
|
||||
(Fmt.Dump.list Lit.pp) lits);
|
||||
let confl = List.rev_map Lit.neg lits in
|
||||
(* TODO: produce and store a proper LRA resolution proof *)
|
||||
SI.raise_conflict si acts confl SI.P.default
|
||||
*)
|
||||
end;
|
||||
()
|
||||
|
||||
688
src/arith/lra/simplex.ml
Normal file
688
src/arith/lra/simplex.ml
Normal file
|
|
@ -0,0 +1,688 @@
|
|||
(*
|
||||
copyright (c) 2014-2018, Guillaume Bury, Simon Cruanes
|
||||
*)
|
||||
|
||||
(* OPTIMS:
|
||||
* - distinguish separate systems (that do not interact), such as in { 1 <= 3x = 3y <= 2; z <= 3} ?
|
||||
* - Implement gomorry cuts ?
|
||||
*)
|
||||
|
||||
open Containers
|
||||
|
||||
module type VAR = Linear_expr_intf.VAR
|
||||
module type FRESH = Linear_expr_intf.FRESH
|
||||
module type VAR_GEN = Linear_expr_intf.VAR_GEN
|
||||
|
||||
module type S = Simplex_intf.S
|
||||
module type S_FULL = Simplex_intf.S_FULL
|
||||
|
||||
module Vec = CCVector
|
||||
|
||||
module Matrix : sig
|
||||
type 'a t
|
||||
|
||||
val create : unit -> 'a t
|
||||
val get : 'a t -> int -> int -> 'a
|
||||
val set : 'a t -> int -> int -> 'a -> unit
|
||||
val get_row : 'a t -> int -> 'a Vec.vector
|
||||
val copy : 'a t -> 'a t
|
||||
val n_row : _ t -> int
|
||||
val n_col : _ t -> int
|
||||
val push_row : 'a t -> 'a -> unit (* new row, filled with element *)
|
||||
val push_col : 'a t -> 'a -> unit (* new column, filled with element *)
|
||||
|
||||
(**/**)
|
||||
val check_invariants : _ t -> bool
|
||||
(**/**)
|
||||
end = struct
|
||||
type 'a t = {
|
||||
mutable n_col: int; (* num of columns *)
|
||||
tab: 'a Vec.vector Vec.vector;
|
||||
}
|
||||
|
||||
let[@inline] create() : _ = {tab=Vec.create(); n_col=0}
|
||||
|
||||
let[@inline] get m i j = Vec.get (Vec.get m.tab i) j
|
||||
let[@inline] get_row m i = Vec.get m.tab i
|
||||
let[@inline] set (m:_ t) i j x = Vec.set (Vec.get m.tab i) j x
|
||||
let[@inline] copy m = {m with tab=Vec.map Vec.copy m.tab}
|
||||
|
||||
let[@inline] n_row m = Vec.length m.tab
|
||||
let[@inline] n_col m = m.n_col
|
||||
|
||||
let push_row m x = Vec.push m.tab (Vec.make (n_col m) x)
|
||||
let push_col m x =
|
||||
m.n_col <- m.n_col + 1;
|
||||
Vec.iter (fun row -> Vec.push row x) m.tab
|
||||
|
||||
let check_invariants m = Vec.for_all (fun r -> Vec.length r = n_col m) m.tab
|
||||
end
|
||||
|
||||
(* use non-polymorphic comparison ops *)
|
||||
open Int.Infix
|
||||
|
||||
(* Simplex Implementation *)
|
||||
module Make_inner
|
||||
(Var: VAR)
|
||||
(VMap : CCMap.S with type key=Var.t)
|
||||
(Param: sig type t val copy : t -> t end)
|
||||
= struct
|
||||
module Var_map = VMap
|
||||
module M = Var_map
|
||||
|
||||
(* Exceptions *)
|
||||
exception Unsat of Var.t
|
||||
exception AbsurdBounds of Var.t
|
||||
exception NoneSuitable
|
||||
|
||||
type param = Param.t
|
||||
type var = Var.t
|
||||
type lit = Var.lit
|
||||
|
||||
type basic_var = var
|
||||
type nbasic_var = var
|
||||
|
||||
type erat = {
|
||||
base: Q.t; (* reference number *)
|
||||
eps_factor: Q.t; (* coefficient for epsilon, the infinitesimal *)
|
||||
}
|
||||
|
||||
(** Epsilon-rationals, used for strict bounds *)
|
||||
module Erat = struct
|
||||
type t = erat
|
||||
|
||||
let zero : t = {base=Q.zero; eps_factor=Q.zero}
|
||||
|
||||
let[@inline] make base eps_factor : t = {base; eps_factor}
|
||||
let[@inline] base t = t.base
|
||||
let[@inline] eps_factor t = t.eps_factor
|
||||
let[@inline] mul k e = make Q.(k * e.base) Q.(k * e.eps_factor)
|
||||
let[@inline] sum e1 e2 = make Q.(e1.base + e2.base) Q.(e1.eps_factor + e2.eps_factor)
|
||||
let[@inline] compare e1 e2 = match Q.compare e1.base e2.base with
|
||||
| 0 -> Q.compare e1.eps_factor e2.eps_factor
|
||||
| x -> x
|
||||
|
||||
let lt a b = compare a b < 0
|
||||
let gt a b = compare a b > 0
|
||||
|
||||
let[@inline] min x y = if compare x y <= 0 then x else y
|
||||
