mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 11:15:43 -05:00
update readme
This commit is contained in:
parent
ac396e8cf5
commit
9e3484d2b3
1 changed files with 17 additions and 85 deletions
102
README.md
102
README.md
|
|
@ -1,107 +1,39 @@
|
|||
# MSAT [](https://travis-ci.org/Gbury/mSAT)
|
||||
# CDCL [](https://travis-ci.org/c-cube/CDCL)
|
||||
|
||||
MSAT is an OCaml library that features a modular SAT-solver and some
|
||||
extensions (including SMT).
|
||||
CDCL is an OCaml library with a functor to create SMT solvers following
|
||||
the CDCL(T) approach (so called "lazy SMT").
|
||||
|
||||
It derives from [Alt-Ergo Zero](http://cubicle.lri.fr/alt-ergo-zero)
|
||||
and its fork [mSAT](https://github.com/gbury/msat).
|
||||
|
||||
It derives from [Alt-Ergo Zero](http://cubicle.lri.fr/alt-ergo-zero).
|
||||
|
||||
|
||||
## COPYRIGHT
|
||||
|
||||
This program is distributed under the Apache Software License version
|
||||
2.0. See the enclosed file `LICENSE`.
|
||||
|
||||
## Documentation
|
||||
|
||||
See https://gbury.github.io/mSAT/
|
||||
See https://c-cube.github.io/cdcl/
|
||||
|
||||
## INSTALLATION
|
||||
## Installation
|
||||
|
||||
### Via opam
|
||||
|
||||
Once the package is on [opam](http://opam.ocaml.org), just `opam install msat`.
|
||||
Once the package is on [opam](http://opam.ocaml.org), just `opam install cdcl`.
|
||||
For the development version, use:
|
||||
|
||||
opam pin add msat https://github.com/Gbury/mSAT.git
|
||||
opam pin add msat https://github.com/c-cube/cdcl.git
|
||||
|
||||
### Manual installation
|
||||
|
||||
You will need ocamlfind and ocamlbuild. The command is:
|
||||
You will need jbuilder. The command is:
|
||||
|
||||
make install
|
||||
|
||||
## USAGE
|
||||
## Usage
|
||||
|
||||
### Generic SAT/SMT Solver
|
||||
The main module is `CDCL`.
|
||||
|
||||
A modular implementation of the SMT algorithm can be found in the `Msat.Solver` module,
|
||||
as a functor which takes two modules :
|
||||
A modular implementation of the SMT algorithm can be found in the `CDCL.Make` functor,
|
||||
as a functor which takes a `Theory_intf.S` module
|
||||
|
||||
- A representation of formulas (which implements the `Formula_intf.S` signature)
|
||||
|
||||
- A theory (which implements the `Theory_intf.S` signature) to check consistence of assertions.
|
||||
|
||||
- A dummy empty module to ensure generativity of the solver (solver modules heavily relies on
|
||||
side effects to their internal state)
|
||||
|
||||
### Sat Solver
|
||||
|
||||
A ready-to-use SAT solver is available in the Sat module. It can be used
|
||||
as shown in the following code :
|
||||
|
||||
```ocaml
|
||||
(* Module initialization *)
|
||||
module Sat = Msat.Sat.Make()
|
||||
module E = Msat.Sat.Expr (* expressions *)
|
||||
|
||||
(* We create here two distinct atoms *)
|
||||
let a = E.fresh () (* A 'new_atom' is always distinct from any other atom *)
|
||||
let b = E.make 1 (* Atoms can be created from integers *)
|
||||
|
||||
(* We can try and check the satisfiability of some clauses --
|
||||
here, the clause [a or b].
|
||||
Sat.assume adds a list of clauses to the solver. *)
|
||||
let() = Sat.assume [[a; b]]
|
||||
let res = Sat.solve () (* Should return (Sat.Sat _) *)
|
||||
|
||||
(* The Sat solver has an incremental mutable state, so we still have
|
||||
the clause [a or b] in our assumptions.
|
||||
We add [not a] and [not b] to the state. *)
|
||||
let () = Sat.assume [[E.neg a]; [E.neg b]]
|
||||
let res = Sat.solve () (* Should return (Sat.Unsat _) *)
|
||||
```
|
||||
|
||||
|
||||
#### Formulas API
|
||||
|
||||
Writing clauses by hand can be tedious and error-prone.
|
||||
The functor `Msat.Tseitin.Make` proposes a formula AST (parametrized by
|
||||
atoms) and a function to convert these formulas into clauses:
|
||||
|
||||
```ocaml
|
||||
(* Module initialization *)
|
||||
module Sat = Msat.Sat.Make()
|
||||
module E = Msat.Sat.Expr (* expressions *)
|
||||
module F = Msat.Tseitin.Make(E)
|
||||
|
||||
(* We create here two distinct atoms *)
|
||||
let a = E.fresh () (* A fresh atom is always distinct from any other atom *)
|
||||
let b = E.make 1 (* Atoms can be created from integers *)
|
||||
|
||||
(* Let's create some formulas *)
|
||||
let p = F.make_atom a
|
||||
let q = F.make_atom b
|
||||
let r = F.make_and [p; q]
|
||||
let s = F.make_or [F.make_not p; F.make_not q]
|
||||
|
||||
(* We can try and check the satisfiability of the given formulas *)
|
||||
let () = Sat.assume (F.make_cnf r)
|
||||
let _ = Sat.solve () (* Should return (Sat.Sat _) *)
|
||||
|
||||
(* The Sat solver has an incremental mutable state, so we still have
|
||||
* the formula 'r' in our assumptions *)
|
||||
let () = Sat.assume (F.make_cnf s)
|
||||
let _ = Sat.solve () (* Should return (Sat.Unsat _) *)
|
||||
```
|
||||
## Copyright
|
||||
|
||||
This program is distributed under the Apache Software License version
|
||||
2.0. See the enclosed file `LICENSE`.
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue