wip: add datatypes

This commit is contained in:
Simon Cruanes 2019-11-23 10:51:04 -06:00
parent 14f68749a5
commit 949e079867
3 changed files with 524 additions and 2 deletions

View file

@ -258,11 +258,12 @@ let process_stmt
Error.errorf "cannot deal with definitions yet"
end
module Th_cstor = Sidekick_th_cstor.Make(struct
module Th_data = Sidekick_th_data.Make(struct
module S = Solver
open Base_types
open Sidekick_th_cstor
open Sidekick_th_data
(* TODO*)
let view_as_cstor t = match Term.view t with
| Term.App_fun ({fun_view=Fun.Fun_cstor _;_} as f, args) -> T_cstor (f, args)
| _ -> T_other t

View file

@ -0,0 +1,513 @@
(** {1 Theory for datatypes} *)
(** {2 Views} *)
(** Datatype-oriented view of terms.
['c] is the representation of constructors
['t] is the representation of terms
*)
type ('c,'t) data_view =
| T_cstor of 'c * 't IArray.t
| T_select of 'c * int * 't
| T_is_a of 'c * 't
| T_other of 't
(** View of types in a way that is directly useful for the theory of datatypes *)
type ('c, 'ty) data_ty_view =
| Ty_arrow of 'ty Iter.t * 'ty
| Ty_app of {
args: 'ty Iter.t;
}
| Ty_data of {
cstors: 'c list;
}
| Ty_other
let name = "th-data"
(** {2 Cardinality of types} *)
module Ty_card = struct
type t =
| Finite
| Infinite
let (+) a b = match a, b with Finite, Finite -> Finite | _ -> Infinite
let ( * ) a b = match a, b with Finite, Finite -> Finite | _ -> Infinite
let ( ^ ) a b = match a, b with Finite, Finite -> Finite | _ -> Infinite
let finite = Finite
let infinite = Infinite
let sum = Iter.fold (+) Finite
let product = Iter.fold ( * ) Finite
let equal : t -> t -> bool = (=)
let compare : t -> t -> int = Pervasives.compare
let pp out = function
| Finite -> Fmt.string out "finite"
| Infinite -> Fmt.string out "infinite"
end
(** An abtract representation of a datatype *)
module type DATA_TY = sig
type t
type cstor
val equal : t -> t -> bool
val view : t -> (cstor, t) data_ty_view
val cstor_args : cstor -> t Iter.t
(** A table indexed by types. *)
module Tbl : Hashtbl.S with type key = t
end
(** Helper to compute the cardinality of types *)
module Compute_card(Ty : DATA_TY) : sig
type t
val create : unit -> t
val card : t -> Ty.t -> Ty_card.t
end = struct
module Card = Ty_card
type t = {
cards: Card.t Ty.Tbl.t;
}
let create() : t = { cards=Ty.Tbl.create 16}
let card (self:t) (ty:Ty.t) : Card.t =
let rec aux (ty:Ty.t) : Card.t =
match Ty.Tbl.find self.cards ty with
| c -> c
| exception Not_found ->
Ty.Tbl.add self.cards ty Card.infinite; (* temp value, for fixpoint computation *)
let c = match Ty.view ty with
| Ty_other -> Card.finite
| Ty_app {args} -> Iter.map aux args |> Card.product
| Ty_arrow (args,ret) ->
Card.( (aux ret) ^ (Card.product @@ Iter.map aux args))
| Ty_data { cstors; } ->
cstors
|> Iter.of_list
|> Iter.map (fun c -> Card.product (Iter.map aux @@ Ty.cstor_args c))
|> Card.sum
in
Ty.Tbl.replace self.cards ty c;
c
in
aux ty
end
module type ARG = sig
module S : Sidekick_core.SOLVER
val view_as_cstor : S.T.Term.t -> (S.T.Fun.t, S.T.Term.t) cstor_view
val mk_cstor : S.T.Term.state -> S.T.Fun.t -> S.T.Term.t IArray.t -> S.T.Term.t
val as_datatype : S.T.Ty.t -> S.T.Fun.t list option
end
module type S = sig
module A : ARG
val theory : A.S.theory
end
module Make(A : ARG) : S with module A = A = struct
module A = A
module SI = A.S.Solver_internal
module T = A.S.T.Term
module N = SI.CC.N
module Fun = A.S.T.Fun
module Expl = SI.CC.Expl
type cstor_repr = {
t: T.t;
n: N.t;
cstor: Fun.t;
args: T.t IArray.t;
}
(* associate to each class a unique constructor term in the class (if any) *)
module N_tbl = Backtrackable_tbl.Make(N)
type t = {
cstors: cstor_repr N_tbl.t; (* repr -> cstor for the class *)
(* TODO: also allocate a bit in CC to filter out quickly classes without cstors? *)
}
let push_level self = N_tbl.push_level self.cstors
let pop_levels self n = N_tbl.pop_levels self.cstors n
(* attach data to constructor terms *)
let on_new_term self _solver n (t:T.t) =
match A.view_as_cstor t with
| T_cstor (cstor,args) ->
Log.debugf 20
(fun k->k "(@[th-cstor.on-new-term@ %a@ :cstor %a@ @[:args@ (@[%a@])@]@]@])"
T.pp t Fun.pp cstor (Util.pp_iarray T.pp) args);
N_tbl.add self.cstors n {n; t; cstor; args};
| _ -> ()
let on_pre_merge (self:t) cc acts n1 n2 e_n1_n2 : unit =
begin match N_tbl.get self.cstors n1, N_tbl.get self.cstors n2 with
| Some cr1, Some cr2 ->
Log.debugf 5
(fun k->k "(@[th-cstor.on_pre_merge@ @[:c1 %a@ (term %a)@]@ @[:c2 %a@ (term %a)@]@])"
N.pp n1 T.pp cr1.t N.pp n2 T.pp cr2.t);
(* build full explanation of why the constructor terms are equal *)
let expl =
Expl.mk_list [
e_n1_n2;
Expl.mk_merge n1 cr1.n;
Expl.mk_merge n2 cr2.n;
]
in
if Fun.equal cr1.cstor cr2.cstor then (
(* same function: injectivity *)
assert (IArray.length cr1.args = IArray.length cr2.args);
IArray.iter2
(fun u1 u2 -> SI.CC.merge_t cc u1 u2 expl)
cr1.args cr2.args
) else (
(* different function: disjointness *)
SI.CC.raise_conflict_from_expl cc acts expl
)
| None, Some cr ->
N_tbl.add self.cstors n1 cr
| Some _, None -> () (* already there on the left *)
| None, None -> ()
end
let create_and_setup (solver:SI.t) : t =
let self = {
cstors=N_tbl.create ~size:32 ();
} in
Log.debug 1 "(setup :th-cstor)";
SI.on_cc_new_term solver (on_new_term self);
SI.on_cc_pre_merge solver (on_pre_merge self);
self
let theory =
A.S.mk_theory ~name ~push_level ~pop_levels ~create_and_setup ()
end
(*
module Datatype(A : Congruence_closure.THEORY_ACTION)
: Congruence_closure.THEORY with module A=A = struct
module A = A
(* merge equiv classes:
- injectivity rule on normal forms
- check consistency of normal forms
- intersection of label sets *)
let merge (ra:A.repr) (rb:A.repr) expls =
begin match A.nf ra, A.nf rb with
| Some (NF_cstor (c1, args1)), Some (NF_cstor (c2, args2)) ->
if Cst.equal c1.cstor_cst c2.cstor_cst then (
(* unify arguments recursively, by injectivity *)
assert (IArray.length args1 = IArray.length args2);
IArray.iter2
(fun sub1 sub2 ->
A.add_eqn sub1 sub2
(CC_injectivity (A.term_of_repr ra, A.term_of_repr rb)))
args1 args2;
) else (
A.unsat expls
)
| _ -> ()
end;
(* TODO: intersect label sets *)
(* TODO: check if Split2 applies *)
()
type map_status =
| Map_empty
| Map_single of data_cstor
| Map_other
type labels = data_cstor ID.Map.t
(* check if set of cstors is empty or unary *)
let map_status (m: labels): map_status =
if ID.Map.is_empty m then Map_empty
else (
let c, cstor = ID.Map.choose m in
let m' = ID.Map.remove c m in
if ID.Map.is_empty m'
then Map_single cstor
else Map_other
)
(* propagate [r = cstor], using Instantiation rules *)
let propagate_cstor (r:A.repr) (cstor:data_cstor) (expl:cc_explanation list): unit =
Log.debugf 5
(fun k->k "(@[propagate_cstor@ %a@ %a: expl: (@[%a@])@])"
Term.pp (A.term_of_repr r) Cst.pp cstor.cstor_cst
(Util.pp_list pp_cc_explanation) expl);
(* TODO: propagate, add_eqn with cstor term, but only
if either:
- cstor is finite
- or some parent term of [r_u] is a selector.
We need to create new constants for the arguments *)
assert false
(* perform (Split 2) if all the cstors of [m] (labels of [r]) are finite
and (Split 1) was not applied on [r] *)
let maybe_split (r:A.repr) (m: labels) (expl:cc_explanation list): unit =
assert (ID.Map.cardinal m >= 2);
