feat: change signature of explanations for CC theory merges

This commit is contained in:
Simon Cruanes 2021-12-28 23:07:10 -05:00
parent be1c1573b1
commit 80cb096e8a
No known key found for this signature in database
GPG key ID: 4AC01D0849AA62B6
2 changed files with 129 additions and 51 deletions

View file

@ -96,7 +96,7 @@ module Make (A: CC_ARG)
| E_merge_t of term * term | E_merge_t of term * term
| E_congruence of node * node (* caused by normal congruence *) | E_congruence of node * node (* caused by normal congruence *)
| E_and of explanation * explanation | E_and of explanation * explanation
| E_theory of proof_step * explanation list | E_theory of term * term * (term * term * explanation list) list * proof_step
type repr = node type repr = node
@ -166,8 +166,12 @@ module Make (A: CC_ARG)
| E_lit lit -> Lit.pp out lit | E_lit lit -> Lit.pp out lit
| E_congruence (n1,n2) -> Fmt.fprintf out "(@[congruence@ %a@ %a@])" N.pp n1 N.pp n2 | E_congruence (n1,n2) -> Fmt.fprintf out "(@[congruence@ %a@ %a@])" N.pp n1 N.pp n2
| E_merge (a,b) -> Fmt.fprintf out "(@[merge@ %a@ %a@])" N.pp a N.pp b | E_merge (a,b) -> Fmt.fprintf out "(@[merge@ %a@ %a@])" N.pp a N.pp b
| E_merge_t (a,b) -> Fmt.fprintf out "(@[<hv>merge@ @[:n1 %a@]@ @[:n2 %a@]@])" Term.pp a Term.pp b | E_merge_t (a,b) ->
| E_theory (_p,es) -> Fmt.fprintf out "(@[th@ %a@])" (Util.pp_list pp) es Fmt.fprintf out "(@[<hv>merge@ @[:n1 %a@]@ @[:n2 %a@]@])" Term.pp a Term.pp b
| E_theory (t,u,es,_) ->
Fmt.fprintf out "(@[th@ :t `%a`@ :u `%a`@ :expl_sets %a@])"
Term.pp t Term.pp u
(Util.pp_list @@ Fmt.Dump.triple Term.pp Term.pp (Fmt.Dump.list pp)) es
| E_and (a,b) -> | E_and (a,b) ->
Format.fprintf out "(@[<hv1>and@ %a@ %a@])" pp a pp b Format.fprintf out "(@[<hv1>and@ %a@ %a@])" pp a pp b
@ -176,7 +180,7 @@ module Make (A: CC_ARG)
let[@inline] mk_merge a b : t = if N.equal a b then mk_reduction else E_merge (a,b) let[@inline] mk_merge a b : t = if N.equal a b then mk_reduction else E_merge (a,b)
let[@inline] mk_merge_t a b : t = if Term.equal a b then mk_reduction else E_merge_t (a,b) let[@inline] mk_merge_t a b : t = if Term.equal a b then mk_reduction else E_merge_t (a,b)
let[@inline] mk_lit l : t = E_lit l let[@inline] mk_lit l : t = E_lit l
let[@inline] mk_theory p es = E_theory (p,es) let[@inline] mk_theory t u es pr = E_theory (t,u,es,pr)
let rec mk_list l = let rec mk_list l =
match l with match l with
@ -436,72 +440,100 @@ module Make (A: CC_ARG)
cleanup_ b; cleanup_ b;
n n
module Expl_state = struct
type t = {
mutable lits: Lit.t list;
mutable th_lemmas:
(Term.t * Term.t * Lit.t *
(Term.t * Term.t * Lit.t * Lit.t list) list * proof_step) list;
}
let create(): t = { lits=[]; th_lemmas=[] }
let[@inline] add_lit (self:t) lit = self.lits <- lit :: self.lits
let[@inline] add_th (self:t) t u lit l pr : unit =
self.th_lemmas <- (t,u,lit,l,pr) :: self.th_lemmas
let merge self other =
let {lits=o_lits; th_lemmas=o_lemmas} = other in
self.lits <- List.rev_append o_lits self.lits;
self.th_lemmas <- List.rev_append o_lemmas self.th_lemmas
end
