This commit is contained in:
Guillaume Bury 2014-11-04 19:07:26 +01:00
parent aa5af3b0f2
commit 91cc15eec1
7 changed files with 203 additions and 203 deletions

View file

@ -8,161 +8,161 @@ module type S = Res_intf.S
module Make(St : Solver_types.S)(Proof : sig type t end) = struct
(* Type definitions *)
type lemma = Proof.t
type clause = St.clause
type atom = St.atom
type int_cl = St.atom list
(* Type definitions *)
type lemma = Proof.t
type clause = St.clause
type atom = St.atom
type int_cl = St.atom list
type node =
| Assumption
| Lemma of lemma
| Resolution of atom * int_cl * int_cl
(* lits, c1, c2 with lits the literals used to resolve c1 and c2 *)
type node =
| Assumption
| Lemma of lemma
| Resolution of atom * int_cl * int_cl
(* lits, c1, c2 with lits the literals used to resolve c1 and c2 *)
exception Tautology
exception Resolution_error of string
exception Tautology
exception Resolution_error of string
(* Proof graph *)
module H = Hashtbl.Make(struct
type t = St.atom list
let hash= Hashtbl.hash
let equal = List.for_all2 (==)
(* Proof graph *)
module H = Hashtbl.Make(struct
type t = St.atom list
let hash= Hashtbl.hash
let equal = List.for_all2 (==)
end)
let proof : node H.t = H.create 1007;;
let proof : node H.t = H.create 1007;;
(* Misc functions *)
let compare_atoms a b =
Pervasives.compare St.(a.aid) St.(b.aid)
(* Misc functions *)
let compare_atoms a b =
Pervasives.compare St.(a.aid) St.(b.aid)
let equal_atoms a b = St.(a.aid) = St.(b.aid)
let equal_atoms a b = St.(a.aid) = St.(b.aid)
(* Compute resolution of 2 clauses *)
let resolve l =
let rec aux resolved acc = function
| [] -> resolved, acc
| [a] -> resolved, a :: acc
| a :: b :: r ->
if equal_atoms a b then
aux resolved (a :: acc) r
else if equal_atoms St.(a.neg) b then
aux (St.(a.var.pa) :: resolved) acc r
else
aux resolved (a :: acc) (b :: r)
in
let resolved, new_clause = aux [] [] l in
resolved, List.rev new_clause
(* Compute resolution of 2 clauses *)
let resolve l =
let rec aux resolved acc = function
| [] -> resolved, acc
| [a] -> resolved, a :: acc
| a :: b :: r ->
if equal_atoms a b then
aux resolved (a :: acc) r
else if equal_atoms St.(a.neg) b then
aux (St.(a.var.pa) :: resolved) acc r
else
aux resolved (a :: acc) (b :: r)
in
let resolved, new_clause = aux [] [] l in
resolved, List.rev new_clause
let to_list c =
let v = St.(c.atoms) in
let l = ref [] in
for i = 0 to Vec.size v - 1 do
l := (Vec.get v i) :: !l
done;
let l, res = resolve (List.sort_uniq compare_atoms !l) in
if l <> [] then
raise (Resolution_error "Input cause is a tautology");
res
let to_list c =
let v = St.(c.atoms) in
let l = ref [] in
for i = 0 to Vec.size v - 1 do
l := (Vec.get v i) :: !l
done;
let l, res = resolve (List.sort_uniq compare_atoms !l) in
if l <> [] then
raise (Resolution_error "Input cause is a tautology");
res
(* Adding new proven clauses *)
let is_proved c = H.mem proof c
(* Adding new proven clauses *)
let is_proved c = H.mem proof c
let rec add_res c d =
add_clause c;
add_clause d;
let cl_c = to_list c in
let cl_d = to_list d in
let l = List.merge compare_atoms cl_c cl_d in
let resolved, new_clause = resolve l in
match resolved with
| [] -> raise (Resolution_error "No literal to resolve over")
| [a] ->
H.add proof new_clause (Resolution (a, cl_c, cl_d));
new_clause
| _ -> raise (Resolution_error "Resolved to a tautology")
let rec add_res c d =
add_clause c;
add_clause d;
let cl_c = to_list c in
let cl_d = to_list d in
let l = List.merge compare_atoms cl_c cl_d in
let resolved, new_clause = resolve l in
match resolved with
| [] -> raise (Resolution_error "No literal to resolve over")
| [a] ->
H.add proof new_clause (Resolution (a, cl_c, cl_d));
new_clause
| _ -> raise (Resolution_error "Resolved to a tautology")
and add_clause c =
let cl = to_list c in
if is_proved cl then
()
else if not St.(c.learnt) then
H.add proof cl Assumption
else begin
let history = St.(c.cpremise) in
()
(* TODO
match history with
| a :: (_ :: _) as r ->
List.fold_left add_res a r
*)
end
and add_clause c =
let cl = to_list c in
if is_proved cl then
()
else if not St.(c.learnt) then
H.add proof cl Assumption
else begin
let history = St.(c.cpremise) in
()
(* TODO
match history with
| a :: (_ :: _) as r ->
List.fold_left add_res a r
*)
end
(* Print proof graph *)
let _i = ref 0
let new_id () = incr _i; "id_" ^ (string_of_int !_i)
(* Print proof graph *)
let _i = ref 0
let new_id () = incr _i; "id_" ^ (string_of_int !_i)
let ids : (bool * string) H.t = H.create 1007;;
let cl_id c =
try
snd (H.find ids c)
with Not_found ->
let id = new_id () in
H.add ids c (false, id);
id
let ids : (bool * string) H.t = H.create 1007;;
let cl_id c =
try
snd (H.find ids c)
with Not_found ->
let id = new_id () in
H.add ids c (false, id);
id
let is_drawn c =
try
fst (H.find ids c)
with Not_found ->
false
let is_drawn c =
try
fst (H.find ids c)
with Not_found ->
false
let has_drawn c =
assert (H.mem ids c);
let b, id = H.find ids c in
assert (not b);
H.replace ids c (true, id)
let has_drawn c =
assert (H.mem ids c);
let b, id = H.find ids c in
assert (not b);
H.replace ids c (true, id)
let print_atom fmt a =
Format.fprintf fmt "%s%d" St.(if a.var.pa == a then "" else "-") St.(a.var.vid + 1)
let print_atom fmt a =
Format.fprintf fmt "%s%d" St.(if a.var.pa == a then "" else "-") St.(a.var.vid + 1)
let rec print_clause fmt = function
| [] -> Format.fprintf fmt "[]"
| [a] -> print_atom fmt a
| a :: (_ :: _) as r -> Format.fprintf fmt "%a \\/ %a" print_atom a print_clause r
let rec print_clause fmt = function
| [] -> Format.fprintf fmt "[]"
| [a] -> print_atom fmt a
| a :: (_ :: _) as r -> Format.fprintf fmt "%a \\/ %a" print_atom a print_clause r
let print_dot_rule f arg fmt cl =
Format.fprintf fmt "%s [shape=plaintext, label=<<TABLE %s>%a</TABLE>>];@\n"
(cl_id cl) "BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">" f arg
let print_dot_rule f arg fmt cl =
Format.fprintf fmt "%s [shape=plaintext, label=<<TABLE %s>%a</TABLE>>];@\n"
(cl_id cl) "BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">" f arg
let print_dot_edge c fmt d =
Format.fprintf fmt "%s -> %s;@\n" (cl_id c) (cl_id d)
let print_dot_edge c fmt d =
Format.fprintf fmt "%s -> %s;@\n" (cl_id c) (cl_id d)
let print_dot_proof fmt cl =
match H.find proof cl with
| Assumption ->
let aux fmt () =
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR>" print_clause cl
in
print_dot_rule aux () fmt cl
| Lemma _ ->
let aux fmt () =
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>to prove ...</TD></TR>" print_clause cl
in
print_dot_rule aux () fmt cl
| Resolution (r, c, d) ->
let aux fmt () =
Format.fprintf fmt "<TR><TD>%a</TD></TR><TR><TD>%a</TD</TR>"
print_clause cl print_atom r
in
Format.fprintf fmt "%a%a%a"
(print_dot_rule aux ()) cl
(print_dot_edge cl) c
(print_dot_edge cl) d
let print_dot_proof fmt cl =
match H.find proof cl with
| Assumption ->
let aux fmt () =
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR>" print_clause cl
in
print_dot_rule aux () fmt cl
| Lemma _ ->
let aux fmt () =
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>to prove ...</TD></TR>" print_clause cl
in
print_dot_rule aux () fmt cl
| Resolution (r, c, d) ->
let aux fmt () =
Format.fprintf fmt "<TR><TD>%a</TD></TR><TR><TD>%a</TD</TR>"
print_clause cl print_atom r
in
Format.fprintf fmt "%a%a%a"
(print_dot_rule aux ()) cl
(print_dot_edge cl) c
(print_dot_edge cl) d
let print_dot fmt cl =
assert (is_proved cl);
Format.fprintf fmt "digraph proof {@\n%a@\n}@." print_dot_proof cl
let print_dot fmt cl =
assert (is_proved cl);
Format.fprintf fmt "digraph proof {@\n%a@\n}@." print_dot_proof cl
end

View file

@ -7,4 +7,4 @@ Copyright 2014 Simon Cruanes
module type S = Res_intf.S
module Make : functor (St : Solver_types.S)(Proof : sig type t end)
-> S with type clause = St.clause and type lemma = Proof.t
-> S with type clause = St.clause and type lemma = Proof.t

View file

@ -1,7 +1,7 @@
(* Copyright 2014 Guillaume Bury *)
module type S = sig
type clause
type lemma
type clause
type lemma
end

View file

@ -466,32 +466,32 @@ module Make (F : Formula_intf.S)
let locked c =
Vec.exists
(fun v -> match v.reason with
| Some c' -> c ==c'
| _ -> false
| Some c' -> c ==c'
| _ -> false
) env.vars
(* remove some learnt clauses *)
let reduce_db () =
let extra_lim = env.clause_inc /. (to_float (Vec.size env.learnts)) in
Vec.sort env.learnts f_sort_db;
let lim2 = Vec.size env.learnts in
let lim1 = lim2 / 2 in
let j = ref 0 in
for i = 0 to lim1 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
for i = lim1 to lim2 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) && c.activity < extra_lim then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
Vec.shrink env.learnts (lim2 - !j)
let extra_lim = env.clause_inc /. (to_float (Vec.size env.learnts)) in
Vec.sort env.learnts f_sort_db;
let lim2 = Vec.size env.learnts in
let lim1 = lim2 / 2 in
let j = ref 0 in
for i = 0 to lim1 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
for i = lim1 to lim2 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) && c.activity < extra_lim then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
Vec.shrink env.learnts (lim2 - !j)
(* remove from [vec] the clauses that are satisfied in the current trail *)
let remove_satisfied vec =
@ -792,7 +792,7 @@ module Make (F : Formula_intf.S)
check_vec env.learnts
(* fixpoint of propagation and decisions until a model is found, or a
conflict is reached *)
conflict is reached *)
let solve () =
if env.is_unsat then raise (Unsat env.unsat_core);
let n_of_conflicts = ref (to_float env.restart_first) in
@ -800,8 +800,8 @@ module Make (F : Formula_intf.S)
try
while true do
begin try
search (to_int !n_of_conflicts) (to_int !n_of_learnts);
with Restart -> ()
search (to_int !n_of_conflicts) (to_int !n_of_learnts);
with Restart -> ()
end;
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
n_of_learnts := !n_of_learnts *. env.learntsize_inc;
@ -924,7 +924,7 @@ module Make (F : Formula_intf.S)
let pop l =
if l > current_level()
then invalid_arg "cannot pop() to level, it is too high";
then invalid_arg "cannot pop() to level, it is too high";
let i = Vec.get env.levels l in
(* see whether we can reset [env.is_unsat] *)
if env.is_unsat && not (Vec.is_empty env.trail_lim) then (

View file

@ -18,7 +18,7 @@ module Make (F : Formula_intf.S)
sig
(** Functor to create a SMT Solver parametrised by the atomic
formulas and a theory. *)
exception Unsat of St.clause list
val solve : unit -> unit

View file

@ -64,8 +64,8 @@ module Make (F : Formula_intf.S) = struct
{ var = dummy_var;
lit = dummy_lit;
watched = Obj.magic 0;
(* should be [Vec.make_empty dummy_clause]
but we have to break the cycle *)
(* should be [Vec.make_empty dummy_clause]
but we have to break the cycle *)
neg = dummy_atom;
is_true = false;
aid = -102 }

View file

@ -3,52 +3,52 @@
exception Syntax_error of int
type line =
| Empty
| Comment
| Pcnf of int * int
| Clause of int list
| Empty
| Comment
| Pcnf of int * int
| Clause of int list
let ssplit = Str.split (Str.regexp "[ \t]+")
let of_input f =
match ssplit (input_line f) with
| [] -> Empty
| "c" :: _ -> Comment
| "p" :: "cnf" :: i :: j :: [] ->
begin try
Pcnf (int_of_string i, int_of_string j)
with Invalid_argument _ ->
raise (Syntax_error (-1))
end
| l ->
begin try
begin match List.rev_map int_of_string l with
| 0 :: r -> Clause r
| _ -> raise (Syntax_error (-1))
end
with Invalid_argument _ -> raise (Syntax_error (-1))
end
match ssplit (input_line f) with
| [] -> Empty
| "c" :: _ -> Comment
| "p" :: "cnf" :: i :: j :: [] ->
begin try
Pcnf (int_of_string i, int_of_string j)
with Invalid_argument _ ->
raise (Syntax_error (-1))
end
| l ->
begin try
begin match List.rev_map int_of_string l with
| 0 :: r -> Clause r
| _ -> raise (Syntax_error (-1))
end
with Invalid_argument _ -> raise (Syntax_error (-1))
end
let parse_with todo file =
let f = open_in file in
let line = ref 0 in
try
while true do
incr line;
todo (of_input f)
done
with
| Syntax_error _ ->
raise (Syntax_error !line)
| End_of_file ->
close_in f
let f = open_in file in
let line = ref 0 in
try
while true do
incr line;
todo (of_input f)
done
with
| Syntax_error _ ->
raise (Syntax_error !line)
| End_of_file ->
close_in f
let cnf = ref []
let parse_line = function
| Empty | Comment | Pcnf _ -> ()
| Clause l -> cnf := l :: !cnf
| Empty | Comment | Pcnf _ -> ()
| Clause l -> cnf := l :: !cnf
let parse f =
cnf := [];
parse_with parse_line f;
!cnf
cnf := [];
parse_with parse_line f;
!cnf