wip: functorize theories wrt some "env"

This commit is contained in:
Simon Cruanes 2019-04-02 21:30:28 -05:00
parent ddde590ffd
commit a35f5719b7
3 changed files with 132 additions and 120 deletions

View file

@ -13,6 +13,6 @@ module Arg = struct
end
end
include Sidekick_cc.Make(Arg)
(* include Sidekick_cc.Make(Arg) *)
module Mini_cc = Sidekick_cc.Mini_cc.Make(Arg)

View file

@ -1,3 +1,4 @@
(*
include Sidekick_cc.S
with type term = Term.t
@ -8,6 +9,7 @@ include Sidekick_cc.S
and type proof = Solver_types.proof
and module Key = Sidekick_cc.Key
*)
module Mini_cc : Sidekick_cc.Mini_cc.S
with type term = Term.t
and type fun_ = Cst.t

View file

@ -1,122 +1,132 @@
module Th_clause : sig
type t = Lit.t IArray.t
val pp : t CCFormat.printer
end = struct
type t = Lit.t IArray.t
(** {1 All the context for a theory} *)
module type ENV = sig
include Sidekick_cc.TERM_LIT
module CC : Sidekick_cc.S
(* TODO: useful?
module Th_clause : sig
type t = Lit.t IArray.t
val pp : t CCFormat.printer
end
= struct
type t = Lit.t IArray.t
let pp out c =
if IArray.length c = 0 then CCFormat.string out "false"
else if IArray.length c = 1 then Lit.pp out (IArray.get c 0)
else (
Format.fprintf out "[@[<hv>%a@]]"
(Util.pp_iarray ~sep:" " Lit.pp) c
)
let pp out c =
if IArray.length c = 0 then CCFormat.string out "false"
else if IArray.length c = 1 then Lit.pp out (IArray.get c 0)
else (
Format.fprintf out "[@[<hv>%a@]]"
(Util.pp_iarray ~sep:" " Lit.pp) c
)
end
*)
(** Unsatisfiable conjunction.
Its negation will become a conflict clause *)
type conflict = Lit.t list
(** {3 Actions available to some of the theory's callbacks} *)
module type ACTIONS = sig
val cc : CC.t
val raise_conflict: conflict -> 'a
(** Give a conflict clause to the solver *)
val propagate: Lit.t -> (unit -> Lit.t list) -> unit
(** Propagate a boolean using a unit clause.
[expl => lit] must be a theory lemma, that is, a T-tautology *)
val propagate_l: Lit.t -> Lit.t list -> unit
(** Propagate a boolean using a unit clause.
[expl => lit] must be a theory lemma, that is, a T-tautology *)
val add_lit : Lit.t -> unit
(** Add the given literal to the SAT solver, so it gets assigned
a boolean value *)
val add_local_axiom: Lit.t list -> unit
(** Add local clause to the SAT solver. This clause will be
removed when the solver backtracks. *)
val add_persistent_axiom: Lit.t list -> unit
(** Add toplevel clause to the SAT solver. This clause will
not be backtracked. *)
end
type actions = (module ACTIONS)
(** {3 Context given to a theory} *)
module Ctx : sig
type t
val cc : t -> CC.t
val on_partial_check : t -> (actions -> Lit.t Iter.t -> unit) -> unit
(** Called when a literal becomes true *)
val on_final_check: t -> (actions -> Lit.t Iter.t -> unit) -> unit
(** Final check, must be complete (i.e. must raise a conflict
if the set of literals is not satisfiable) *)
val on_mk_model : t -> (Lit.t Iter.t -> Model.t -> Model.t) -> unit
(** Update the given model *)
(**/**)
val on_check_invariants : t -> (unit -> unit) -> unit
(**/**)
end
(** {3 A theory's state} *)
module type THEORY = sig
type t
val name : string
(** Name of the theory *)
val create : Term.state -> t
(** Instantiate the theory's state *)
val setup : t -> Ctx.t -> unit
(** Setup the theory with the given context, including a
congruence closure *)
val push_level : t -> unit
val pop_levels : t -> int -> unit
end
type theory = (module THEORY)
(* TODO: remove?
let make
(type st)
?(check_invariants=fun _ -> ())
?(on_new_term=fun _ _ _ -> ())
?(on_merge=fun _ _ _ _ _ -> ())
?(partial_check=fun _ _ _ -> ())
?(mk_model=fun _ _ m -> m)
?(push_level=fun _ -> ())
?(pop_levels=fun _ _ -> ())
?(cc_th=fun _->[])
~name
~final_check
~create
() : t =
let module A = struct
type nonrec t = st
let name = name
let create = create
let on_new_term = on_new_term
let on_merge = on_merge
let partial_check = partial_check
let final_check = final_check
let mk_model = mk_model
let check_invariants = check_invariants
let push_level = push_level
let pop_levels = pop_levels
let cc_th = cc_th
end in
(module A : S)
*)
end
(** Unsatisfiable conjunction.
Its negation will become a conflict clause *)
type conflict = Lit.t list
module CC_eq_class = CC.N
module CC_expl = CC.Expl
(** Actions available to a theory during its lifetime *)
module type ACTIONS = sig
val cc : CC.t
val raise_conflict: conflict -> 'a
(** Give a conflict clause to the solver *)
val propagate: Lit.t -> (unit -> Lit.t list) -> unit
(** Propagate a boolean using a unit clause.
[expl => lit] must be a theory lemma, that is, a T-tautology *)
val propagate_l: Lit.t -> Lit.t list -> unit
(** Propagate a boolean using a unit clause.
[expl => lit] must be a theory lemma, that is, a T-tautology *)
val add_lit : Lit.t -> unit
(** Add the given literal to the SAT solver, so it gets assigned
a boolean value *)
val add_local_axiom: Lit.t list -> unit
(** Add local clause to the SAT solver. This clause will be
removed when the solver backtracks. *)
val add_persistent_axiom: Lit.t list -> unit
(** Add toplevel clause to the SAT solver. This clause will
not be backtracked. *)
end
type actions = (module ACTIONS)
module type S = sig
type t
val name : string
(** Name of the theory *)
val create : Term.state -> t
(** Instantiate the theory's state *)
val on_new_term : t -> actions -> Term.t -> unit
(** Called when a new term is added *)
val on_merge: t -> actions -> CC_eq_class.t -> CC_eq_class.t -> CC_expl.t -> unit
(** Called when two classes are merged *)
val partial_check : t -> actions -> Lit.t Iter.t -> unit
(** Called when a literal becomes true *)
val final_check: t -> actions -> Lit.t Iter.t -> unit
(** Final check, must be complete (i.e. must raise a conflict
if the set of literals is not satisfiable) *)
val mk_model : t -> Lit.t Iter.t -> Model.t -> Model.t
(** Make a model for this theory's terms *)
val push_level : t -> unit
val pop_levels : t -> int -> unit
val cc_th : t -> CC.Theory.t list
(**/**)
val check_invariants : t -> unit
(**/**)
end
type t = (module S)
type 'a t1 = (module S with type t = 'a)
let make
(type st)
?(check_invariants=fun _ -> ())
?(on_new_term=fun _ _ _ -> ())
?(on_merge=fun _ _ _ _ _ -> ())
?(partial_check=fun _ _ _ -> ())
?(mk_model=fun _ _ m -> m)
?(push_level=fun _ -> ())
?(pop_levels=fun _ _ -> ())
?(cc_th=fun _->[])
~name
~final_check
~create
() : t =
let module A = struct
type nonrec t = st
let name = name
let create = create
let on_new_term = on_new_term
let on_merge = on_merge
let partial_check = partial_check
let final_check = final_check
let mk_model = mk_model
let check_invariants = check_invariants
let push_level = push_level
let pop_levels = pop_levels
let cc_th = cc_th
end in
(module A : S)