(* decompose explanation [e] into a list of literals added to [acc] *) (* decompose explanation [e] into a list of literals added to [acc] *)
let rec explain_decompose_expl cc ~th (acc:lit list) (e:explanation) : _ list = let rec explain_decompose_expl cc (st:Expl_state.t) (e:explanation) : unit =
Log.debugf 5 (fun k->k "(@[cc.decompose_expl@ %a@])" Expl.pp e); Log.debugf 5 (fun k->k "(@[cc.decompose_expl@ %a@])" Expl.pp e);
match e with match e with
| E_reduction -> acc | E_reduction -> ()
| E_congruence (n1, n2) -> | E_congruence (n1, n2) ->
begin match n1.n_sig0, n2.n_sig0 with begin match n1.n_sig0, n2.n_sig0 with
| Some (App_fun (f1, a1)), Some (App_fun (f2, a2)) -> | Some (App_fun (f1, a1)), Some (App_fun (f2, a2)) ->
assert (Fun.equal f1 f2); assert (Fun.equal f1 f2);
assert (List.length a1 = List.length a2); assert (List.length a1 = List.length a2);
List.fold_left2 (explain_equal_rec_ cc ~th) acc a1 a2 List.iter2 (explain_equal_rec_ cc st) a1 a2
| Some (App_ho (f1, a1)), Some (App_ho (f2, a2)) -> | Some (App_ho (f1, a1)), Some (App_ho (f2, a2)) ->
let acc = explain_equal_rec_ cc ~th acc f1 f2 in explain_equal_rec_ cc st f1 f2;
explain_equal_rec_ cc ~th acc a1 a2 explain_equal_rec_ cc st a1 a2
| Some (If (a1,b1,c1)), Some (If (a2,b2,c2)) -> | Some (If (a1,b1,c1)), Some (If (a2,b2,c2)) ->
let acc = explain_equal_rec_ cc ~th acc a1 a2 in explain_equal_rec_ cc st a1 a2;
let acc = explain_equal_rec_ cc ~th acc b1 b2 in explain_equal_rec_ cc st b1 b2;
explain_equal_rec_ cc ~th acc c1 c2 explain_equal_rec_ cc st c1 c2;
| _ -> | _ ->
assert false assert false
end end
| E_lit lit -> lit :: acc | E_lit lit -> Expl_state.add_lit st lit
| E_theory (_pr, sub_l) -> | E_theory (t, u, expl_sets, pr) ->
(* FIXME: use pr as a subproof. We need to accumulate subproofs too, because let sub_proofs =
there is some amount of resolution done inside the congruence closure List.map
itself to resolve Horn clauses produced by theories. (fun (t_i,u_i,expls_i) ->
let lit_i = A.mk_lit_eq cc.tst t_i u_i in
maybe we need to store [t=u] where [pr] is the proof of [Gamma |- t=u], (* use a separate call to [explain_expls] for each set *)
add [t=u] to the explanation, and use a subproof to resolve let sub = explain_expls cc expls_i in
it away using [pr] and add [Gamma] to the mix *) Expl_state.merge st sub;
th := true; t_i, u_i, lit_i, sub.lits)
List.fold_left (explain_decompose_expl cc ~th) acc sub_l expl_sets
| E_merge (a,b) -> explain_equal_rec_ cc ~th acc a b in
let lit_t_u = A.mk_lit_eq cc.tst t u in
Expl_state.add_th st t u lit_t_u sub_proofs pr
| E_merge (a,b) -> explain_equal_rec_ cc st a b
| E_merge_t (a,b) -> | E_merge_t (a,b) ->
(* find nodes for [a] and [b] on the fly *) (* find nodes for [a] and [b] on the fly *)
begin match T_tbl.find cc.tbl a, T_tbl.find cc.tbl b with begin match T_tbl.find cc.tbl a, T_tbl.find cc.tbl b with
| a, b -> explain_equal_rec_ cc ~th acc a b | a, b -> explain_equal_rec_ cc st a b
| exception Not_found -> | exception Not_found ->
Error.errorf "expl: cannot find node(s) for %a, %a" Term.pp a Term.pp b Error.errorf "expl: cannot find node(s) for %a, %a" Term.pp a Term.pp b
end end
