A bit of restructuring to have cleaner dependencies between fonctors

This commit is contained in:
Guillaume Bury 2015-07-21 19:20:40 +02:00
parent 9c1ca06aea
commit aed3aeb17c
25 changed files with 140 additions and 228 deletions

View file

@ -14,3 +14,4 @@
- max-sat/max-smt
- coq proofs ?

View file

@ -1,15 +1,6 @@
module type Arg = sig
type proof
type formula
val prove : Format.formatter -> formula list -> unit
val context : Format.formatter -> proof -> unit
val translate : Format.formatter -> formula -> unit
end
module type S = sig
type t
val print : Format.formatter -> t -> unit
end

View file

@ -6,7 +6,15 @@ Copyright 2014 Simon Cruanes
module type S = Backend_intf.S
module Make(S : Res.S)(A : Backend_intf.Arg with type formula := S.atom and type proof := S.proof) = struct
module type Arg = sig
type proof
type formula
val prove : Format.formatter -> formula list -> unit
val context : Format.formatter -> proof -> unit
val translate : Format.formatter -> formula -> unit
end
module Make(S : Res.S)(A : Arg with type formula := S.atom and type proof := S.proof) = struct
let print_aux fmt = Format.fprintf fmt "@\n"

View file

@ -1,8 +1,16 @@
module type S = Backend_intf.S
module type Arg = sig
type proof
type formula
val prove : Format.formatter -> formula list -> unit
val context : Format.formatter -> proof -> unit
val translate : Format.formatter -> formula -> unit
end
module Make :
functor(S : Res.S) ->
functor(A : Backend_intf.Arg with type formula := S.atom and type proof := S.proof) ->
functor(A : Arg with type formula := S.atom and type proof := S.proof) ->
S with type t := S.proof
(** Functor to generate a backend to output proofs for the dedukti type checker. *)

View file

@ -1,15 +1,19 @@
module type S = Backend_intf.S
module Make
(St : Solver_types.S)
(S : Res.S with type clause = St.clause
and type lemma = St.proof
and type atom = St.atom) = struct
module type Arg = sig
type atom
type clause
type lemma
let clause_id c = St.(c.name)
val clause_name : clause -> string
val print_atom : Format.formatter -> atom -> unit
val lemma_info : lemma -> string * string option * atom list
end
let node_id n = clause_id S.(n.conclusion)
module Make(S : Res.S)(A : Arg with type atom := S.atom and type clause := S.clause and type lemma := S.lemma) = struct
let node_id n = A.clause_name S.(n.conclusion)
let res_node_id n = (node_id n) ^ "_res"
@ -43,7 +47,7 @@ module Make
id table_options color table (c, rule, rule_color, l)
let print_dot_res_node fmt id a =
Format.fprintf fmt "%s [label=\"%a\"];@\n" id St.print_atom a
Format.fprintf fmt "%s [label=\"%a\"];@\n" id A.print_atom a
let ttify f c = fun fmt () -> f fmt c
@ -51,16 +55,15 @@ module Make
match S.(n.step) with
| S.Hypothesis ->
print_dot_node fmt (node_id n) "LIGHTBLUE" S.(n.conclusion) "Hypothesis" "LIGHTBLUE"
[(fun fmt () -> (Format.fprintf fmt "%s" n.S.conclusion.St.name))];
[(fun fmt () -> (Format.fprintf fmt "%s" (A.clause_name n.S.conclusion)))];
| S.Lemma lemma ->
let rule, f_args, t_args, color = St.proof_debug lemma in
let rule, color, args = A.lemma_info lemma in
let color = match color with None -> "YELLOW" | Some c -> c in
let l = List.map (ttify St.print_atom) f_args @
List.map (ttify St.print_lit) t_args in
let l = List.map (ttify A.print_atom) args in
print_dot_node fmt (node_id n) "LIGHTBLUE" S.(n.conclusion) rule color l
| S.Resolution (_, _, a) ->
print_dot_node fmt (node_id n) "GREY" S.(n.conclusion) "Resolution" "GREY"
[(fun fmt () -> (Format.fprintf fmt "%s" n.S.conclusion.St.name))];
[(fun fmt () -> (Format.fprintf fmt "%s" (A.clause_name n.S.conclusion)))];
print_dot_res_node fmt (res_node_id n) a;
print_edge fmt (node_id n) (res_node_id n)

