remove Bitv and Heap from common, they are unused

This commit is contained in:
Simon Cruanes 2014-11-04 00:21:01 +01:00
parent a5e2fe079a
commit 6dbd451946
4 changed files with 0 additions and 1084 deletions

View file

@ -1,762 +0,0 @@
(**************************************************************************)
(* *)
(* Copyright (C) Jean-Christophe Filliatre *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(*i $Id: bitv.ml,v 1.26 2012/08/14 07:26:00 filliatr Exp $ i*)
(*s Bit vectors. The interface and part of the code are borrowed from the
[Array] module of the ocaml standard library (but things are simplified
here since we can always initialize a bit vector). This module also
provides bitwise operations. *)
(*s We represent a bit vector by a vector of integers (field [bits]),
and we keep the information of the size of the bit vector since it
can not be found out with the size of the array (field [length]). *)
type t = {
length : int;
bits : int array }
let length v = v.length
(*s Each element of the array is an integer containing [bpi] bits, where
[bpi] is determined according to the machine word size. Since we do not
use the sign bit, [bpi] is 30 on a 32-bits machine and 62 on a 64-bits
machines. We maintain the following invariant:
{\em The unused bits of the last integer are always
zeros.} This is ensured by [create] and maintained in other functions
using [normalize]. [bit_j], [bit_not_j], [low_mask] and [up_mask]
are arrays used to extract and mask bits in a single integer. *)
let bpi = Sys.word_size - 2
let max_length = Sys.max_array_length * bpi
let bit_j = Array.init bpi (fun j -> 1 lsl j)
let bit_not_j = Array.init bpi (fun j -> max_int - bit_j.(j))
let low_mask = Array.create (succ bpi) 0
let _ =
for i = 1 to bpi do low_mask.(i) <- low_mask.(i-1) lor bit_j.(pred i) done
let keep_lowest_bits a j = a land low_mask.(j)
let high_mask = Array.init (succ bpi) (fun j -> low_mask.(j) lsl (bpi-j))
let keep_highest_bits a j = a land high_mask.(j)
(*s Creating and normalizing a bit vector is easy: it is just a matter of
taking care of the invariant. Copy is immediate. *)
let create n b =
let initv = if b then max_int else 0 in
let r = n mod bpi in
if r = 0 then
{ length = n; bits = Array.create (n / bpi) initv }
else begin
let s = n / bpi in
let b = Array.create (succ s) initv in
b.(s) <- b.(s) land low_mask.(r);
{ length = n; bits = b }
end
let normalize v =
let r = v.length mod bpi in
if r > 0 then
let b = v.bits in
let s = Array.length b in
b.(s-1) <- b.(s-1) land low_mask.(r)
let copy v = { length = v.length; bits = Array.copy v.bits }
(*s Access and assignment. The [n]th bit of a bit vector is the [j]th
bit of the [i]th integer, where [i = n / bpi] and [j = n mod
bpi]. Both [i] and [j] and computed by the function [pos].
Accessing a bit is testing whether the result of the corresponding
mask operation is non-zero, and assigning it is done with a
bitwiwe operation: an {\em or} with [bit_j] to set it, and an {\em
and} with [bit_not_j] to unset it. *)
let pos n =
let i = n / bpi and j = n mod bpi in
if j < 0 then (i - 1, j + bpi) else (i,j)
let unsafe_get v n =
let (i,j) = pos n in
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0
let unsafe_set v n b =
let (i,j) = pos n in
if b then
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
else
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))
(*s The corresponding safe operations test the validiy of the access. *)
let get v n =
if n < 0 or n >= v.length then invalid_arg "Bitv.get";
let (i,j) = pos n in
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0
let set v n b =
if n < 0 or n >= v.length then invalid_arg "Bitv.set";
let (i,j) = pos n in
if b then
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
else
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))
(*s [init] is implemented naively using [unsafe_set]. *)
let init n f =
let v = create n false in
for i = 0 to pred n do
unsafe_set v i (f i)
done;
v
(*s Handling bits by packets is the key for efficiency of functions
[append], [concat], [sub] and [blit].
