feat(LRA): handle congruence closure and theory combination in LRA

- merges in the CC are handled by adding corresponding equalities
  locally
- theory combination pushes the decision `a=b` into the SAT solver
  if a,b have the same model values and are not provably equal
  in the CC already.
- also, fix model construction
This commit is contained in:
Simon Cruanes 2020-11-17 18:24:09 -05:00
parent 6417bbdd80
commit b3a7acf95b
3 changed files with 159 additions and 40 deletions

View file

@ -914,6 +914,8 @@ end = struct
| Eq (a,b) -> C.Eq (a, b)
| Not u -> C.Not u
| Ite (a,b,c) -> C.If (a,b,c)
| LRA (LRA_pred (Eq, a, b)) ->
C.Eq (a,b) (* need congruence closure on this one, for theory combination *)
| LRA _ -> C.Opaque t (* no congruence here *)
module As_key = struct

View file

@ -67,17 +67,34 @@ module Make(A : ARG) : S with module A = A = struct
module T = A.S.T.Term
module Lit = A.S.Solver_internal.Lit
module SI = A.S.Solver_internal
module N = A.S.Solver_internal.CC.N
module Tag = struct
type t =
| Lit of Lit.t
| CC_eq of N.t * N.t
let pp out = function
| Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l
| CC_eq (n1,n2) -> Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" N.pp n1 N.pp n2
let to_lits si = function
| Lit l -> [l]
| CC_eq (n1,n2) ->
SI.CC.explain_eq (SI.cc si) n1 n2
end
(* the fourier motzkin module *)
module FM_A = FM.Make(struct
module T = T
type tag = Lit.t
let pp_tag = Lit.pp
type tag = Tag.t
let pp_tag = Tag.pp
end)
(* linear expressions *)
module LE = FM_A.LE
type proxy = T.t
type state = {
tst: T.state;
simps: T.t T.Tbl.t; (* cache *)
@ -85,8 +102,9 @@ module Make(A : ARG) : S with module A = A = struct
neq_encoded: unit T.Tbl.t;
(* if [a != b] asserted and not in this table, add clause [a = b \/ a<b \/ a>b] *)
needs_th_combination: LE.t T.Tbl.t; (* terms that require theory combination *)
mutable t_defs: (T.t * LE.t) list; (* term definitions *)
t_defs: LE.t T.Tbl.t; (* term definitions *)
pred_defs: (pred * LE.t * LE.t * T.t * T.t) T.Tbl.t; (* predicate definitions *)
local_eqs: (N.t * N.t) Backtrack_stack.t; (* inferred by the congruence closure *)
}
let create tst : state =
@ -95,10 +113,19 @@ module Make(A : ARG) : S with module A = A = struct
gensym=A.Gensym.create tst;
neq_encoded=T.Tbl.create 16;
needs_th_combination=T.Tbl.create 8;
t_defs=[];
t_defs=T.Tbl.create 8;
pred_defs=T.Tbl.create 16;
local_eqs = Backtrack_stack.create();
}
let push_level self =
Backtrack_stack.push_level self.local_eqs;
()
let pop_levels self n =
Backtrack_stack.pop_levels self.local_eqs n ~f:(fun _ -> ());
()
(* FIXME
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : T.t option =
let tst = self.tst in
@ -170,6 +197,8 @@ module Make(A : ARG) : S with module A = A = struct
LE.( n * t )
| LRA_const q -> LE.const q
let as_linexp_id = as_linexp ~f:CCFun.id
(* TODO: keep the linexps until they're asserted;
TODO: but use simplification in preprocess
*)
@ -177,8 +206,14 @@ module Make(A : ARG) : S with module A = A = struct
(* preprocess linear expressions away *)
let preproc_lra (self:state) si ~recurse ~mk_lit:_ ~add_clause:_ (t:T.t) : T.t option =