16
backend/dot.mli Normal file
View file

@ -0,0 +1,16 @@
module type S = Backend_intf.S
module type Arg = sig
type atom
type clause
type lemma
val clause_name : clause -> string
val print_atom : Format.formatter -> atom -> unit
val lemma_info : lemma -> string * string option * atom list
end
module Make(S : Res.S)(A : Arg with type atom := S.atom and type clause := S.clause and type lemma := S.lemma) :
S with type t := S.proof

View file

@ -2,25 +2,24 @@ util/Log
solver/Log_intf
solver/Formula_intf
solver/Expr_intf
solver/Res
solver/Res_intf
solver/Mcproof
solver/Solver
solver/Solver_types
solver/Solver_types_intf
solver/Mcsolver
solver/Mcsolver_types
solver/Mcsolver_types_intf
solver/Theory_intf
solver/Plugin_intf
solver/Tseitin
solver/Expr_intf
solver/Tseitin_intf
solver/Res_intf
solver/Solver_types_intf
solver/Internal
solver/Solver
solver/Mcsolver
solver/Solver_types
solver/Res
solver/Tseitin
backend/Dot
backend/Dedukti
backend/Backend_intf
sat/Sat
backend/Dedukti

View file

@ -8,6 +8,7 @@ module Fsat = struct
exception Dummy of int
type t = int
type proof = unit
let max_lit = max_int
let max_fresh = ref (-1)
@ -90,7 +91,11 @@ end
module Make(Log : Log_intf.S) = struct
module SatSolver = Solver.Make(Log)(Fsat)(Tsat)
module Dot = Dot.Make(SatSolver.St)(SatSolver.Proof)
module Dot = Dot.Make(SatSolver.Proof)(struct
let clause_name c = SatSolver.St.(c.name)
let print_atom = SatSolver.St.print_atom
let lemma_info () = "()", None, []
end)
exception Bad_atom

View file

@ -12,6 +12,7 @@ type formula =
| Equal of var * var
| Distinct of var * var
type t = formula
type proof = unit
let dummy = Prop 0

View file

@ -11,6 +11,7 @@ type formula = private
| Distinct of var * var
type t = formula
type proof = unit
val dummy : t

View file

@ -14,12 +14,8 @@ module Tsmt = struct
(* Type definitions *)
type term = Fsmt.Term.t
type formula = Fsmt.t
type proof = unit
let proof_debug () =
"Proof", [], ["..."], Some "PURPLE"
type assumption =
| Lit of formula
| Assign of term * term
@ -115,7 +111,11 @@ end
module Make(Dummy:sig end) = struct
module SmtSolver = Mcsolver.Make(Log)(Fsmt)(Tsmt)
module Dot = Dot.Make(SmtSolver.St)(SmtSolver.Proof)
module Dot = Dot.Make(SmtSolver.Proof)(struct
let clause_name c = SmtSolver.St.(c.name)
let print_atom = SmtSolver.St.print_atom
let lemma_info () = "Proof", Some "PURPLE", []
end)
type atom = Fsmt.t
type clause = SmtSolver.St.clause

View file

@ -61,7 +61,11 @@ end
module Make(Dummy:sig end) = struct
module SmtSolver = Solver.Make(Log)(Fsmt)(Tsmt)
module Dot = Dot.Make(SmtSolver.St)(SmtSolver.Proof)
module Dot = Dot.Make(SmtSolver.Proof)(struct
let clause_name c = SmtSolver.St.(c.name)
let print_atom = SmtSolver.St.print_atom
let lemma_info () = "Proof", Some "PURPLE", []
end)
type atom = Fsmt.t
type clause = SmtSolver.St.clause