| E_and (a,b) -> | E_and (a,b) ->
let acc = explain_decompose_expl cc ~th acc a in explain_decompose_expl cc st a;
explain_decompose_expl cc ~th acc b explain_decompose_expl cc st b
and explain_equal_rec_ (cc:t) ~th (acc:lit list) (a:node) (b:node) : _ list = and explain_expls cc (es:explanation list) : Expl_state.t =
let st = Expl_state.create() in
List.iter (explain_decompose_expl cc st) es;
st
and explain_equal_rec_ (cc:t) (st:Expl_state.t) (a:node) (b:node) : unit =
Log.debugf 5 Log.debugf 5
(fun k->k "(@[cc.explain_loop.at@ %a@ =?= %a@])" N.pp a N.pp b); (fun k->k "(@[cc.explain_loop.at@ %a@ =?= %a@])" N.pp a N.pp b);
assert (N.equal (find_ a) (find_ b)); assert (N.equal (find_ a) (find_ b));
let ancestor = find_common_ancestor cc a b in let ancestor = find_common_ancestor cc a b in
let acc = explain_along_path cc ~th acc a ancestor in explain_along_path cc st a ancestor;
explain_along_path cc ~th acc b ancestor explain_along_path cc st b ancestor
(* explain why [a = parent_a], where [a -> ... -> target] in the (* explain why [a = parent_a], where [a -> ... -> target] in the
proof forest *) proof forest *)
and explain_along_path cc ~th acc (a:node) (target:node) : _ list = and explain_along_path cc (st:Expl_state.t) (a:node) (target:node) : unit =
let rec aux acc n = let rec aux n =
if n == target then acc if n == target then ()
else ( else (
match n.n_expl with match n.n_expl with
| FL_none -> assert false | FL_none -> assert false
| FL_some {next=next_n; expl=expl} -> | FL_some {next=next_n; expl=expl} ->
let acc = explain_decompose_expl cc ~th acc expl in explain_decompose_expl cc st expl;
(* now prove [next_n = target] *) (* now prove [next_n = target] *)
aux acc next_n aux next_n
) )
in aux acc a in aux a
(* add a term *) (* add a term *)
let [@inline] rec add_term_rec_ cc t : node = let [@inline] rec add_term_rec_ cc t : node =
@ -664,12 +696,27 @@ module Make (A: CC_ARG)
C2: lemma [lits |- true=false] (and resolve on theory proofs) C2: lemma [lits |- true=false] (and resolve on theory proofs)
C3: r1 C1 C2 C3: r1 C1 C2
*) *)
let lits = explain_decompose_expl cc ~th [] e_ab in let expl_st = Expl_state.create() in
let lits = explain_equal_rec_ cc ~th lits a ra in explain_decompose_expl cc expl_st e_ab;
let lits = explain_equal_rec_ cc ~th lits b rb in explain_equal_rec_ cc expl_st a ra;
explain_equal_rec_ cc expl_st b rb;
let {Expl_state.lits; th_lemmas} = expl_st in
let pr = let pr =
let p_lits = Iter.of_list lits |> Iter.map Lit.neg in let proof = Actions.proof acts in
P.lemma_cc p_lits @@ Actions.proof acts let p_lits1 = Iter.of_list lits |> Iter.map Lit.neg in
let p_lits2 =
Iter.of_list th_lemmas
|> Iter.map (fun (_,_,lit_t_u,_,_) -> Lit.neg lit_t_u)
in
let p_cc = P.lemma_cc (Iter.append p_lits1 p_lits2) proof in
List.fold_left
(fun pr (_,_,lit_t_u,sub_proofs,pr_th) ->
let pr_th = List.fold_left
(fun pr_th (_,_,lit_i,pr_i) -> P.proof_r1 pr_i pr_th proof)
pr_th sub_proofs
in
P.proof_r1 pr_th pr proof)
p_cc th_lemmas
in in
raise_conflict_ cc ~th:!th acts (List.rev_map Lit.neg lits) pr raise_conflict_ cc ~th:!th acts (List.rev_map Lit.neg lits) pr