Log.debugf 50 (fun k->k "lra.preprocess %a" T.pp t);
let _tst = SI.tst si in
let tst = SI.tst si in
match A.view_as_lra t with
| LRA_pred ((Eq|Neq) as pred, t1, t2) ->
(* keep equality as is, needed for congruence closure *)
let t1 = recurse t1 in
let t2 = recurse t2 in
let u = A.mk_lra tst (LRA_pred (pred, t1, t2)) in
if T.equal t u then None else Some u
| LRA_pred (pred, t1, t2) ->
let l1 = as_linexp ~f:recurse t1 in
let l2 = as_linexp ~f:recurse t2 in
@ -189,10 +224,9 @@ module Make(A : ARG) : S with module A = A = struct
Some proxy
| LRA_op _ | LRA_mult _ ->
let le = as_linexp ~f:recurse t in
(* TODO: reuse proxy if present? *)
let proxy = fresh_term self ~pre:"_e_lra_" (T.ty t) in
self.t_defs <- (proxy, le) :: self.t_defs;
T.Tbl.add self.needs_th_combination t le;
T.Tbl.add self.t_defs proxy le;
T.Tbl.add self.needs_th_combination proxy le;
Log.debugf 5 (fun k->k"@[<hv2>lra.preprocess.step %a@ :into %a@ :def %a@]"
T.pp t T.pp proxy LE.pp le);
Some proxy
@ -213,17 +247,20 @@ module Make(A : ARG) : S with module A = A = struct
let t = Lit.term lit in
Log.debugf 50 (fun k->k "@[lra: check lit %a@ :t %a@ :sign %B@]"
Lit.pp lit T.pp t (Lit.sign lit));
let check_pred pred a b =
let pred = if Lit.sign lit then pred else FM.Pred.neg pred in
Log.debugf 50 (fun k->k "pred = `%s`" (FM.Pred.to_string pred));
if pred = Neq && not (T.Tbl.mem self.neq_encoded t) then (
Some (lit, a, b)
) else None
in
begin match T.Tbl.find self.pred_defs t with
| (pred, _, _, ta, tb) ->
let pred = if Lit.sign lit then pred else FM.Pred.neg pred in
Log.debugf 50 (fun k->k "pred = `%s`" (FM.Pred.to_string pred));
if pred = Neq && not (T.Tbl.mem self.neq_encoded t) then (
Some (lit, ta, tb)
) else None
| (pred, _, _, ta, tb) -> check_pred pred ta tb
| exception Not_found ->
begin match A.view_as_lra t with
| LRA_pred (Neq, a, b) when not (T.Tbl.mem self.neq_encoded t) ->
Some (lit, a, b)
| LRA_pred (pred, a, b) -> check_pred pred a b
| _ -> None
end
end)
@ -246,19 +283,28 @@ module Make(A : ARG) : S with module A = A = struct
List.iter (fun l -> LTbl.replace tbl l ()) lits;
LTbl.keys_list tbl
module Q_map = CCMap.Make(Q)
let final_check_ (self:state) si (acts:SI.actions) (trail:_ Iter.t) : unit =
Log.debug 5 "(th-lra.final-check)";
encode_neq self si acts trail;
let fm = FM_A.create() in
(* first, add definitions *)
begin
List.iter
(fun (t,le) ->
T.Tbl.iter
(fun t le ->
let open LE.Infix in
let c = FM_A.Constr.mk ?tag:None Eq (LE.var t) le in
FM_A.assert_c fm c)
self.t_defs
end;
(* add congruence closure equalities *)
Backtrack_stack.iter self.local_eqs
~f:(fun (n1,n2) ->
let t1 = N.term n1 |> as_linexp_id in
let t2 = N.term n2 |> as_linexp_id in
let c = FM_A.Constr.mk ~tag:(Tag.CC_eq (n1,n2)) Eq t1 t2 in
FM_A.assert_c fm c);
(* add trail *)
begin
trail
@ -266,16 +312,25 @@ module Make(A : ARG) : S with module A = A = struct
(fun lit ->
let sign = Lit.sign lit in
let t = Lit.term lit in
let assert_pred pred a b =
let pred = if sign then pred else FM.Pred.neg pred in
if pred = Neq then (
Log.debugf 50 (fun k->k "skip neq in %a" T.pp t);
) else (
let c = FM_A.Constr.mk ~tag:(Tag.Lit lit) pred a b in
FM_A.assert_c fm c;
)
in
begin match T.Tbl.find self.pred_defs t with
| exception Not_found -> ()
| (pred, a, b, _, _) ->
let pred = if sign then pred else FM.Pred.neg pred in
if pred = Neq then (
Log.debugf 50 (fun k->k "skip neq in %a" T.pp t);
) else (
let c = FM_A.Constr.mk ~tag:lit pred a b in
FM_A.assert_c fm c;
)
| (pred, a, b, _, _) -> assert_pred pred a b
| exception Not_found ->
begin match A.view_as_lra t with
| LRA_pred (pred, a, b) ->
let a = try T.Tbl.find self.t_defs a with _ -> as_linexp_id a in
let b = try T.Tbl.find self.t_defs b with _ -> as_linexp_id b in
assert_pred pred a b
| _ -> ()
end
end)
end;
Log.debug 5 "lra: call arith solver";
@ -286,14 +341,56 @@ module Make(A : ARG) : S with module A = A = struct
(fun k->k "(@[LRA.needs-th-combination:@ %a@])"
(Util.pp_iter @@ Fmt.within "`" "`" T.pp) (T.Tbl.keys self.needs_th_combination));
Log.debugf 30 (fun k->k "(@[LRA.model@ %a@])" FM_A.pp_model model);
() (* TODO: get a model + model combination *)
| FM_A.Unsat lits ->
(* theory combination: for [t1,t2] terms in [self.needs_th_combination]
that have same value, but are not provably equal, push
decision [t1=t2] into the SAT solver. *)
begin
let by_val: T.t list Q_map.t =
T.Tbl.to_iter self.needs_th_combination
|> Iter.map (fun (t,le) -> FM_A.eval_model model le, t)
|> Iter.fold
(fun m (q,t) ->
let l = Q_map.get_or ~default:[] q m in
Q_map.add q (t::l) m)
Q_map.empty
in
Q_map.iter
(fun _q ts ->
begin match ts with
| [] | [_] -> ()
| ts ->
(* several terms! see if they are already equal *)
CCList.diagonal ts
|> List.iter
(fun (t1,t2) ->
Log.debugf 50
(fun k->k "(@[LRA.th-comb.check-pair[val=%a]@ %a@ %a@])"
Q.pp_print _q T.pp t1 T.pp t2);
(* FIXME: we need these equalities to be considered
by the congruence closure *)
if not (SI.cc_are_equal si t1 t2) then (
Log.debug 50 "LRA.th-comb.must-decide-equal";
let t = A.mk_lra (SI.tst si) (LRA_pred (Eq, t1, t2)) in
let lit = SI.mk_lit si acts t in
SI.push_decision si acts lit
)
)
end)
by_val;
()
end;
()
| FM_A.Unsat tags ->
(* we tagged assertions with their lit, so the certificate being an
unsat core translates directly into a conflict clause *)
Log.debugf 5 (fun k->k"lra: solver returns UNSAT@ with cert %a"
(Fmt.Dump.list Lit.pp) lits);
(Fmt.Dump.list Tag.pp) tags);
let confl =
List.rev_map Lit.neg lits |> dedup_lits
tags
|> CCList.flat_map (fun t -> Tag.to_lits si t)
|> List.rev_map Lit.neg
|> dedup_lits
in
(* TODO: produce and store a proper LRA resolution proof *)
SI.raise_conflict si acts confl SI.P.default
@ -306,6 +403,11 @@ module Make(A : ARG) : S with module A = A = struct
(* TODO SI.add_simplifier si (simplify st); *)
SI.add_preprocess si (preproc_lra st);
SI.on_final_check si (final_check_ st);
SI.on_cc_post_merge si
(fun _ _ n1 n2 ->
if A.has_ty_real (N.term n1) then (
Backtrack_stack.push st.local_eqs (n1, n2)
));
(* SI.add_preprocess si (cnf st); *)
(* TODO: theory combination *)
st
@ -313,6 +415,6 @@ module Make(A : ARG) : S with module A = A = struct
let theory =
A.S.mk_theory
~name:"th-lra"
~create_and_setup
~create_and_setup ~push_level ~pop_levels
()
end

View file

@ -87,6 +87,7 @@ module type S = sig
type model
val get_model : model -> term -> Q.t
val eval_model : model -> LE.t -> Q.t
val pp_model : model Fmt.printer
type res =
@ -320,19 +321,23 @@ module Make(A : ARG)
(Fmt.Dump.list Constr.pp) self.empties
(Util.pp_iter pp_idxkv) (T_map.to_iter self.idx)
(* TODO: be able to provide a model for SAT *)
let build_model_ (self:pre_model) : _ T_map.t =
let l = T_map.to_iter self |> Iter.to_rev_list in
(* order matters: we need to compute values for lowest variables first *)
let l = T_map.to_iter self |> Iter.to_list in
(* INVARIANT: assert (CCList.is_sorted ~cmp:(fun (a,_) (b,_) -> T.compare a b) l); *)
let m = ref T_map.empty in
(* how to evaluate a linexpr in the model *)
let eval_le (le:LE.t) : Q.t =
let eval_le ~for_v (le:LE.t) : Q.t =
let find x =
assert (T.compare for_v x > 0);
try T_map.find x !m
with Not_found ->
Log.debugf 50 (fun k->k "LRA.model: add default value for %a" T.pp x);
m := T_map.add x Q.zero !m; (* remember this choice *)
Q.zero in
Q.zero
in
T_map.to_iter le.LE.le
|> Iter.fold
(fun sum (t,coeff) -> Q.(sum + coeff * find t))
@ -355,12 +360,13 @@ module Make(A : ARG)
begin fun (v,cs_v) ->
(* update [v] using its constraints [cs_v].
[m] is the model to update *)
Log.debugf 40 (fun k->k "LRA.model: compute value for %a" T.pp v);
let val_v =
match cs_v with
| lazy (PM_eq le) -> eval_le le
| lazy (PM_eq le) -> eval_le ~for_v:v le
| lazy (PM_bounds {lower; upper}) ->
let lower = List.map (fun (s,le) -> s, eval_le le) lower in
let upper = List.map (fun (s,le) -> s, eval_le le) upper in
let lower = List.map (fun (s,le) -> s, eval_le ~for_v:v le) lower in
let upper = List.map (fun (s,le) -> s, eval_le ~for_v:v le) upper in
let strict_low, lower = match lower with
| [] -> NonStrict, Q.minus_inf
| x :: l -> List.fold_left max_pair x l
@ -383,7 +389,10 @@ module Make(A : ARG)
Q.zero (* no bounds *)
)
in
assert (not (T_map.mem v !m)); (* by ordering *)
if T_map.mem v !m then (
(* error: by ordering [v] should not have been touched yet *)
Error.errorf "LRA.build-model: variable %a already has a value" T.pp v
);
m := T_map.add v val_v !m;
end
l;
@ -394,6 +403,12 @@ module Make(A : ARG)
try T_map.find v m
with Not_found -> Q.zero
let eval_model m (le:LE.t) : Q.t =
T_map.fold
(fun v coeff sum ->
Q.(sum + coeff * get_model m v))
le.LE.le le.LE.const
let pp_model out (m:model) : unit =
let lazy m = m in
let pp_pair out (v,q) = Fmt.fprintf out "(@[%a@ %a@])" T.pp v Q.pp_print q in