let[@inline] max x y = if compare x y >= 0 then x else y
|
||||
|
||||
let[@inline] evaluate (epsilon:Q.t) (e:t) : Q.t = Q.(e.base + epsilon * e.eps_factor)
|
||||
|
||||
let pp out e =
|
||||
if Q.equal Q.zero (eps_factor e)
|
||||
then Q.pp_print out (base e)
|
||||
else
|
||||
Format.fprintf out "(@[<h>%a + @<1>ε * %a@])"
|
||||
Q.pp_print (base e) Q.pp_print (eps_factor e)
|
||||
end
|
||||
|
||||
let str_of_var = Format.to_string Var.pp
|
||||
let str_of_erat = Format.to_string Erat.pp
|
||||
let str_of_q = Format.to_string Q.pp_print
|
||||
|
||||
type t = {
|
||||
param: param;
|
||||
tab : Q.t Matrix.t; (* the matrix of coefficients *)
|
||||
basic : basic_var Vec.vector; (* basic variables *)
|
||||
nbasic : nbasic_var Vec.vector; (* non basic variables *)
|
||||
mutable assign : Erat.t M.t; (* assignments *)
|
||||
mutable bounds : (Erat.t * Erat.t) M.t; (* (lower, upper) bounds for variables *)
|
||||
mutable idx_basic : int M.t; (* basic var -> its index in [basic] *)
|
||||
mutable idx_nbasic : int M.t; (* non basic var -> its index in [nbasic] *)
|
||||
}
|
||||
|
||||
type cert = {
|
||||
cert_var: var;
|
||||
cert_expr: (Q.t * var) list;
|
||||
cert_core: lit list;
|
||||
}
|
||||
|
||||
type res =
|
||||
| Solution of Q.t Var_map.t
|
||||
| Unsatisfiable of cert
|
||||
|
||||
let create param : t = {
|
||||
param: param;
|
||||
tab = Matrix.create ();
|
||||
basic = Vec.create ();
|
||||
nbasic = Vec.create ();
|
||||
assign = M.empty;
|
||||
bounds = M.empty;
|
||||
idx_basic = M.empty;
|
||||
idx_nbasic = M.empty;
|
||||
}
|
||||
|
||||
let copy t = {
|
||||
param = Param.copy t.param;
|
||||
tab = Matrix.copy t.tab;
|
||||
basic = Vec.copy t.basic;
|
||||
nbasic = Vec.copy t.nbasic;
|
||||
assign = t.assign;
|
||||
bounds = t.bounds;
|
||||
idx_nbasic = t.idx_nbasic;
|
||||
idx_basic = t.idx_basic;
|
||||
}
|
||||
|
||||
let index_basic (t:t) (x:basic_var) : int =
|
||||
match M.find x t.idx_basic with
|
||||
| n -> n
|
||||
| exception Not_found -> -1
|
||||
|
||||
let index_nbasic (t:t) (x:nbasic_var) : int =
|
||||
match M.find x t.idx_nbasic with
|
||||
| n -> n
|
||||
| exception Not_found -> -1
|
||||
|
||||
let[@inline] mem_basic (t:t) (x:var) : bool = M.mem x t.idx_basic
|
||||
let[@inline] mem_nbasic (t:t) (x:var) : bool = M.mem x t.idx_nbasic
|
||||
|
||||
(* check invariants, for test purposes *)
|
||||
let check_invariants (t:t) : bool =
|
||||
Matrix.check_invariants t.tab &&
|
||||
Vec.for_all (fun v -> mem_basic t v) t.basic &&
|
||||
Vec.for_all (fun v -> mem_nbasic t v) t.nbasic &&
|
||||
Vec.for_all (fun v -> not (mem_nbasic t v)) t.basic &&
|
||||
Vec.for_all (fun v -> not (mem_basic t v)) t.nbasic &&
|
||||
Vec.for_all (fun v -> Var_map.mem v t.assign) t.nbasic &&
|
||||
Vec.for_all (fun v -> not (Var_map.mem v t.assign)) t.basic &&
|
||||
true
|
||||
|
||||
(* find the definition of the basic variable [x],
|
||||
as a linear combination of non basic variables *)
|
||||
let find_expr_basic_opt t (x:var) : Q.t Vec.vector option =
|
||||
begin match index_basic t x with
|
||||
| -1 -> None
|
||||
| i -> Some (Matrix.get_row t.tab i)
|
||||
end
|
||||
|
||||
let find_expr_basic t (x:basic_var) : Q.t Vec.vector =
|
||||
begin match find_expr_basic_opt t x with
|
||||
| None -> assert false
|
||||
| Some e -> e
|
||||
end
|
||||
|
||||
(* build the expression [y = \sum_i (if x_i=y then 1 else 0)·x_i] *)
|
||||
let find_expr_nbasic t (x:nbasic_var) : Q.t Vec.vector =
|
||||
Vec.map
|
||||
(fun y -> if Var.compare x y = 0 then Q.one else Q.zero)
|
||||
t.nbasic
|
||||
|
||||
(* TODO: avoid double lookup in maps *)
|
||||
(* find expression of [x] *)
|
||||
let find_expr_total (t:t) (x:var) : Q.t Vec.vector =
|
||||
if mem_basic t x then
|
||||
find_expr_basic t x
|
||||
else (
|
||||
assert (mem_nbasic t x);
|
||||
find_expr_nbasic t x
|
||||
)
|
||||
|
||||
(* compute value of basic variable.