We start by a very general function [blit_bits a i m v n] which blits
the bits [i] to [i+m-1] of a native integer [a]
onto the bit vector [v] at index [n]. It assumes that [i..i+m-1] and
[n..n+m-1] are respectively valid subparts of [a] and [v].
It is optimized when the bits fit the lowest boundary of an integer
(case [j == 0]). *)
let blit_bits a i m v n =
let (i',j) = pos n in
if j == 0 then
Array.unsafe_set v i'
((keep_lowest_bits (a lsr i) m) lor
(keep_highest_bits (Array.unsafe_get v i') (bpi - m)))
else
let d = m + j - bpi in
if d > 0 then begin
Array.unsafe_set v i'
(((keep_lowest_bits (a lsr i) (bpi - j)) lsl j) lor
(keep_lowest_bits (Array.unsafe_get v i') j));
Array.unsafe_set v (succ i')
((keep_lowest_bits (a lsr (i + bpi - j)) d) lor
(keep_highest_bits (Array.unsafe_get v (succ i')) (bpi - d)))
end else
Array.unsafe_set v i'
(((keep_lowest_bits (a lsr i) m) lsl j) lor
((Array.unsafe_get v i') land (low_mask.(j) lor high_mask.(-d))))
(*s [blit_int] implements [blit_bits] in the particular case when
[i=0] and [m=bpi] i.e. when we blit all the bits of [a]. *)
let blit_int a v n =
let (i,j) = pos n in
if j == 0 then
Array.unsafe_set v i a
else begin
Array.unsafe_set v i
( (keep_lowest_bits (Array.unsafe_get v i) j) lor
((keep_lowest_bits a (bpi - j)) lsl j));
Array.unsafe_set v (succ i)
((keep_highest_bits (Array.unsafe_get v (succ i)) (bpi - j)) lor
(a lsr (bpi - j)))
end
(*s When blitting a subpart of a bit vector into another bit vector, there
are two possible cases: (1) all the bits are contained in a single integer
of the first bit vector, and a single call to [blit_bits] is the
only thing to do, or (2) the source bits overlap on several integers of
the source array, and then we do a loop of [blit_int], with two calls
to [blit_bits] for the two bounds. *)
let unsafe_blit v1 ofs1 v2 ofs2 len =
if len > 0 then
let (bi,bj) = pos ofs1 in
let (ei,ej) = pos (ofs1 + len - 1) in
if bi == ei then
blit_bits (Array.unsafe_get v1 bi) bj len v2 ofs2
else begin
blit_bits (Array.unsafe_get v1 bi) bj (bpi - bj) v2 ofs2;
let n = ref (ofs2 + bpi - bj) in
for i = succ bi to pred ei do
blit_int (Array.unsafe_get v1 i) v2 !n;
n := !n + bpi
done;
blit_bits (Array.unsafe_get v1 ei) 0 (succ ej) v2 !n
end
let blit v1 ofs1 v2 ofs2 len =
if len < 0 or ofs1 < 0 or ofs1 + len > v1.length
or ofs2 < 0 or ofs2 + len > v2.length
then invalid_arg "Bitv.blit";
unsafe_blit v1.bits ofs1 v2.bits ofs2 len
(*s Extracting the subvector [ofs..ofs+len-1] of [v] is just creating a
new vector of length [len] and blitting the subvector of [v] inside. *)
let sub v ofs len =
if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.sub";
let r = create len false in
unsafe_blit v.bits ofs r.bits 0 len;
r
(*s The concatenation of two bit vectors [v1] and [v2] is obtained by
creating a vector for the result and blitting inside the two vectors.
[v1] is copied directly. *)
let append v1 v2 =
let l1 = v1.length
and l2 = v2.length in
let r = create (l1 + l2) false in
let b1 = v1.bits in
let b2 = v2.bits in
let b = r.bits in
for i = 0 to Array.length b1 - 1 do
Array.unsafe_set b i (Array.unsafe_get b1 i)
done;
unsafe_blit b2 0 b l1 l2;
r
(*s The concatenation of a list of bit vectors is obtained by iterating
[unsafe_blit]. *)
let concat vl =
let size = List.fold_left (fun sz v -> sz + v.length) 0 vl in
let res = create size false in
let b = res.bits in
let pos = ref 0 in
List.iter
(fun v ->
let n = v.length in
unsafe_blit v.bits 0 b !pos n;
pos := !pos + n)
vl;
res
(*s Filling is a particular case of blitting with a source made of all
ones or all zeros. Thus we instanciate [unsafe_blit], with 0 and
[max_int]. *)
let blit_zeros v ofs len =
if len > 0 then
let (bi,bj) = pos ofs in
let (ei,ej) = pos (ofs + len - 1) in
if bi == ei then
blit_bits 0 bj len v ofs
else begin
blit_bits 0 bj (bpi - bj) v ofs;
let n = ref (ofs + bpi - bj) in
for i = succ bi to pred ei do
blit_int 0 v !n;
n := !n + bpi
done;
blit_bits 0 0 (succ ej) v !n
end
let blit_ones v ofs len =
if len > 0 then
let (bi,bj) = pos ofs in
let (ei,ej) = pos (ofs + len - 1) in
if bi == ei then
blit_bits max_int bj len v ofs
else begin
blit_bits max_int bj (bpi - bj) v ofs;
let n = ref (ofs + bpi - bj) in
for i = succ bi to pred ei do
blit_int max_int v !n;
n := !n + bpi
done;
blit_bits max_int 0 (succ ej) v !n
end
let fill v ofs len b =
if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.fill";
if b then blit_ones v.bits ofs len else blit_zeros v.bits ofs len
(*s All the iterators are implemented as for traditional arrays, using
[unsafe_get]. For [iter] and [map], we do not precompute [(f
true)] and [(f false)] since [f] is likely to have
side-effects. *)
let iter f v =
for i = 0 to v.length - 1 do f (unsafe_get v i) done
let map f v =
let l = v.length in
let r = create l false in
for i = 0 to l - 1 do
unsafe_set r i (f (unsafe_get v i))
done;
r
let iteri f v =
for i = 0 to v.length - 1 do f i (unsafe_get v i) done
let mapi f v =
let l = v.length in
let r = create l false in
for i = 0 to l - 1 do
unsafe_set r i (f i (unsafe_get v i))
done;
r
let fold_left f x v =
let r = ref x in
for i = 0 to v.length - 1 do
r := f !r (unsafe_get v i)
done;
!r
let fold_right f v x =
let r = ref x in
for i = v.length - 1 downto 0 do
r := f (unsafe_get v i) !r
done;
!r
let foldi_left f x v =
let r = ref x in
for i = 0 to v.length - 1 do
r := f !r i (unsafe_get v i)
done;
!r
let foldi_right f v x =
let r = ref x in
for i = v.length - 1 downto 0 do
r := f i (unsafe_get v i) !r
done;
!r
let iteri_true_naive f v =
Array.iteri
(fun i n -> if n != 0 then begin
let i_bpi = i * bpi in
for j = 0 to bpi - 1 do
if n land (Array.unsafe_get bit_j j) > 0 then f (i_bpi + j)
done
end)
v.bits
(*s Number of trailing zeros (on a 32-bit machine) *)
let hash32 x = ((0x34ca8b09 * x) land 0x3fffffff) lsr 24
let ntz_arr32 = Array.create 64 0
let () = for i = 0 to 30 do ntz_arr32.(hash32 (1 lsl i)) <- i done
let ntz32 x = if x == 0 then 31 else ntz_arr32.(hash32 (x land (-x)))
let iteri_true_ntz32 f v =
Array.iteri
(fun i n ->
let i_bpi = i * bpi in
let rec visit x =
if x != 0 then begin
let b = x land (-x) in
f (i_bpi + ntz32 b);
visit (x - b)
end
in
visit n)
v.bits
let martin_constant = (0x03f79d71b lsl 28) lor 0x4ca8b09 (*0x03f79d71b4ca8b09*)
let hash64 x = ((martin_constant * x) land max_int) lsr 56
let ntz_arr64 = Array.create 64 0
let () = for i = 0 to 62 do ntz_arr64.(hash64 (1 lsl i)) <- i done
let ntz64 x = if x == 0 then 63 else ntz_arr64.(hash64 (x land (-x)))
let iteri_true_ntz64 f v =
Array.iteri
(fun i n ->
let i_bpi = i * bpi in
let rec visit x =
if x != 0 then begin
let b = x land (-x) in
f (i_bpi + ntz64 b);
visit (x - b)
end
in
visit n)
v.bits
let iteri_true = match Sys.word_size with
| 32 -> iteri_true_ntz32
| 64 -> iteri_true_ntz64
| _ -> assert false
(*s Bitwise operations. It is straigthforward, since bitwise operations
can be realized by the corresponding bitwise operations over integers.
However, one has to take care of normalizing the result of [bwnot]
which introduces ones in highest significant positions. *)
let bw_and v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_and";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) land b2.(i)
done;
{ length = l; bits = a }
let bw_and_in_place v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_and";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
for i = 0 to n - 1 do
b1.(i) <- b1.(i) land b2.(i)
done
let bw_or v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_or";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) lor b2.(i)
done;
{ length = l; bits = a }
let bw_or_in_place v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_or";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
for i = 0 to n - 1 do
b1.(i) <- b1.(i) lor b2.(i)
done
let bw_xor v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_xor";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) lxor b2.(i)
done;
{ length = l; bits = a }
let bw_not v =
let b = v.bits in
let n = Array.length b in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- max_int land (lnot b.(i))
done;
let r = { length = v.length; bits = a } in
normalize r;
r
let bw_not_in_place v =
let b = v.bits in
let n = Array.length b in
for i = 0 to n - 1 do
b.(i) <- max_int land (lnot b.(i))
done;
normalize v
(*s Shift operations. It is easy to reuse [unsafe_blit], although it is
probably slightly less efficient than a ad-hoc piece of code. *)
let rec shiftl v d =
if d == 0 then
copy v
else if d < 0 then
shiftr v (-d)
else begin
let n = v.length in
let r = create n false in
if d < n then unsafe_blit v.bits 0 r.bits d (n - d);
r
end
and shiftr v d =
if d == 0 then
copy v
else if d < 0 then
shiftl v (-d)
else begin
let n = v.length in
let r = create n false in
if d < n then unsafe_blit v.bits d r.bits 0 (n - d);
r
end
(*s Testing for all zeros and all ones. *)
let all_zeros v =
let b = v.bits in
let n = Array.length b in
let rec test i =
(i == n) || ((Array.unsafe_get b i == 0) && test (succ i))
in
test 0
let all_ones v =
let b = v.bits in
let n = Array.length b in
let rec test i =
if i == n - 1 then
let m = v.length mod bpi in
(Array.unsafe_get b i) == (if m == 0 then max_int else low_mask.(m))
else
((Array.unsafe_get b i) == max_int) && test (succ i)
in
test 0
(*s Conversions to and from strings. *)
module S(I : sig val least_first : bool end) = struct
let to_string v =
let n = v.length in
let s = String.make n '0' in
for i = 0 to n - 1 do
if unsafe_get v i then s.[if I.least_first then i else n-1-i] <- '1'
done;
s
let print fmt v = Format.pp_print_string fmt (to_string v)
let of_string s =
let n = String.length s in
let v = create n false in
for i = 0 to n - 1 do
let c = String.unsafe_get s i in
if c = '1' then
unsafe_set v (if I.least_first then i else n-1-i) true
else
if c <> '0' then invalid_arg "Bitv.of_string"
done;
v
end
module L = S(struct let least_first = true end)
module M = S(struct let least_first = false end)
(*s Input/output in a machine-independent format. *)
let output_bin out_ch v =
let len = length v in
let rec loop i pow byte =
let byte = if unsafe_get v i then byte lor pow else byte in
if i = len - 1 then
output_byte out_ch byte
else if i mod 8 = 7 then begin
output_byte out_ch byte;
loop (i + 1) 1 0
end else
loop (i + 1) (pow * 2) byte
in
output_binary_int out_ch len;
if len > 0 then loop 0 1 0
let input_bin in_ch =
let len = input_binary_int in_ch in
let bits = create len false in
let rec loop i byte =
if i < len then begin