if ID.Map.for_all (fun _ cstor -> Cst.is_finite_cstor cstor.cstor_cst) m
&& not (Term_bits.get Term.field_is_split (A.term_of_repr r).term_bits)
then (
Log.debugf 5
(fun k->k "(@[split_finite@ %a@ cstors: (@[<hv>%a@])@ expl: (@[%a@])@])"
Term.pp (A.term_of_repr r) (Util.pp_list Cst.pp)
(ID.Map.values m |> Sequence.map (fun c->c.cstor_cst) |> Sequence.to_list)
(Util.pp_list pp_cc_explanation) expl);
let lits =
ID.Map.values m
|> Sequence.map
(fun cstor -> Lit.cstor_test cstor (A.term_of_repr r))
|> Sequence.to_list
in
A.split lits expl
)
let set_nf t nf (e:cc_explanation): unit = match nf, t.term_cell with
| NF_bool sign, App_cst ({cst_kind=Cst_test (_, lazy cstor); _}, args) ->
(* update set of possible cstors for [A.find args.(0)]
if [t = is-cstor args] is true/false *)
assert (IArray.length args = 1);
let u = IArray.get args 1 in
let r_u = A.find u in
let cstor_set, expl = match (A.term_of_repr r_u).term_cases_set with
| TC_cstors (m,e') -> m,e'
| _ -> assert false
in
let new_expl = e::expl in
let cstor_id = cstor.cstor_cst.cst_id in
if sign then (
if ID.Map.mem cstor_id cstor_set then (
(* unit propagate now *)
propagate_cstor r_u cstor new_expl
) else (
A.unsat new_expl (* conflict: *)
)
) else (
(* remove [cstor] from the set *)
if ID.Map.mem cstor_id cstor_set then (
Log.debugf 5
(fun k->k "(@[remove_cstor@ %a@ from %a@])" ID.pp cstor_id Term.pp u);
let new_set = ID.Map.remove cstor_id cstor_set in
begin match map_status new_set with
| Map_empty ->
A.unsat new_expl (* conflict *)
| Map_single cstor' ->
propagate_cstor r_u cstor' new_expl;
| Map_other ->
(* just update set of labels *)
if Backtrack.not_at_level_0 () then (
let old_cases = (A.term_of_repr r_u).term_cases_set in
Backtrack.push_undo (fun () -> (A.term_of_repr r_u).term_cases_set <- old_cases);
);
(A.term_of_repr r_u).term_cases_set <- TC_cstors (new_set, new_expl);
maybe_split r_u new_set new_expl
end
)
)
| _ -> ()
let eval t = match t.term_cell with
| Case (u, m) ->
let r_u = A.find u in
begin match A.nf r_u with
| Some (NF_cstor (c, _)) ->
(* reduce to the proper branch *)
let rhs =
try ID.Map.find c.cstor_cst.cst_id m
with Not_found -> assert false
in
A.add_eqn t rhs (CC_reduce_nf u);
| Some (NF_bool _) -> assert false
| None -> ()
end
| App_cst ({cst_kind=Cst_test(_,lazy cstor); _}, a) when IArray.length a=1 ->
(* check if [a.(0)] has a constructor *)
let arg = IArray.get a 0 in
let r_a = A.find arg in
begin match A.nf r_a with
| None -> ()
| Some (NF_cstor (cstor', _)) ->
(* reduce to true/false depending on whether [cstor=cstor'] *)
if Cst.equal cstor.cstor_cst cstor'.cstor_cst then (
A.add_eqn t Term.true_ (CC_reduce_nf arg)
) else (
A.add_eqn t Term.true_ (CC_reduce_nf arg)
)
| Some (NF_bool _) -> assert false
end
| App_cst ({cst_kind=Cst_proj(_,lazy cstor,i); _}, a) when IArray.length a=1 ->
(* reduce if [a.(0)] has the proper constructor *)
let arg = IArray.get a 0 in
let r_a = A.find arg in
begin match A.nf r_a with
| None -> ()
| Some (NF_cstor (cstor', nf_cstor_args)) ->
(* [proj-C-i (C t1...tn) = ti] *)
if Cst.equal cstor.cstor_cst cstor'.cstor_cst then (
A.add_eqn t (IArray.get nf_cstor_args i) (CC_reduce_nf arg)
)
| Some (NF_bool _) -> assert false
end
| _ -> ()
let is_evaluable t = match t.term_cell with
| Case _ -> true
| App_cst ({cst_kind=Cst_test(_,_); _}, a)
| App_cst ({cst_kind=Cst_proj(_,_,_); _}, a) ->
IArray.length a=1
| _ -> false
(* split every term that is not split yet, and to which some selectors
are applied *)
let split_rule () =
let is_in_proj (r:A.repr): bool =
Bag.to_seq (A.term_of_repr r).term_parents
|> Sequence.exists
(fun parent -> match parent.term_cell with
| App_cst ({cst_kind=Cst_proj _; _}, a) ->
let res = IArray.length a = 1 in
(* invariant: a.(0) == r should hold *)
if res then assert(A.equal_repr r (IArray.get a 1 |> A.find));
res
| _ -> false)
in
begin
Log.debug 3 "(data.split1)";
A.all_classes
|> Sequence.filter
(fun (r:A.repr) ->
(* keep only terms of data-type, never split, with at least
two possible cases in their label, and that occur in
at least one selector *)
Format.printf "check %a@." Term.pp (A.term_of_repr r);
Ty.is_data (A.term_of_repr r).term_ty
&&
begin match (A.term_of_repr r).term_cases_set with
| TC_cstors (m, _) -> ID.Map.cardinal m >= 2
| _ -> assert false
end
&&
not (Term_bits.get Term.field_is_split (A.term_of_repr r).term_bits)
&&
is_in_proj r)
|> Sequence.iter
(fun r ->
let r = A.term_of_repr r in
Log.debugf 5 (fun k->k "(@[split_1@ term: %a@])" Term.pp r);
(* unconditional split: consider all cstors *)
let cstors = match r.term_ty.ty_cell with
| Atomic (_, Data {data_cstors=lazy cstors;_}) -> cstors
| _ -> assert false
in
let lits =
ID.Map.values cstors
|> Sequence.map (fun cstor -> Lit.cstor_test cstor r)
|> Sequence.to_list
in
r.term_bits <- Term_bits.set Term.field_is_split true r.term_bits;
A.split lits [])
end
(* TODO acyclicity rule
could be done by traversing the set of terms, assigning a "level" to
each equiv class. If level clash, find why, return conflict.
*)
let final_check (): unit =
split_rule ();
(* TODO: acyclicity *)
()
end
| Ast.Data l ->
(* the datatypes in [l]. Used for computing cardinalities *)
let in_same_block : ID.Set.t =
List.map (fun {Ast.Ty.data_id; _} -> data_id) l |> ID.Set.of_list
in
(* declare the type, and all the constructors *)
List.iter
(fun {Ast.Ty.data_id; data_cstors} ->
let ty = lazy (
let card_ : ty_card ref = ref Finite in
let cstors = lazy (
data_cstors
|> ID.Map.map
(fun c ->
let c_id = c.Ast.Ty.cstor_id in
let ty_c = conv_ty c.Ast.Ty.cstor_ty in
let ty_args, ty_ret = Ty.unfold ty_c in
(* add cardinality of [c] to the cardinality of [data_id].
(product of cardinalities of args) *)
let cstor_card =
ty_args
|> List.map
(fun ty_arg -> match ty_arg.ty_cell with
| Atomic (id, _) when ID.Set.mem id in_same_block ->
Infinite
| _ -> Lazy.force ty_arg.ty_card)
|> Ty_card.product
in
card_ := Ty_card.( !card_ + cstor_card );
let rec cst = lazy (
Cst.make_cstor c_id ty_c cstor
) and cstor = lazy (
let cstor_proj = lazy (
let n = ref 0 in
List.map2
(fun id ty_arg ->
let ty_proj = Ty.arrow ty_ret ty_arg in
let i = !n in
incr n;
Cst.make_proj id ty_proj cstor i)
c.Ast.Ty.cstor_proj ty_args
|> IArray.of_list
) in
let cstor_test = lazy (
let ty_test = Ty.arrow ty_ret Ty.prop in
Cst.make_tester c.Ast.Ty.cstor_test ty_test cstor
) in
{ cstor_ty=ty_c; cstor_cst=Lazy.force cst;
cstor_args=IArray.of_list ty_args;
cstor_proj; cstor_test; cstor_card; }
) in
ID.Tbl.add decl_ty_ c_id cst; (* declare *)
Lazy.force cstor)
)
in
let data = { data_cstors=cstors; } in
let card = lazy (
ignore (Lazy.force cstors);
let r = !card_ in
Log.debugf 5
(fun k->k "(@[card_of@ %a@ %a@])" ID.pp data_id Ty_card.pp r);
r
) in
Ty.atomic data_id (Data data) ~card
) in
ID.Tbl.add ty_tbl_ data_id ty;
)
l;
(* force evaluation *)
List.iter
(fun {Ast.Ty.data_id; _} ->
let lazy ty = ID.Tbl.find ty_tbl_ data_id in
ignore (Lazy.force ty.ty_card);
begin match ty.ty_cell with
| Atomic (_, Data {data_cstors=lazy _; _}) -> ()
| _ -> assert false
end)
l
*)

8
src/th-data/dune Normal file
View file

@ -0,0 +1,8 @@
(library
(name Sidekick_th_data)
(public_name sidekick.th-data)
(libraries containers sidekick.core sidekick.util)
(flags :standard -open Sidekick_util))