|
||||
It can be computed by using [x]'s definition
|
||||
in terms of nbasic variables, which have values *)
|
||||
let value_basic (t:t) (x:basic_var) : Erat.t =
|
||||
assert (mem_basic t x);
|
||||
let res = ref Erat.zero in
|
||||
let expr = find_expr_basic t x in
|
||||
for i = 0 to Vec.length expr - 1 do
|
||||
let val_nbasic_i =
|
||||
try M.find (Vec.get t.nbasic i) t.assign
|
||||
with Not_found -> assert false
|
||||
in
|
||||
res := Erat.sum !res (Erat.mul (Vec.get expr i) val_nbasic_i)
|
||||
done;
|
||||
!res
|
||||
|
||||
(* extract a value for [x] *)
|
||||
let[@inline] value (t:t) (x:var) : Erat.t =
|
||||
try M.find x t.assign (* nbasic variables are assigned *)
|
||||
with Not_found -> value_basic t x
|
||||
|
||||
(* trivial bounds *)
|
||||
let empty_bounds : Erat.t * Erat.t = Q.(Erat.make minus_inf zero, Erat.make inf zero)
|
||||
|
||||
(* find bounds of [x] *)
|
||||
let[@inline] get_bounds (t:t) (x:var) : Erat.t * Erat.t =
|
||||
try M.find x t.bounds
|
||||
with Not_found -> empty_bounds
|
||||
|
||||
(* is [value x] within the bounds for [x]? *)
|
||||
let is_within_bounds (t:t) (x:var) : bool * Erat.t =
|
||||
let v = value t x in
|
||||
let low, upp = get_bounds t x in
|
||||
if Erat.compare v low < 0 then
|
||||
false, low
|
||||
else if Erat.compare v upp > 0 then
|
||||
false, upp
|
||||
else
|
||||
true, v
|
||||
|
||||
(* add nbasic variables *)
|
||||
let add_vars (t:t) (l:var list) : unit =
|
||||
(* add new variable to idx and array for nbasic, removing duplicates
|
||||
and variables already present *)
|
||||
let idx_nbasic, _, l =
|
||||
List.fold_left
|
||||
(fun ((idx_nbasic, offset, l) as acc) x ->
|
||||
if mem_basic t x then acc
|
||||
else if M.mem x idx_nbasic then acc
|
||||
else (
|
||||
(* allocate new index for [x] *)
|
||||
M.add x offset idx_nbasic, offset+1, x::l
|
||||
))
|
||||
(t.idx_nbasic, Vec.length t.nbasic, [])
|
||||
l
|
||||
in
|
||||
(* add new columns to the matrix *)
|
||||
let old_dim = Matrix.n_col t.tab in
|
||||
List.iter (fun _ -> Matrix.push_col t.tab Q.zero) l;
|
||||
assert (old_dim + List.length l = Matrix.n_col t.tab);
|
||||
Vec.append_list t.nbasic (List.rev l);
|
||||
(* assign these variables *)
|
||||
t.assign <- List.fold_left (fun acc y -> M.add y Erat.zero acc) t.assign l;
|
||||
t.idx_nbasic <- idx_nbasic;
|
||||
()
|
||||
|
||||
(* define basic variable [x] by [eq] in [t] *)
|
||||
let add_eq (t:t) (x, eq : basic_var * _ list) : unit =
|
||||
if mem_basic t x || mem_nbasic t x then (
|
||||
invalid_arg (Format.sprintf "Variable `%a` already defined." Var.pp x);
|
||||
);
|
||||
add_vars t (List.map snd eq);
|
||||
(* add [x] as a basic var *)
|
||||
t.idx_basic <- M.add x (Vec.length t.basic) t.idx_basic;
|
||||
Vec.push t.basic x;
|
||||
(* add new row for defining [x] *)
|
||||
assert (Matrix.n_col t.tab > 0);
|
||||
Matrix.push_row t.tab Q.zero;
|
||||
let row_i = Matrix.n_row t.tab - 1 in
|
||||
assert (row_i >= 0);
|
||||
(* now put into the row the coefficients corresponding to [eq],
|
||||
expanding basic variables to their definition *)
|
||||
List.iter
|
||||
(fun (c, x) ->
|
||||
let expr = find_expr_total t x in
|
||||
assert (Vec.length expr = Matrix.n_col t.tab);
|
||||
Vec.iteri
|
||||
(fun j c' ->
|
||||
if not (Q.equal Q.zero c') then (
|
||||
Matrix.set t.tab row_i j Q.(Matrix.get t.tab row_i j + c * c')
|
||||
))
|
||||
expr)
|
||||
eq;
|
||||
()
|
||||
|
||||
(* add bounds to [x] in [t] *)
|
||||
let add_bound_aux (t:t) (x:var) (low:Erat.t) (upp:Erat.t) : unit =
|
||||
add_vars t [x];
|
||||
let l, u = get_bounds t x in
|
||||
t.bounds <- M.add x (Erat.max l low, Erat.min u upp) t.bounds
|
||||
|
||||
let add_bounds (t:t) ?strict_lower:(slow=false) ?strict_upper:(supp=false) (x, l, u) : unit =
|
||||
let e1 = if slow then Q.one else Q.zero in
|
||||
let e2 = if supp then Q.neg Q.one else Q.zero in
|
||||
add_bound_aux t x (Erat.make l e1) (Erat.make u e2);
|
||||
if mem_nbasic t x then (
|
||||
let b, v = is_within_bounds t x in
|
||||
if not b then (
|
||||
t.assign <- M.add x v t.assign;
|
||||
)
|
||||
)
|
||||
|
||||
let add_lower_bound t ?strict x l = add_bounds t ?strict_lower:strict (x,l,Q.inf)
|
||||
let add_upper_bound t ?strict x u = add_bounds t ?strict_upper:strict (x,Q.minus_inf,u)
|
||||
|
||||
(* full assignment *)
|
||||
let full_assign (t:t) : (var * Erat.t) Iter.t =
|
||||
Iter.append (Vec.to_iter t.nbasic) (Vec.to_iter t.basic)
|
||||
|> Iter.map (fun x -> x, value t x)
|
||||
|
||||
let[@inline] min x y = if Q.compare x y < 0 then x else y
|
||||
|
||||
(* Find an epsilon that is small enough for finding a solution, yet
|
||||
it must be positive.