let byte = if i mod 8 = 0 then input_byte in_ch else byte in
if byte land 1 = 1 then unsafe_set bits i true;
loop (i+1) (byte / 2)
end
in
if len > 0 then loop 0 0;
bits
(*s Iteration on all bit vectors of length [n] using a Gray code. *)
let first_set v n =
let rec lookup i =
if i = n then raise Not_found ;
if unsafe_get v i then i else lookup (i + 1)
in
lookup 0
let gray_iter f n =
let bv = create n false in
let rec iter () =
f bv;
unsafe_set bv 0 (not (unsafe_get bv 0));
f bv;
let pos = succ (first_set bv n) in
if pos < n then begin
unsafe_set bv pos (not (unsafe_get bv pos));
iter ()
end
in
if n > 0 then iter ()
(*s Coercions to/from lists of integers *)
let of_list l =
let n = List.fold_left max 0 l in
let b = create (succ n) false in
let add_element i =
(* negative numbers are invalid *)
if i < 0 then invalid_arg "Bitv.of_list";
unsafe_set b i true
in
List.iter add_element l;
b
let of_list_with_length l len =
let b = create len false in
let add_element i =
if i < 0 || i >= len then invalid_arg "Bitv.of_list_with_length";
unsafe_set b i true
in
List.iter add_element l;
b
let to_list b =
let n = length b in
let rec make i acc =
if i < 0 then acc
else make (pred i) (if unsafe_get b i then i :: acc else acc)
in
make (pred n) []
(*s To/from integers. *)
(* [int] *)
let of_int_us i =
{ length = bpi; bits = [| i land max_int |] }
let to_int_us v =
if v.length < bpi then invalid_arg "Bitv.to_int_us";
v.bits.(0)
let of_int_s i =
{ length = succ bpi; bits = [| i land max_int; (i lsr bpi) land 1 |] }
let to_int_s v =
if v.length < succ bpi then invalid_arg "Bitv.to_int_s";
v.bits.(0) lor (v.bits.(1) lsl bpi)
(* [Int32] *)
let of_int32_us i = match Sys.word_size with
| 32 -> { length = 31;
bits = [| (Int32.to_int i) land max_int;
let hi = Int32.shift_right_logical i 30 in
(Int32.to_int hi) land 1 |] }
| 64 -> { length = 31; bits = [| (Int32.to_int i) land 0x7fffffff |] }
| _ -> assert false
let to_int32_us v =
if v.length < 31 then invalid_arg "Bitv.to_int32_us";
match Sys.word_size with
| 32 ->
Int32.logor (Int32.of_int v.bits.(0))
(Int32.shift_left (Int32.of_int (v.bits.(1) land 1)) 30)
| 64 ->
Int32.of_int (v.bits.(0) land 0x7fffffff)
| _ -> assert false
(* this is 0xffffffff (ocaml >= 3.08 checks for literal overflow) *)
let ffffffff = (0xffff lsl 16) lor 0xffff
let of_int32_s i = match Sys.word_size with
| 32 -> { length = 32;
bits = [| (Int32.to_int i) land max_int;
let hi = Int32.shift_right_logical i 30 in
(Int32.to_int hi) land 3 |] }
| 64 -> { length = 32; bits = [| (Int32.to_int i) land ffffffff |] }
| _ -> assert false
let to_int32_s v =
if v.length < 32 then invalid_arg "Bitv.to_int32_s";
match Sys.word_size with
| 32 ->
Int32.logor (Int32.of_int v.bits.(0))
(Int32.shift_left (Int32.of_int (v.bits.(1) land 3)) 30)
| 64 ->
Int32.of_int (v.bits.(0) land ffffffff)
| _ -> assert false
(* [Int64] *)
let of_int64_us i = match Sys.word_size with
| 32 -> { length = 63;
bits = [| (Int64.to_int i) land max_int;
(let mi = Int64.shift_right_logical i 30 in
(Int64.to_int mi) land max_int);
let hi = Int64.shift_right_logical i 60 in
(Int64.to_int hi) land 1 |] }
| 64 -> { length = 63;
bits = [| (Int64.to_int i) land max_int;
let hi = Int64.shift_right_logical i 62 in
(Int64.to_int hi) land 1 |] }
| _ -> assert false
let to_int64_us v =
if v.length < 63 then invalid_arg "Bitv.to_int64_us";
match Sys.word_size with
| 32 ->
Int64.logor (Int64.of_int v.bits.(0))
(Int64.logor (Int64.shift_left (Int64.of_int v.bits.(1)) 30)
(Int64.shift_left (Int64.of_int (v.bits.(2) land 7)) 60))
| 64 ->
Int64.logor (Int64.of_int v.bits.(0))