); );

View file

@ -154,6 +154,11 @@ module type CC_PROOF = sig
val lemma_cc : lit Iter.t -> t -> proof_step val lemma_cc : lit Iter.t -> t -> proof_step
(** [lemma_cc proof lits] asserts that [lits] form a tautology for the theory (** [lemma_cc proof lits] asserts that [lits] form a tautology for the theory
of uninterpreted functions. *) of uninterpreted functions. *)
val proof_r1 : proof_step -> proof_step -> t -> proof_step
(** [proof_r1 p1 p2], where [p1] proves the unit clause [|- t] (t:bool)
and [p2] proves [C \/ ¬t], is the rule that produces [C \/ u],
i.e unit resolution. *)
end end
(** Signature for SAT-solver proof emission. *) (** Signature for SAT-solver proof emission. *)
@ -363,6 +368,9 @@ module type CC_ARG = sig
val cc_view : T.Term.t -> (T.Fun.t, T.Term.t, T.Term.t Iter.t) CC_view.t val cc_view : T.Term.t -> (T.Fun.t, T.Term.t, T.Term.t Iter.t) CC_view.t
(** View the term through the lens of the congruence closure *) (** View the term through the lens of the congruence closure *)
val mk_lit_eq : ?sign:bool -> T.Term.store -> T.Term.t -> T.Term.t -> Lit.t
(** [mk_lit_eq store t u] makes the literal [t=u] *)
end end
(** Main congruence closure signature. (** Main congruence closure signature.
@ -482,17 +490,40 @@ module type CC_S = sig
val pp : t Fmt.printer val pp : t Fmt.printer
val mk_merge : N.t -> N.t -> t val mk_merge : N.t -> N.t -> t
val mk_merge_t : term -> term -> t
val mk_lit : lit -> t
val mk_list : t list -> t
val mk_theory : proof_step -> t list -> t
(* FIXME: this should probably take [t, u, proof(Gamma |- t=u), expls],
where [expls] is a list of explanation of the equations in [Gamma].
For example for the lemma [a=b] deduced by injectivity from [Some a=Some b] val mk_merge_t : term -> term -> t
in the theory of datatypes, (** Explanation: the terms were explicitly merged *)
the arguments would be [a, b, proof(Some a=Some b |- a=b), e0]
where [e0] is an explanation of [Some a=Some b] *) val mk_lit : lit -> t
(** Explanation: we merged [t] and [u] because of literal [t=u],
or we merged [t] and [true] because of literal [t],
or [t] and [false] because of literal [¬t] *)
val mk_list : t list -> t
(** Conjunction of explanations *)
val mk_theory :
term -> term ->
(term * term * t list) list ->
proof_step -> t
(** [mk_theory t u expl_sets pr] builds a theory explanation for
why [|- t=u]. It depends on sub-explanations [expl_sets] which
are tuples [ (t_i, u_i, expls_i) ] where [expls_i] are
explanations that justify [t_i = u_i] in the current congruence closure.
The proof [pr] is the theory lemma, of the form
[ (t_i = u_i)_i |- t=u ].
It is resolved against each [expls_i |- t_i=u_i] obtained from
[expl_sets], on pivot [t_i=u_i], to obtain a proof of [Gamma |- t=u]
where [Gamma] is a subset of the literals asserted into the congruence
closure.
For example for the lemma [a=b] deduced by injectivity
from [Some a=Some b] in the theory of datatypes,
the arguments would be
[a, b, [Some a, Some b, mk_merge_t (Some a)(Some b)], pr]
where [pr] is the injectivity lemma [Some a=Some b |- a=b].
*)
end end
type node = N.t type node = N.t