|
||||
|
||||
{!Erat.t} values are used to turn strict bounds ([X > 0]) into
|
||||
non-strict bounds ([X >= 0 + ε]), because the simplex algorithm
|
||||
only deals with non-strict bounds.
|
||||
When a solution is found, we need to turn {!Erat.t} into {!Q.t} by
|
||||
finding a rational value that is small enough that it will fit into
|
||||
all the intervals of [t]. This rational will be the actual value of [ε].
|
||||
*)
|
||||
let solve_epsilon (t:t) : Q.t =
|
||||
let emax =
|
||||
M.fold
|
||||
(fun x ({base=low;eps_factor=e_low}, {base=upp;eps_factor=e_upp}) emax ->
|
||||
let {base=v; eps_factor=e_v} = value t x in
|
||||
(* lower bound *)
|
||||
let emax =
|
||||
if Q.compare low Q.minus_inf > 0 && Q.compare e_v e_low < 0
|
||||
then min emax Q.((low - v) / (e_v - e_low))
|
||||
else emax
|
||||
in
|
||||
(* upper bound *)
|
||||
if Q.compare upp Q.inf < 0 && Q.compare e_v e_upp > 0
|
||||
then min emax Q.((upp - v) / (e_v - e_upp))
|
||||
else emax)
|
||||
t.bounds
|
||||
Q.inf
|
||||
in
|
||||
if Q.compare emax Q.one >= 0 then Q.one else emax
|
||||
|
||||
let get_full_assign_seq (t:t) : _ Iter.t =
|
||||
let e = solve_epsilon t in
|
||||
let f = Erat.evaluate e in
|
||||
full_assign t
|
||||
|> Iter.map (fun (x,v) -> x, f v)
|
||||
|
||||
let get_full_assign t : Q.t Var_map.t = Var_map.of_iter (get_full_assign_seq t)
|
||||
|
||||
(* Find nbasic variable suitable for pivoting with [x].
|
||||
A nbasic variable [y] is suitable if it "goes into the right direction"
|
||||
(its coefficient in the definition of [x] is of the adequate sign)
|
||||
and if it hasn't reached its bound in this direction.
|
||||
|
||||
precondition: [x] is a basic variable whose value in current assignment
|
||||
is outside its bounds
|
||||
|
||||
We return the smallest (w.r.t Var.compare) suitable variable.
|
||||
This is important for termination.
|
||||
*)
|
||||
let find_suitable_nbasic_for_pivot (t:t) (x:basic_var) : nbasic_var * Q.t =
|
||||
assert (mem_basic t x);
|
||||
let _, v = is_within_bounds t x in
|
||||
let b = Erat.compare (value t x) v < 0 in
|
||||
(* is nbasic var [y], with coeff [a] in definition of [x], suitable? *)
|
||||
let test (y:nbasic_var) (a:Q.t) : bool =
|
||||
assert (mem_nbasic t y);
|
||||
let v = value t y in
|
||||
let low, upp = get_bounds t y in
|
||||
if b then (
|
||||
(Erat.lt v upp && Q.compare a Q.zero > 0) ||
|
||||
(Erat.gt v low && Q.compare a Q.zero < 0)
|
||||
) else (
|
||||
(Erat.gt v low && Q.compare a Q.zero > 0) ||
|
||||
(Erat.lt v upp && Q.compare a Q.zero < 0)
|
||||
)
|
||||
in
|
||||
let nbasic_vars = t.nbasic in
|
||||
let expr = find_expr_basic t x in
|
||||
(* find best suitable variable *)
|
||||
let rec aux i =
|
||||
if i = Vec.length nbasic_vars then (
|
||||
assert (i = Vec.length expr);
|
||||
None
|
||||
) else (
|
||||
let y = Vec.get nbasic_vars i in
|
||||
let a = Vec.get expr i in
|
||||
if test y a then (
|
||||
(* see if other variables are better suited *)
|
||||
begin match aux (i+1) with
|
||||
| None -> Some (y,a)
|
||||
| Some (z, _) as res_tail ->
|
||||
if Var.compare y z <= 0
|
||||
then Some (y,a)
|
||||
else res_tail
|
||||
end
|
||||
) else (
|
||||
aux (i+1)
|
||||
)
|
||||
)
|
||||
in
|
||||
begin match aux 0 with
|
||||
| Some res -> res
|
||||
| None -> raise NoneSuitable
|
||||
end
|
||||
|
||||
(* pivot to exchange [x] and [y] *)
|
||||
let pivot (t:t) (x:basic_var) (y:nbasic_var) (a:Q.t) : unit =
|
||||
(* swap values ([x] becomes assigned) *)
|
||||
let val_x = value t x in
|
||||
t.assign <- t.assign |> M.remove y |> M.add x val_x;
|
||||
(* Matrixrix Pivot operation *)
|
||||