View file

@ -25,6 +25,9 @@ module type S = sig
val print : Format.formatter -> t -> unit
end
type proof
(** An abstract type for proofs *)
val dummy : Formula.t
(** Formula constants. A valid formula should never be physically equal to [dummy] *)

View file

@ -10,6 +10,9 @@ module type S = sig
type t
(** The type of atomic formulas. *)
type proof
(** An abstract type for proofs *)
val dummy : t
(** Formula constants. A valid formula should never be physically equal to [dummy] *)

View file

@ -7,9 +7,10 @@ Copyright 2014 Simon Cruanes
module Make (L : Log_intf.S)(St : Solver_types.S)
(Th : Plugin_intf.S with type term = St.term and type formula = St.formula and type proof = St.proof) = struct
open St
module Proof = Res.Make(L)(St)
open St
exception Sat
exception Unsat
exception Restart
@ -144,6 +145,24 @@ module Make (L : Log_intf.S)(St : Solver_types.S)
tatoms_qhead = 0;
}
(* Iteration over subterms *)
module Mi = Map.Make(struct type t = int let compare = Pervasives.compare end)
let iter_map = ref Mi.empty
let iter_sub f v =
try
List.iter f (Mi.find v.vid !iter_map)
with Not_found ->
let l = ref [] in
Th.iter_assignable (fun t -> l := add_term t :: !l) v.pa.lit;
iter_map := Mi.add v.vid !l !iter_map;
List.iter f !l
let atom lit =
let res = add_atom lit in
iter_sub ignore res.var;
res
(* Misc functions *)
let to_float i = float_of_int i
let to_int f = int_of_float f
@ -620,7 +639,7 @@ module Make (L : Log_intf.S)(St : Solver_types.S)
(* Propagation (boolean and theory) *)
let new_atom f =
let a = add_atom f in
let a = atom f in
L.debug 10 "New atom : %a" St.pp_atom a;
ignore (th_eval a);
a
@ -636,7 +655,7 @@ module Make (L : Log_intf.S)(St : Solver_types.S)
add_clause (fresh_tname ()) atoms (Lemma lemma)
let slice_propagate f lvl =
let a = add_atom f in
let a = atom f in
Iheap.grow_to_by_double env.order (St.nb_elt ());
enqueue_bool a lvl (Semantic lvl)
@ -877,7 +896,7 @@ module Make (L : Log_intf.S)(St : Solver_types.S)
add_clauses ?tag cnf
let assume ?tag cnf =
let cnf = List.rev_map (List.rev_map St.add_atom) cnf in
let cnf = List.rev_map (List.rev_map atom) cnf in
init_solver ?tag cnf
let eval lit =

View file

@ -5,9 +5,9 @@ Copyright 2014 Simon Cruanes
*)
module Make (L : Log_intf.S)(E : Expr_intf.S)
(Th : Plugin_intf.S with type term = E.Term.t and type formula = E.Formula.t) = struct
(Th : Plugin_intf.S with type term = E.Term.t and type formula = E.Formula.t and type proof = E.proof) = struct
module St = Solver_types.McMake(L)(E)(Th)
module St = Solver_types.McMake(L)(E)
module M = Internal.Make(L)(St)(Th)

View file

@ -5,7 +5,7 @@ Copyright 2014 Simon Cruanes
*)
module Make (L : Log_intf.S)(E : Expr_intf.S)
(Th : Plugin_intf.S with type term = E.Term.t and type formula = E.Formula.t) : sig
(Th : Plugin_intf.S with type term = E.Term.t and type formula = E.Formula.t and type proof = E.proof) : sig
(** Functor to create a solver parametrised by the atomic formulas and a theory. *)
exception Unsat
@ -13,7 +13,6 @@ module Make (L : Log_intf.S)(E : Expr_intf.S)
module St : Solver_types.S
with type term = E.Term.t
and type formula = E.Formula.t
and type proof = Th.proof
module Proof : Res.S
with type atom = St.atom

View file

@ -82,10 +82,5 @@ module type S = sig
(** Called at the end of the search in case a model has been found. If no new clause is
pushed, then 'sat' is returned, else search is resumed. *)
val proof_debug : proof -> string * (formula list) * (term list) * (string option)
(** Returns debugging information on a proof, as a triplet consisting of
a name/identification string associated with the proof, arguments of the proof,
and an optional color for the proof background *)
end

View file

@ -294,105 +294,5 @@ module Make(L : Log_intf.S)(St : Solver_types.S) = struct
Stack.push (Enter p) s;
fold_aux s h f acc
(* Dot proof printing *)
module Dot = struct
let _i = ref 0
let new_id () = incr _i; "id_" ^ (string_of_int !_i)
let ids : (clause, (bool * string)) Hashtbl.t = Hashtbl.create 1007;;
let c_id c =
try
snd (Hashtbl.find ids c)
with Not_found ->
let id = new_id () in
Hashtbl.add ids c (false, id);
id
let clear_ids () =
Hashtbl.iter (fun c (_, id) -> Hashtbl.replace ids c (false, id)) ids
let is_drawn c =
ignore (c_id c);
fst (Hashtbl.find ids c)
let has_drawn c =
if not (is_drawn c) then
let b, id = Hashtbl.find ids c in
Hashtbl.replace ids c (true, id)
else
()
let print_dot_rule opt f arg fmt cl =
Format.fprintf fmt "%s [shape=plaintext, label=<<TABLE %s %s>%a</TABLE>>];@\n"
(c_id cl) "BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\"" opt f arg
let print_dot_edge id_c fmt id_d =
Format.fprintf fmt "%s -> %s;@\n" id_c id_d
let print_res_atom id fmt a =
Format.fprintf fmt "%s [label=\"%a\"]" id St.print_atom a
let print_res_node concl p1 p2 fmt atom =
let id = new_id () in
Format.fprintf fmt "%a;@\n%a%a%a"
(print_res_atom id) atom
(print_dot_edge (c_id concl)) id
(print_dot_edge id) (c_id p1)
(print_dot_edge id) (c_id p2)
let color s = match s.[0] with
| 'E' -> "BGCOLOR=\"GREEN\""
| 'L' -> "BGCOLOR=\"GREEN\""
| _ -> "BGCOLOR=\"GREY\""
let rec print_dot_proof fmt p =
if not (is_drawn p.conclusion) then begin
has_drawn p.conclusion;
match p.step with
| Hypothesis ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>Hypothesis</TD><TD>%s</TD></TR>"
print_clause p.conclusion St.(p.conclusion.name)
in
print_dot_rule "BGCOLOR=\"LIGHTBLUE\"" aux () fmt p.conclusion
| Lemma proof ->
let name, f_args, t_args, color = St.proof_debug proof in
let color = match color with None -> "YELLOW" | Some c -> c in
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD BGCOLOR=\"%s\" rowspan=\"%d\">%s</TD>"
print_clause p.conclusion color (max (List.length f_args + List.length t_args) 1) name;
if f_args <> [] then
Format.fprintf fmt "<TD>%a</TD></TR>%a%a" St.print_atom (List.hd f_args)
(fun fmt -> List.iter (fun a -> Format.fprintf fmt "<TR><TD>%a</TD></TR>" St.print_atom a)) (List.tl f_args)
(fun fmt -> List.iter (fun v -> Format.fprintf fmt "<TR><TD>%a</TD></TR>" St.print_lit v)) t_args
else if t_args <> [] then
Format.fprintf fmt "<TD>%a</TD></TR>%a" St.print_lit (List.hd t_args)
(fun fmt -> List.iter (fun v -> Format.fprintf fmt "<TR><TD>%a</TD></TR>" St.print_lit v)) (List.tl t_args)
else
Format.fprintf fmt "<TD></TD></TR>"
in
print_dot_rule "BGCOLOR=\"LIGHTBLUE\"" aux () fmt p.conclusion
| Resolution (proof1, proof2, a) ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>%s</TD><TD>%s</TD></TR>"
print_clause p.conclusion
"Resolution" St.(p.conclusion.name)
in
let p1 = expand proof1 in
let p2 = expand proof2 in
Format.fprintf fmt "%a%a%a%a"
(print_dot_rule (color p.conclusion.St.name) aux ()) p.conclusion
(print_res_node p.conclusion p1.conclusion p2.conclusion) a
print_dot_proof p1
print_dot_proof p2
end
let print fmt proof =
clear_ids ();
Format.fprintf fmt "digraph proof {@\n%a@\n}@." print_dot_proof (expand proof)
end
let print_dot = Dot.print
end

View file

@ -80,11 +80,8 @@ module type S = sig
val unsat_core : proof -> clause list
(** Returns the unsat_core of the given proof, i.e the lists of conclusions of all leafs of the proof. *)
val print_dot : Format.formatter -> proof -> unit
(** Print the given proof in dot format on the given formatter.
@deprecated use the Dot backend module instead. *)
(** {3 Misc} *)
val print_clause : Format.formatter -> clause -> unit
(** A nice looking printer for clauses, which sort the atoms before printing. *)

View file

@ -11,13 +11,7 @@
(**************************************************************************)
module Make (L : Log_intf.S)(E : Formula_intf.S)
(Th : Theory_intf.S with type formula = E.t) = struct
module Expr = struct
module Term = E
module Formula = E
include E
end
(Th : Theory_intf.S with type formula = E.t and type proof = E.proof) = struct
module Plugin = struct
type term = E.t
@ -76,7 +70,7 @@ module Make (L : Log_intf.S)(E : Formula_intf.S)
let proof_debug _ = assert false
end
module St = Solver_types.SatMake(L)(E)(Th)
module St = Solver_types.SatMake(L)(E)
module S = Internal.Make(L)(St)(Plugin)

View file

@ -12,7 +12,7 @@
(**************************************************************************)
module Make (L : Log_intf.S)(F : Formula_intf.S)
(Th : Theory_intf.S with type formula = F.t) : sig
(Th : Theory_intf.S with type formula = F.t and type proof = F.proof) : sig
(** Functor to create a SMT Solver parametrised by the atomic
formulas and a theory. *)
@ -20,7 +20,7 @@ module Make (L : Log_intf.S)(F : Formula_intf.S)
module St : Solver_types.S
with type formula = F.t
and type proof = Th.proof
and type proof = F.proof
module Proof : Res.S
with type atom = St.atom

View file

@ -15,21 +15,14 @@ open Printf
module type S = Solver_types_intf.S
(* Solver types for McSat Solving *)
(* ************************************************************************ *)
module McMake (L : Log_intf.S)(E : Expr_intf.S)(Th : Plugin_intf.S with
type formula = E.Formula.t and type term = E.Term.t) = struct
(* Flag for Mcsat v.s Pure Sat *)
let mcsat = true
(* Types declarations *)
module McMake (L : Log_intf.S)(E : Expr_intf.S) = struct
type term = E.Term.t
type formula = E.Formula.t
type proof = Th.proof
type proof = E.proof
type lit = {
lid : int;
@ -73,8 +66,11 @@ module McMake (L : Log_intf.S)(E : Expr_intf.S)(Th : Plugin_intf.S with
| Bcp of clause option
and premise =
| History of clause list
| Lemma of proof
| History of clause list
(* Flag for Mcsat v.s Pure Sat *)
let mcsat = true
type elt = (lit, var) Either.t
@ -172,7 +168,7 @@ module McMake (L : Log_intf.S)(E : Expr_intf.S)(Th : Plugin_intf.S with
MF.add f_map lit var;
incr cpt_mk_var;
Vec.push vars (Either.mk_right var);
Th.iter_assignable (fun t -> ignore (make_semantic_var t)) lit;
(* Th.iter_assignable (fun t -> ignore (make_semantic_var t)) lit; *)
var, negated
let add_term t = make_semantic_var t
@ -235,24 +231,6 @@ module McMake (L : Log_intf.S)(E : Expr_intf.S)(Th : Plugin_intf.S with
let cpt = ref 0 in
fun () -> incr cpt; "C" ^ (string_of_int !cpt)
(* Iteration over subterms *)
module Mi = Map.Make(struct type t = int let compare= Pervasives.compare end)
let iter_map = ref Mi.empty
let iter_sub f v =
try
List.iter f (Mi.find v.vid !iter_map)
with Not_found ->
let l = ref [] in
Th.iter_assignable (fun t -> l := add_term t :: !l) v.pa.lit;
iter_map := Mi.add v.vid !l !iter_map;
List.iter f !l
(* Proof debug info *)
let proof_debug p =
let name, l, l', color = Th.proof_debug p in
name, (List.map add_atom l), (List.map add_term l'), color
(* Pretty printing for atoms and clauses *)
let print_lit fmt v = E.Term.print fmt v.term
@ -317,23 +295,14 @@ module McMake (L : Log_intf.S)(E : Expr_intf.S)(Th : Plugin_intf.S with
end
(* Solver types for pure SAT Solving *)
(* ************************************************************************ *)
module SatMake (L : Log_intf.S)(E : Formula_intf.S)
(Th : Theory_intf.S with type formula = E.t ) = struct
(* Flag for Mcsat v.s Pure Sat *)
let mcsat = false
(* Types declarations *)
module SatMake (L : Log_intf.S)(E : Formula_intf.S) = struct
type term = E.t
type formula = E.t
type proof = Th.proof
type proof = E.proof
type lit = {
lid : int;
@ -377,9 +346,14 @@ module SatMake (L : Log_intf.S)(E : Formula_intf.S)
| Bcp of clause option
and premise =
| History of clause list
| Lemma of proof
| History of clause list
(* Flag for Mcsat v.s Pure Sat *)
(* Flag for Mcsat v.s Pure Sat *)
let mcsat = false
(* Types declarations *)
type elt = var
(* Dummy values *)

View file

@ -16,14 +16,12 @@ module type S = Solver_types_intf.S
module McMake :
functor (L : Log_intf.S) ->
functor (E : Expr_intf.S) ->
functor (Th : Plugin_intf.S with type term = E.Term.t and type formula = E.Formula.t) ->
S with type term = E.Term.t and type formula = E.Formula.t and type proof = Th.proof
S with type term = E.Term.t and type formula = E.Formula.t and type proof = E.proof
(** Functor to instantiate the types of clauses for a solver. *)
module SatMake :
functor (L : Log_intf.S) ->
functor (E : Formula_intf.S) ->
functor (Th : Theory_intf.S with type formula = E.t) ->
S with type term = E.t and type formula = E.t and type proof = Th.proof
S with type term = E.t and type formula = E.t and type proof = E.proof
(** Functor to instantiate the types of clauses for a solver. *)

View file

@ -64,8 +64,8 @@ module type S = sig
| Bcp of clause option
and premise =
| History of clause list
| Lemma of proof
| History of clause list
(** {2 Decisions and propagations} *)
type t
@ -113,10 +113,6 @@ module type S = sig
(** Returns the variable linked with the given formula, and wether the atom associated with the formula
is [var.pa] or [var.na] *)
val iter_sub : (lit -> unit) -> var -> unit
(** Iterates over the semantic var corresponding to subterms of the fiven literal, according
to Th.iter_assignable *)
val empty_clause : clause
(** The empty clause *)
val make_clause : ?tag:int -> string -> atom list -> int -> bool -> premise -> clause
@ -130,9 +126,6 @@ module type S = sig
val fresh_hname : unit -> string
(** Fresh names for clauses *)
val proof_debug : proof -> string * (atom list) * (lit list) * (string option)
(** Debugging info for proofs (see Plugin_intf). *)
(** {2 Printing} *)
val print_lit : Format.formatter -> lit -> unit