(Int64.shift_left (Int64.of_int (v.bits.(1) land 1)) 62)
| _ ->
assert false
let of_int64_s i = match Sys.word_size with
| 32 -> { length = 64;
bits = [| (Int64.to_int i) land max_int;
(let mi = Int64.shift_right_logical i 30 in
(Int64.to_int mi) land max_int);
let hi = Int64.shift_right_logical i 60 in
(Int64.to_int hi) land 3 |] }
| 64 -> { length = 64;
bits = [| (Int64.to_int i) land max_int;
let hi = Int64.shift_right_logical i 62 in
(Int64.to_int hi) land 3 |] }
| _ -> assert false
let to_int64_s v =
if v.length < 64 then invalid_arg "Bitv.to_int64_s";
match Sys.word_size with
| 32 ->
Int64.logor (Int64.of_int v.bits.(0))
(Int64.logor (Int64.shift_left (Int64.of_int v.bits.(1)) 30)
(Int64.shift_left (Int64.of_int (v.bits.(2) land 15)) 60))
| 64 ->
Int64.logor (Int64.of_int v.bits.(0))
(Int64.shift_left (Int64.of_int (v.bits.(1) land 3)) 62)
| _ -> assert false
(* [Nativeint] *)
let select_of f32 f64 = match Sys.word_size with
| 32 -> (fun i -> f32 (Nativeint.to_int32 i))
| 64 -> (fun i -> f64 (Int64.of_nativeint i))
| _ -> assert false
let of_nativeint_s = select_of of_int32_s of_int64_s
let of_nativeint_us = select_of of_int32_us of_int64_us
let select_to f32 f64 = match Sys.word_size with
| 32 -> (fun i -> Nativeint.of_int32 (f32 i))
| 64 -> (fun i -> Int64.to_nativeint (f64 i))
| _ -> assert false
let to_nativeint_s = select_to to_int32_s to_int64_s
let to_nativeint_us = select_to to_int32_us to_int64_us

View file

@ -1,228 +0,0 @@
(**************************************************************************)
(* *)
(* Copyright (C) Jean-Christophe Filliatre *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(*i $Id: bitv.mli,v 1.19 2012/08/14 07:26:00 filliatr Exp $ i*)
(*s {\bf Module Bitv}.
This module implements bit vectors, as an abstract datatype [t].
Since bit vectors are particular cases of arrays, this module provides
the same operations as module [Array] (Sections~\ref{barray}
up to \ref{earray}). It also provides bitwise operations
(Section~\ref{bitwise}) and conversions to/from integer types.
In the following, [false] stands for bit 0 and [true] for bit 1. *)
type t
(*s {\bf Creation, access and assignment.} \label{barray}
[(Bitv.create n b)] creates a new bit vector of length [n],
initialized with [b].
[(Bitv.init n f)] returns a fresh vector of length [n],
with bit number [i] initialized to the result of [(f i)].
[(Bitv.set v n b)] sets the [n]th bit of [v] to the value [b].
[(Bitv.get v n)] returns the [n]th bit of [v].
[Bitv.length] returns the length (number of elements) of the given
vector. *)
val create : int -> bool -> t
val init : int -> (int -> bool) -> t
val set : t -> int -> bool -> unit
val get : t -> int -> bool
val length : t -> int
(*s [max_length] is the maximum length of a bit vector (System dependent). *)
val max_length : int
(*s {\bf Copies and concatenations.}
[(Bitv.copy v)] returns a copy of [v],
that is, a fresh vector containing the same elements as
[v]. [(Bitv.append v1 v2)] returns a fresh vector containing the
concatenation of the vectors [v1] and [v2]. [Bitv.concat] is
similar to [Bitv.append], but catenates a list of vectors. *)
val copy : t -> t
val append : t -> t -> t
val concat : t list -> t
(*s {\bf Sub-vectors and filling.}
[(Bitv.sub v start len)] returns a fresh
vector of length [len], containing the bits number [start] to
[start + len - 1] of vector [v]. Raise [Invalid_argument
"Bitv.sub"] if [start] and [len] do not designate a valid
subvector of [v]; that is, if [start < 0], or [len < 0], or [start
+ len > Bitv.length a].
[(Bitv.fill v ofs len b)] modifies the vector [v] in place,
storing [b] in elements number [ofs] to [ofs + len - 1]. Raise
[Invalid_argument "Bitv.fill"] if [ofs] and [len] do not designate
a valid subvector of [v].
[(Bitv.blit v1 o1 v2 o2 len)] copies [len] elements from vector
[v1], starting at element number [o1], to vector [v2], starting at
element number [o2]. It {\em does not work} correctly if [v1] and [v2] are
the same vector with the source and destination chunks overlapping.
Raise [Invalid_argument "Bitv.blit"] if [o1] and [len] do not
designate a valid subvector of [v1], or if [o2] and [len] do not
designate a valid subvector of [v2]. *)
val sub : t -> int -> int -> t
val fill : t -> int -> int -> bool -> unit
val blit : t -> int -> t -> int -> int -> unit
(*s {\bf Iterators.} \label{earray}
[(Bitv.iter f v)] applies function [f] in turn to all
the elements of [v]. Given a function [f], [(Bitv.map f v)] applies
[f] to all
the elements of [v], and builds a vector with the results returned
by [f]. [Bitv.iteri] and [Bitv.mapi] are similar to [Bitv.iter]
and [Bitv.map] respectively, but the function is applied to the
index of the element as first argument, and the element itself as
second argument.
[(Bitv.fold_left f x v)] computes [f (... (f (f x (get v 0)) (get
v 1)) ...) (get v (n-1))], where [n] is the length of the vector
[v].
[(Bitv.fold_right f a x)] computes [f (get v 0) (f (get v 1)
( ... (f (get v (n-1)) x) ...))], where [n] is the length of the
vector [v]. *)
val iter : (bool -> unit) -> t -> unit
val map : (bool -> bool) -> t -> t
val iteri : (int -> bool -> unit) -> t -> unit
val mapi : (int -> bool -> bool) -> t -> t
val fold_left : ('a -> bool -> 'a) -> 'a -> t -> 'a
val fold_right : (bool -> 'a -> 'a) -> t -> 'a -> 'a
val foldi_left : ('a -> int -> bool -> 'a) -> 'a -> t -> 'a
val foldi_right : (int -> bool -> 'a -> 'a) -> t -> 'a -> 'a
(*s [iteri_true f v] applies function [f] in turn to all indexes of
the elements of [v] which are set (i.e. [true]); indexes are
visited from least significant to most significant. *)
val iteri_true : (int -> unit) -> t -> unit
(*s [gray_iter f n] iterates function [f] on all bit vectors
of length [n], once each, using a Gray code. The order in which
bit vectors are processed is unspecified. *)
val gray_iter : (t -> unit) -> int -> unit
(*s {\bf Bitwise operations.} \label{bitwise} [bwand], [bwor] and
[bwxor] implement logical and, or and exclusive or. They return
fresh vectors and raise [Invalid_argument "Bitv.xxx"] if the two
vectors do not have the same length (where \texttt{xxx} is the
name of the function). [bwnot] implements the logical negation.
It returns a fresh vector.
[shiftl] and [shiftr] implement shifts. They return fresh vectors.
[shiftl] moves bits from least to most significant, and [shiftr]
from most to least significant (think [lsl] and [lsr]).
[all_zeros] and [all_ones] respectively test for a vector only
containing zeros and only containing ones. *)
val bw_and : t -> t -> t
val bw_or : t -> t -> t
val bw_xor : t -> t -> t
val bw_not : t -> t
val bw_and_in_place : t -> t -> unit
val bw_or_in_place : t -> t -> unit
val bw_not_in_place : t -> unit
val shiftl : t -> int -> t
val shiftr : t -> int -> t
val all_zeros : t -> bool
val all_ones : t -> bool
(*s {\bf Conversions to and from strings.} *)
(* With least significant bits first. *)
module L : sig
val to_string : t -> string
val of_string : string -> t
val print : Format.formatter -> t -> unit
end
(* With most significant bits first. *)
module M : sig
val to_string : t -> string
val of_string : string -> t
val print : Format.formatter -> t -> unit
end
(*s {\bf Input/output in a machine-independent format.}
The following functions export/import a bit vector to/from a channel,
in a way that is compact, independent of the machine architecture, and
independent of the OCaml version.