let kx = index_basic t x in
|
||||
let ky = index_nbasic t y in
|
||||
for j = 0 to Vec.length t.nbasic - 1 do
|
||||
if Var.compare y (Vec.get t.nbasic j) = 0 then (
|
||||
Matrix.set t.tab kx j Q.(one / a)
|
||||
) else (
|
||||
Matrix.set t.tab kx j Q.(neg (Matrix.get t.tab kx j) / a)
|
||||
)
|
||||
done;
|
||||
for i = 0 to Vec.length t.basic - 1 do
|
||||
if i <> kx then (
|
||||
let c = Matrix.get t.tab i ky in
|
||||
Matrix.set t.tab i ky Q.zero;
|
||||
for j = 0 to Vec.length t.nbasic - 1 do
|
||||
Matrix.set t.tab i j Q.(Matrix.get t.tab i j + c * Matrix.get t.tab kx j)
|
||||
done
|
||||
)
|
||||
done;
|
||||
(* Switch x and y in basic and nbasic vars *)
|
||||
Vec.set t.basic kx y;
|
||||
Vec.set t.nbasic ky x;
|
||||
t.idx_basic <- t.idx_basic |> M.remove x |> M.add y kx;
|
||||
t.idx_nbasic <- t.idx_nbasic |> M.remove y |> M.add x ky;
|
||||
()
|
||||
|
||||
(* find minimum element of [arr] (wrt [cmp]) that satisfies predicate [f] *)
|
||||
let find_min_filter ~cmp (f:'a -> bool) (arr:('a,_) Vec.t) : 'a option =
|
||||
(* find the first element that satisfies [f] *)
|
||||
let rec aux_find_first i =
|
||||
if i = Vec.length arr then None
|
||||
else (
|
||||
let x = Vec.get arr i in
|
||||
if f x
|
||||
then aux_compare_with x (i+1)
|
||||
else aux_find_first (i+1)
|
||||
)
|
||||
(* find if any element of [l] satisfies [f] and is smaller than [x] *)
|
||||
and aux_compare_with x i =
|
||||
if i = Vec.length arr then Some x
|
||||
else (
|
||||
let y = Vec.get arr i in
|
||||
let best = if f y && cmp y x < 0 then y else x in
|
||||
aux_compare_with best (i+1)
|
||||
)
|
||||
in
|
||||
aux_find_first 0
|
||||
|
||||
(* check bounds *)
|
||||
let check_bounds (t:t) : unit =
|
||||
M.iter (fun x (l, u) -> if Erat.gt l u then raise (AbsurdBounds x)) t.bounds
|
||||
|
||||
(* actual solving algorithm *)
|
||||
let solve_aux (t:t) : unit =
|
||||
check_bounds t;
|
||||
(* select the smallest basic variable that is not satisfied in the current
|
||||
assignment. *)
|
||||
let rec aux_select_basic_var () =
|
||||
match
|
||||
find_min_filter ~cmp:Var.compare
|
||||
(fun x -> not (fst (is_within_bounds t x)))
|
||||
t.basic
|
||||
with
|
||||
| Some x -> aux_pivot_on_basic x
|
||||
| None -> ()
|
||||
(* remove the basic variable *)
|
||||
and aux_pivot_on_basic x =
|
||||
let _b, v = is_within_bounds t x in
|
||||
assert (not _b);
|
||||
match find_suitable_nbasic_for_pivot t x with
|
||||
| y, a ->
|
||||
(* exchange [x] and [y] by pivoting *)
|
||||
pivot t x y a;
|
||||
(* assign [x], now a nbasic variable, to the faulty bound [v] *)
|
||||
t.assign <- M.add x v t.assign;
|
||||
(* next iteration *)
|
||||
aux_select_basic_var ()
|
||||
| exception NoneSuitable ->
|
||||
raise (Unsat x)
|
||||
in
|
||||
aux_select_basic_var ();
|
||||
()
|
||||
|
||||
(* main method for the user to call *)
|
||||
let solve (t:t) : res =
|
||||
try
|
||||
solve_aux t;
|
||||
Solution (get_full_assign t)
|
||||
with
|
||||
| Unsat x ->
|
||||
let cert_expr =
|
||||
List.combine
|
||||
(Vec.to_list (find_expr_basic t x))
|
||||
(Vec.to_list t.nbasic)
|
||||
in
|
||||
Unsatisfiable { cert_var=x; cert_expr; cert_core=[]; } (* FIXME *)
|
||||
| AbsurdBounds x ->
|
||||
Unsatisfiable { cert_var=x; cert_expr=[]; cert_core=[]; }
|
||||
|
||||
(* add [c·x] to [m] *)
|
||||
let add_expr_ (x:var) (c:Q.t) (m:Q.t M.t) =
|
||||
let c' = M.get_or ~default:Q.zero x m in
|
||||
let c' = Q.(c + c') in
|
||||
if Q.equal Q.zero c' then M.remove x m else M.add x c' m
|
||||
|
||||
(* dereference basic variables from [c·x], and add the result to [m] *)
|
||||
