mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 11:15:43 -05:00
test: add reg test
This commit is contained in:
parent
b250587a5f
commit
8749cfff0a
1 changed files with 40 additions and 0 deletions
40
tests/sat/typed_v5l90027.cvc.smt2
Normal file
40
tests/sat/typed_v5l90027.cvc.smt2
Normal file
|
|
@ -0,0 +1,40 @@
|
|||
(set-info :smt-lib-version 2.6)
|
||||
(set-logic QF_DT)
|
||||
(set-info :source |
|
||||
Generated by: Andrew Reynolds
|
||||
Generated on: 2017-04-28
|
||||
Generator: Random, converted to v2.6 by CVC4
|
||||
Application: Regressions for datatypes decision procedure.
|
||||
Target solver: CVC3
|
||||
Publications: "An Abstract Decision Procedure for Satisfiability in the Theory of Inductive Data Types" by Clark Barrett, Igor Shikanian, and Cesare Tinelli, Journal on Satisfiability, Boolean Modeling and Computation 2007.
|
||||
|)
|
||||
(set-info :license "https://creativecommons.org/licenses/by/4.0/")
|
||||
(set-info :category "random")
|
||||
(set-info :status sat)
|
||||
|
||||
|
||||
(declare-datatypes ((nat 0)(list 0)(tree 0)) (((succ (pred nat)) (zero))
|
||||
((cons (car tree) (cdr list)) (null))
|
||||
((node (children list)) (leaf (data nat)))
|
||||
))
|
||||
(declare-fun x1 () nat)
|
||||
(declare-fun x2 () nat)
|
||||
(declare-fun x3 () nat)
|
||||
(declare-fun x4 () nat)
|
||||
(declare-fun x5 () nat)
|
||||
(declare-fun x6 () list)
|
||||
(declare-fun x7 () list)
|
||||
(declare-fun x8 () list)
|
||||
(declare-fun x9 () list)
|
||||
(declare-fun x10 () list)
|
||||
(declare-fun x11 () tree)
|
||||
(declare-fun x12 () tree)
|
||||
(declare-fun x13 () tree)
|
||||
(declare-fun x14 () tree)
|
||||
(declare-fun x15 () tree)
|
||||
|
||||
(assert (and (and (and (and (and (and (and (and (not ((_ is null) (ite ((_ is node) x14) (children x14) null))) (not (= (ite ((_ is cons) (ite ((_ is node) x14) (children x14) null)) (car (ite ((_ is node) x14) (children x14) null)) (leaf zero)) x13))) (not (= (ite ((_ is node) x14) (children x14) null) (ite ((_ is cons) (ite ((_ is node) x15) (children x15) null)) (cdr (ite ((_ is node) x15) (children x15) null)) null)))) ((_ is zero) x2)) (not ((_ is node) x11))) ((_ is leaf) x12)) (= x6 (ite ((_ is cons) x9) (cdr x9) null))) (not ((_ is zero) x3))) (= x15 x12)))
|
||||
(check-sat)
|
||||
(exit)
|
||||
|
||||
|
||||
Loading…
Add table
Reference in a new issue