For a bit vector of length [n], the number of bytes of this external
representation is 4+ceil(n/8) on a 32-bit machine and 8+ceil(n/8) on
a 64-bit machine. *)
val output_bin: out_channel -> t -> unit
val input_bin: in_channel -> t
(*s {\bf Conversions to and from lists of integers.}
The list gives the indices of bits which are set (ie [true]). *)
val to_list : t -> int list
val of_list : int list -> t
val of_list_with_length : int list -> int -> t
(*s Interpretation of bit vectors as integers. Least significant bit
comes first (ie is at index 0 in the bit vector).
[to_xxx] functions truncate when the bit vector is too wide,
and raise [Invalid_argument] when it is too short.
Suffix [_s] means that sign bit is kept,
and [_us] that it is discarded. *)
(* type [int] (length 31/63 with sign, 30/62 without) *)
val of_int_s : int -> t
val to_int_s : t -> int
val of_int_us : int -> t
val to_int_us : t -> int
(* type [Int32.t] (length 32 with sign, 31 without) *)
val of_int32_s : Int32.t -> t
val to_int32_s : t -> Int32.t
val of_int32_us : Int32.t -> t
val to_int32_us : t -> Int32.t
(* type [Int64.t] (length 64 with sign, 63 without) *)
val of_int64_s : Int64.t -> t
val to_int64_s : t -> Int64.t
val of_int64_us : Int64.t -> t
val to_int64_us : t -> Int64.t
(* type [Nativeint.t] (length 32/64 with sign, 31/63 without) *)
val of_nativeint_s : Nativeint.t -> t
val to_nativeint_s : t -> Nativeint.t
val of_nativeint_us : Nativeint.t -> t
val to_nativeint_us : t -> Nativeint.t
(*s Only if you know what you are doing... *)
val unsafe_set : t -> int -> bool -> unit
val unsafe_get : t -> int -> bool

View file

@ -1,62 +0,0 @@
(**************************************************************************)
(* *)
(* Cubicle *)
(* Combining model checking algorithms and SMT solvers *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* Copyright 2011. This file is distributed under the terms of the *)
(* Apache Software License version 2.0 *)
(* *)
(**************************************************************************)
exception EmptyHeap
module type OrderType = sig
type t
val compare : t -> t -> int
end
module type S = sig
type t
type elem
val empty : t
val pop : t -> elem * t
val add : t -> elem list -> t
val elements : t -> elem list
end
module Make ( X : OrderType ) = struct
type elem = X.t
type t = Empty | Node of elem * t * t
let empty = Empty
let rec fusion t1 t2 =
match t1, t2 with
| _ , Empty -> t1
| Empty , _ -> t2
| Node (m1, g1, d1), Node (m2, g2, d2) ->
if X.compare m1 m2 <= 0 then Node (m1, d1, fusion g1 t2)
else Node (m2, d2, fusion g2 t1)
let pop = function
| Empty -> raise EmptyHeap
| Node(m, g, d) -> m, fusion g d
let add h l =
List.fold_left (fun h x -> fusion (Node(x, Empty, Empty)) h ) h l
let elements h =
let rec elements_aux acc = function
| Empty -> acc
| Node (m1 ,g1 ,d1) -> elements_aux (m1 :: acc) (fusion g1 d1)
in
elements_aux [] h
end

View file

@ -1,32 +0,0 @@
(**************************************************************************)
(* *)
(* Cubicle *)
(* Combining model checking algorithms and SMT solvers *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* Copyright 2011. This file is distributed under the terms of the *)
(* Apache Software License version 2.0 *)
(* *)
(**************************************************************************)
exception EmptyHeap
module type OrderType = sig
type t
val compare : t -> t -> int
end
module type S = sig
type t
type elem
val empty : t
val pop : t -> elem * t
val add : t -> elem list -> t
val elements : t -> elem list
end
module Make ( X : OrderType ) : S with type elem = X.t