let rec deref_var_ t x c m = match find_expr_basic_opt t x with
|
||||
| None -> add_expr_ x c m
|
||||
| Some expr_x ->
|
||||
let m = ref m in
|
||||
Vec.iteri
|
||||
(fun i c_i ->
|
||||
let y_i = Vec.get t.nbasic i in
|
||||
m := deref_var_ t y_i Q.(c * c_i) !m)
|
||||
expr_x;
|
||||
!m
|
||||
|
||||
(* maybe invert bounds, if [c < 0] *)
|
||||
let scale_bounds c (l,u) : erat * erat =
|
||||
match Q.compare c Q.zero with
|
||||
| 0 -> Erat.zero, Erat.zero
|
||||
| n when n<0 -> Erat.mul c u, Erat.mul c l
|
||||
| _ -> Erat.mul c l, Erat.mul c u
|
||||
|
||||
let check_cert (t:t) (c:cert) =
|
||||
let x = c.cert_var in
|
||||
let low_x, up_x = get_bounds t x in
|
||||
begin match c.cert_expr with
|
||||
| [] ->
|
||||
if Erat.compare low_x up_x > 0 then `Ok
|
||||
else `Bad_bounds (str_of_erat low_x, str_of_erat up_x)
|
||||
| expr ->
|
||||
let e0 = deref_var_ t x (Q.neg Q.one) M.empty in
|
||||
(* compute bounds for the expression [c.cert_expr],
|
||||
and also compute [c.cert_expr - x] to check if it's 0] *)
|
||||
let low, up, expr_minus_x =
|
||||
List.fold_left
|
||||
(fun (l,u,expr_minus_x) (c, y) ->
|
||||
let ly, uy = scale_bounds c (get_bounds t y) in
|
||||
assert (Erat.compare ly uy <= 0);
|
||||
let expr_minus_x = deref_var_ t y c expr_minus_x in
|
||||
Erat.sum l ly, Erat.sum u uy, expr_minus_x)
|
||||
(Erat.zero, Erat.zero, e0)
|
||||
expr
|
||||
in
|
||||
(* check that the expanded expression is [x], and that
|
||||
one of the bounds on [x] is incompatible with bounds of [c.cert_expr] *)
|
||||
if M.is_empty expr_minus_x then (
|
||||
if Erat.compare low_x up > 0 || Erat.compare up_x low < 0
|
||||
then `Ok
|
||||
else `Bad_bounds (str_of_erat low, str_of_erat up)
|
||||
) else `Diff_not_0 expr_minus_x
|
||||
end
|
||||
|
||||
(* printer *)
|
||||
|
||||
let matrix_pp_width = ref 8
|
||||
|
||||
let fmt_head = format_of_string "|%*s|| "
|
||||
let fmt_cell = format_of_string "%*s| "
|
||||
|
||||
let pp_cert out (c:cert) = match c.cert_expr with
|
||||
| [] -> Format.fprintf out "(@[inconsistent-bounds %a@])" Var.pp c.cert_var
|
||||
| _ ->
|
||||
let pp_pair = Format.(hvbox ~i:2 @@ pair ~sep:(return "@ * ") Q.pp_print Var.pp) in
|
||||
Format.fprintf out "(@[<hv>cert@ :var %a@ :linexp %a@])"
|
||||
Var.pp c.cert_var
|
||||
Format.(within "[" "]" @@ hvbox @@ list ~sep:(return "@ + ") pp_pair)
|
||||
c.cert_expr
|
||||
|
||||
let pp_mat out t =
|
||||
let open Format in
|
||||
fprintf out "@[<v>";
|
||||
(* header *)
|
||||
fprintf out fmt_head !matrix_pp_width "";
|
||||
Vec.iter (fun x -> fprintf out fmt_cell !matrix_pp_width (str_of_var x)) t.nbasic;
|
||||
fprintf out "@,";
|
||||
(* rows *)
|
||||
for i=0 to Matrix.n_row t.tab-1 do
|
||||
if i>0 then fprintf out "@,";
|
||||
let v = Vec.get t.basic i in
|
||||
fprintf out fmt_head !matrix_pp_width (str_of_var v);
|
||||
let row = Matrix.get_row t.tab i in
|
||||
Vec.iter (fun q -> fprintf out fmt_cell !matrix_pp_width (str_of_q q)) row;
|
||||
done;
|
||||
fprintf out "@]"
|
||||
|
||||
let pp_assign =
|
||||
let open Format in
|
||||
let pp_pair =
|
||||
within "(" ")" @@ hvbox @@ pair ~sep:(return "@ := ") Var.pp Erat.pp
|
||||
in
|
||||
map Var_map.to_seq @@ within "(" ")" @@ hvbox @@ seq pp_pair
|
||||
|
||||
let pp_bounds =
|
||||
let open Format in
|
||||
let pp_pairs out (x,(l,u)) =
|
||||
fprintf out "(@[%a =< %a =< %a@])" Erat.pp l Var.pp x Erat.pp u
|
||||
in
|
||||
map Var_map.to_seq @@ within "(" ")" @@ hvbox @@ seq pp_pairs
|
||||
|
||||
let pp_full_state out (t:t) : unit =
|
||||
(* print main matrix *)
|
||||
Format.fprintf out
|
||||
"(@[<hv>simplex@ :n-row %d :n-col %d@ :mat %a@ :assign %a@ :bounds %a@])"
|
||||
(Matrix.n_row t.tab) (Matrix.n_col t.tab) pp_mat t pp_assign t.assign
|
||||
pp_bounds t.bounds
|
||||
end
|
||||
|
||||
module Make(Var:VAR) =
|
||||
Make_inner(Var)(CCMap.Make(Var))(struct
|
||||
type t = unit
|
||||
let copy ()=()
|
||||
end)
|
||||
|
||||
module Make_full_for_expr(V : VAR_GEN)
|
||||
(L : Linear_expr.S
|
||||
with type Var.t = V.t
|
||||
and type C.t = Q.t
|
||||
and type Var.lit = V.lit)
|
||||
= struct
|
||||
include Make_inner(V)(L.Var_map)(V.Fresh)
|
||||
module L = L
|
||||
|
||||
type op = Predicate.t = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
type constr = L.Constr.t
|
||||
|
||||
(* add a constraint *)
|
||||
let add_constr (t:t) (c:constr) : unit =
|
||||
let (x:var) = V.Fresh.fresh t.param in
|
||||
let e, op, q = L.Constr.split c in
|
||||
add_eq t (x, L.Comb.to_list e);
|
||||
begin match op with
|
||||
| Leq -> add_upper_bound t ~strict:false x q
|
||||
| Geq -> add_lower_bound t ~strict:false x q
|
||||
| Lt -> add_upper_bound t ~strict:true x q
|
||||
| Gt -> add_lower_bound t ~strict:true x q
|
||||
| Eq -> add_bounds t ~strict_lower:false ~strict_upper:false (x,q,q)
|
||||
| Neq -> assert false
|
||||
end
|
||||
end
|
||||
|
||||
module Make_full(V : VAR_GEN)
|
||||
= Make_full_for_expr(V)(Linear_expr.Make(struct include Q let pp = pp_print end)(V))
|
||||
31
src/arith/lra/simplex.mli
Normal file
31
src/arith/lra/simplex.mli
Normal file
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
(** Solving Linear systems of rational equations. *)
|
||||
|
||||
module type VAR = Linear_expr_intf.VAR
|
||||
module type FRESH = Linear_expr_intf.FRESH
|
||||
module type VAR_GEN = Linear_expr_intf.VAR_GEN
|
||||
|
||||
module type S = Simplex_intf.S
|
||||
module type S_FULL = Simplex_intf.S_FULL
|
||||
|
||||
(** Low level simplex interface *)
|
||||
module Make(V : VAR) :
|
||||
S with type var = V.t
|
||||
and type lit = V.lit
|
||||
and type param = unit
|
||||
and module Var_map = CCMap.Make(V)
|
||||
|
||||
(** High-level simplex interface *)
|
||||
module Make_full_for_expr(V : VAR_GEN)
|
||||
(L : Linear_expr.S with type Var.t = V.t and type Var.lit = V.lit and type C.t = Q.t)
|
||||
: S_FULL with type var = V.t
|
||||
and type lit = V.lit
|
||||
and module L = L
|
||||
and module Var_map = L.Var_map
|
||||
and type param = V.Fresh.t
|
||||
|
||||
module Make_full(V : VAR_GEN)
|
||||
: S_FULL with type var = V.t
|
||||
and type lit = V.lit
|
||||
and type L.var = V.t
|
||||
and type param = V.Fresh.t
|
||||
124
src/arith/lra/simplex_intf.ml
Normal file
124
src/arith/lra/simplex_intf.ml
Normal file
|
|
@ -0,0 +1,124 @@
|
|||
(*
|
||||
copyright (c) 2014-2018, Guillaume Bury, Simon Cruanes
|
||||
*)
|
||||
|
||||
(** {1 Modular and incremental implementation of the general simplex}. *)
|
||||
|
||||
(** The simplex is used as a decision procedure for linear rational arithmetic
|
||||
problems.
|
||||
|
||||
More information can be found on the particular flavor of this
|
||||
implementation at https://gbury.eu/public/papers/stage-m2.pdf
|
||||
*)
|
||||
|
||||
module type S = sig
|
||||
(** The given type of the variables *)
|
||||
type var
|
||||
|
||||
(** A map on variables *)
|
||||
module Var_map : CCMap.S with type key = var
|
||||
|
||||
(** Parameter required at the creation of the simplex *)
|
||||
type param
|
||||
|
||||
type lit
|
||||
|
||||
(** The type of a (possibly not solved) linear system *)
|
||||
type t
|
||||
|
||||
(** An unsatisfiability explanation is a couple [(x, expr)]. If [expr] is the
|
||||
empty list, then there is a contradiction between two given bounds of [x].
|
||||
Else, the explanation is an equality [x = expr] that is valid
|
||||
(it can be derived from the original equations of the system) from which a
|
||||
bound can be deduced which contradicts an already given bound of the
|
||||
system. *)
|
||||
type cert = {
|
||||
cert_var: var;
|
||||
cert_expr: (Q.t * var) list;
|
||||
cert_core: lit list;
|
||||
}
|
||||
|
||||
(** Generic type returned when solving the simplex. A solution is a list of
|
||||
bindings that satisfies all the constraints inside the system. If the
|
||||
system is unsatisfiable, an explanation of type ['cert] is returned. *)
|
||||
type res =
|
||||
| Solution of Q.t Var_map.t
|
||||
| Unsatisfiable of cert
|
||||
|
||||
(** {3 Simplex construction} *)
|
||||
|
||||
(** The empty system.
|
||||
@param fresh the state for generating fresh variables on demand. *)
|
||||
val create : param -> t
|
||||
|
||||
(** Returns a copy of the given system *)
|
||||
val copy : t -> t
|
||||
|
||||
(** [add_eq s (x, eq)] adds the equation [x=eq] to [s] *)
|
||||
val add_eq : t -> var * (Q.t * var) list -> unit
|
||||
|
||||
(** [add_bounds (x, lower, upper)] adds to [s]
|
||||
the bounds [lower] and [upper] for the given variable [x].
|
||||
If the bound is loose on one side
|
||||
(no upper bounds for instance), the values [Q.inf] and
|
||||
[Q.minus_inf] can be used. By default, in a system, all variables
|
||||
have no bounds, i.e have lower bound [Q.minus_inf] and upper bound
|
||||
[Q.inf].
|
||||
Optional parameters allow to make the the bounds strict. Defaults to false,
|
||||
so that bounds are large by default. *)
|
||||
val add_bounds : t -> ?strict_lower:bool -> ?strict_upper:bool -> var * Q.t * Q.t -> unit
|
||||
|
||||
val add_lower_bound : t -> ?strict:bool -> var -> Q.t -> unit
|
||||
|
||||
val add_upper_bound : t -> ?strict:bool -> var -> Q.t -> unit
|
||||
|
||||
(** {3 Simplex solving} *)
|
||||
|
||||
(** [solve s] solves the system [s] and returns a solution, if one exists.
|
||||
This function may change the internal representation of the system to
|
||||
that of an equivalent one
|
||||
(permutation of basic and non basic variables and pivot operation
|
||||
on the tableaux).
|
||||
*)
|
||||
val solve : t -> res
|
||||
|
||||
val check_cert :
|
||||
t ->
|
||||
cert ->
|
||||
[`Ok | `Bad_bounds of string * string | `Diff_not_0 of Q.t Var_map.t]
|
||||
(** checks that the certificat indeed yields to a contradiction
|
||||
in the current state of the simplex.
|
||||
@return [`Ok] if the certificate is valid. *)
|
||||
|
||||
(* TODO: push/pop? at least on bounds *)
|
||||
|
||||
val pp_cert : cert CCFormat.printer
|
||||
|
||||
val pp_full_state : t CCFormat.printer
|
||||
|
||||
(**/**)
|
||||
val check_invariants : t -> bool (* check that all invariants hold *)
|
||||
val matrix_pp_width : int ref (* horizontal filling when we print the matrix *)
|
||||
(**/**)
|
||||
end
|
||||
|
||||
(* TODO: benchmark
|
||||
- copy current implem;
|
||||
- move random generator somewhere shared;
|
||||
- compare cur & old implem;
|
||||
- optimize (remove find_expr?))
|
||||
*)
|
||||
|
||||
module type S_FULL = sig
|
||||
include S
|
||||
|
||||
module L : Linear_expr_intf.S
|
||||
with type C.t = Q.t and type Var.t = var and type Var.lit = lit
|
||||
|
||||
type op = Predicate.t = Leq | Geq | Lt | Gt | Eq | Neq
|
||||
|
||||
type constr = L.Constr.t
|
||||
|
||||
val add_constr : t -> constr -> unit
|
||||
(** Add a constraint to a simplex state. *)
|
||||
end
|
||||
|
|
@ -306,6 +306,7 @@ module Th_lra = Sidekick_arith_lra.Make(struct
|
|||
module S = Solver
|
||||
module T = BT.Term
|
||||
type term = S.T.Term.t
|
||||
type ty = S.T.Ty.t
|
||||
|
||||
let mk_lra = T.lra
|
||||
let view_as_lra t = match T.view t with
|
||||
|
|
@ -313,6 +314,8 @@ module Th_lra = Sidekick_arith_lra.Make(struct
|
|||
| T.Eq (a,b) when Ty.equal (T.ty a) Ty.real -> LRA_pred (Eq, a, b)
|
||||
| _ -> LRA_other t
|
||||
|
||||
let ty_lra _st = Ty.real
|
||||
|
||||
module Gensym = struct
|
||||
type t = {
|
||||
tst: T.state;
|
||||
|
|
@ -320,6 +323,8 @@ module Th_lra = Sidekick_arith_lra.Make(struct
|
|||
}
|
||||
|
||||
let create tst : t = {tst; fresh=0}
|
||||
let tst self = self.tst
|
||||
let copy s = {s with tst=s.tst}
|
||||
|
||||
let fresh_term (self:t) ~pre (ty:Ty.t) : T.t =
|
||||
let name = Printf.sprintf "_sk_lra_%s%d" pre self.fresh in
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue