mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-09 20:55:39 -05:00
feat(LRA): handle congruence closure and theory combination in LRA
- merges in the CC are handled by adding corresponding equalities locally - theory combination pushes the decision `a=b` into the SAT solver if a,b have the same model values and are not provably equal in the CC already. - also, fix model construction
This commit is contained in:
parent
6417bbdd80
commit
b3a7acf95b
3 changed files with 159 additions and 40 deletions
|
|
@ -914,6 +914,8 @@ end = struct
|
|||
| Eq (a,b) -> C.Eq (a, b)
|
||||
| Not u -> C.Not u
|
||||
| Ite (a,b,c) -> C.If (a,b,c)
|
||||
| LRA (LRA_pred (Eq, a, b)) ->
|
||||
C.Eq (a,b) (* need congruence closure on this one, for theory combination *)
|
||||
| LRA _ -> C.Opaque t (* no congruence here *)
|
||||
|
||||
module As_key = struct
|
||||
|
|
|
|||
|
|
@ -67,17 +67,34 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
module T = A.S.T.Term
|
||||
module Lit = A.S.Solver_internal.Lit
|
||||
module SI = A.S.Solver_internal
|
||||
module N = A.S.Solver_internal.CC.N
|
||||
|
||||
module Tag = struct
|
||||
type t =
|
||||
| Lit of Lit.t
|
||||
| CC_eq of N.t * N.t
|
||||
|
||||
let pp out = function
|
||||
| Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l
|
||||
| CC_eq (n1,n2) -> Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" N.pp n1 N.pp n2
|
||||
|
||||
let to_lits si = function
|
||||
| Lit l -> [l]
|
||||
| CC_eq (n1,n2) ->
|
||||
SI.CC.explain_eq (SI.cc si) n1 n2
|
||||
end
|
||||
|
||||
(* the fourier motzkin module *)
|
||||
module FM_A = FM.Make(struct
|
||||
module T = T
|
||||
type tag = Lit.t
|
||||
let pp_tag = Lit.pp
|
||||
type tag = Tag.t
|
||||
let pp_tag = Tag.pp
|
||||
end)
|
||||
|
||||
(* linear expressions *)
|
||||
module LE = FM_A.LE
|
||||
|
||||
type proxy = T.t
|
||||
type state = {
|
||||
tst: T.state;
|
||||
simps: T.t T.Tbl.t; (* cache *)
|
||||
|
|
@ -85,8 +102,9 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
neq_encoded: unit T.Tbl.t;
|
||||
(* if [a != b] asserted and not in this table, add clause [a = b \/ a<b \/ a>b] *)
|
||||
needs_th_combination: LE.t T.Tbl.t; (* terms that require theory combination *)
|
||||
mutable t_defs: (T.t * LE.t) list; (* term definitions *)
|
||||
t_defs: LE.t T.Tbl.t; (* term definitions *)
|
||||
pred_defs: (pred * LE.t * LE.t * T.t * T.t) T.Tbl.t; (* predicate definitions *)
|
||||
local_eqs: (N.t * N.t) Backtrack_stack.t; (* inferred by the congruence closure *)
|
||||
}
|
||||
|
||||
let create tst : state =
|
||||
|
|
@ -95,10 +113,19 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
gensym=A.Gensym.create tst;
|
||||
neq_encoded=T.Tbl.create 16;
|
||||
needs_th_combination=T.Tbl.create 8;
|
||||
t_defs=[];
|
||||
t_defs=T.Tbl.create 8;
|
||||
pred_defs=T.Tbl.create 16;
|
||||
local_eqs = Backtrack_stack.create();
|
||||
}
|
||||
|
||||
let push_level self =
|
||||
Backtrack_stack.push_level self.local_eqs;
|
||||
()
|
||||
|
||||
let pop_levels self n =
|
||||
Backtrack_stack.pop_levels self.local_eqs n ~f:(fun _ -> ());
|
||||
()
|
||||
|
||||
(* FIXME
|
||||
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : T.t option =
|
||||
let tst = self.tst in
|
||||
|
|
@ -170,6 +197,8 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
LE.( n * t )
|
||||
| LRA_const q -> LE.const q
|
||||
|
||||
let as_linexp_id = as_linexp ~f:CCFun.id
|
||||
|
||||
(* TODO: keep the linexps until they're asserted;
|
||||
TODO: but use simplification in preprocess
|
||||
*)
|
||||
|
|
@ -177,8 +206,14 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
(* preprocess linear expressions away *)
|
||||
let preproc_lra (self:state) si ~recurse ~mk_lit:_ ~add_clause:_ (t:T.t) : T.t option =
|
||||
Log.debugf 50 (fun k->k "lra.preprocess %a" T.pp t);
|
||||
let _tst = SI.tst si in
|
||||
let tst = SI.tst si in
|
||||
match A.view_as_lra t with
|
||||
| LRA_pred ((Eq|Neq) as pred, t1, t2) ->
|
||||
(* keep equality as is, needed for congruence closure *)
|
||||
let t1 = recurse t1 in
|
||||
let t2 = recurse t2 in
|
||||
let u = A.mk_lra tst (LRA_pred (pred, t1, t2)) in
|
||||
if T.equal t u then None else Some u
|
||||
| LRA_pred (pred, t1, t2) ->
|
||||
let l1 = as_linexp ~f:recurse t1 in
|
||||
let l2 = as_linexp ~f:recurse t2 in
|
||||
|
|
@ -189,10 +224,9 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
Some proxy
|
||||
| LRA_op _ | LRA_mult _ ->
|
||||
let le = as_linexp ~f:recurse t in
|
||||
(* TODO: reuse proxy if present? *)
|
||||
let proxy = fresh_term self ~pre:"_e_lra_" (T.ty t) in
|
||||
self.t_defs <- (proxy, le) :: self.t_defs;
|
||||
T.Tbl.add self.needs_th_combination t le;
|
||||
T.Tbl.add self.t_defs proxy le;
|
||||
T.Tbl.add self.needs_th_combination proxy le;
|
||||
Log.debugf 5 (fun k->k"@[<hv2>lra.preprocess.step %a@ :into %a@ :def %a@]"
|
||||
T.pp t T.pp proxy LE.pp le);
|
||||
Some proxy
|
||||
|
|
@ -213,17 +247,20 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
let t = Lit.term lit in
|
||||
Log.debugf 50 (fun k->k "@[lra: check lit %a@ :t %a@ :sign %B@]"
|
||||
Lit.pp lit T.pp t (Lit.sign lit));
|
||||
|
||||
let check_pred pred a b =
|
||||
let pred = if Lit.sign lit then pred else FM.Pred.neg pred in
|
||||
Log.debugf 50 (fun k->k "pred = `%s`" (FM.Pred.to_string pred));
|
||||
if pred = Neq && not (T.Tbl.mem self.neq_encoded t) then (
|
||||
Some (lit, a, b)
|
||||
) else None
|
||||
in
|
||||
|
||||
begin match T.Tbl.find self.pred_defs t with
|
||||
| (pred, _, _, ta, tb) ->
|
||||
let pred = if Lit.sign lit then pred else FM.Pred.neg pred in
|
||||
Log.debugf 50 (fun k->k "pred = `%s`" (FM.Pred.to_string pred));
|
||||
if pred = Neq && not (T.Tbl.mem self.neq_encoded t) then (
|
||||
Some (lit, ta, tb)
|
||||
) else None
|
||||
| (pred, _, _, ta, tb) -> check_pred pred ta tb
|
||||
| exception Not_found ->
|
||||
begin match A.view_as_lra t with
|
||||
| LRA_pred (Neq, a, b) when not (T.Tbl.mem self.neq_encoded t) ->
|
||||
Some (lit, a, b)
|
||||
| LRA_pred (pred, a, b) -> check_pred pred a b
|
||||
| _ -> None
|
||||
end
|
||||
end)
|
||||
|
|
@ -246,19 +283,28 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
List.iter (fun l -> LTbl.replace tbl l ()) lits;
|
||||
LTbl.keys_list tbl
|
||||
|
||||
module Q_map = CCMap.Make(Q)
|
||||
|
||||
let final_check_ (self:state) si (acts:SI.actions) (trail:_ Iter.t) : unit =
|
||||
Log.debug 5 "(th-lra.final-check)";
|
||||
encode_neq self si acts trail;
|
||||
let fm = FM_A.create() in
|
||||
(* first, add definitions *)
|
||||
begin
|
||||
List.iter
|
||||
(fun (t,le) ->
|
||||
T.Tbl.iter
|
||||
(fun t le ->
|
||||
let open LE.Infix in
|
||||
let c = FM_A.Constr.mk ?tag:None Eq (LE.var t) le in
|
||||
FM_A.assert_c fm c)
|
||||
self.t_defs
|
||||
end;
|
||||
(* add congruence closure equalities *)
|
||||
Backtrack_stack.iter self.local_eqs
|
||||
~f:(fun (n1,n2) ->
|
||||
let t1 = N.term n1 |> as_linexp_id in
|
||||
let t2 = N.term n2 |> as_linexp_id in
|
||||
let c = FM_A.Constr.mk ~tag:(Tag.CC_eq (n1,n2)) Eq t1 t2 in
|
||||
FM_A.assert_c fm c);
|
||||
(* add trail *)
|
||||
begin
|
||||
trail
|
||||
|
|
@ -266,16 +312,25 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
(fun lit ->
|
||||
let sign = Lit.sign lit in
|
||||
let t = Lit.term lit in
|
||||
let assert_pred pred a b =
|
||||
let pred = if sign then pred else FM.Pred.neg pred in
|
||||
if pred = Neq then (
|
||||
Log.debugf 50 (fun k->k "skip neq in %a" T.pp t);
|
||||
) else (
|
||||
let c = FM_A.Constr.mk ~tag:(Tag.Lit lit) pred a b in
|
||||
FM_A.assert_c fm c;
|
||||
)
|
||||
in
|
||||
begin match T.Tbl.find self.pred_defs t with
|
||||
| exception Not_found -> ()
|
||||
| (pred, a, b, _, _) ->
|
||||
let pred = if sign then pred else FM.Pred.neg pred in
|
||||
if pred = Neq then (
|
||||
Log.debugf 50 (fun k->k "skip neq in %a" T.pp t);
|
||||
) else (
|
||||
let c = FM_A.Constr.mk ~tag:lit pred a b in
|
||||
FM_A.assert_c fm c;
|
||||
)
|
||||
| (pred, a, b, _, _) -> assert_pred pred a b
|
||||
| exception Not_found ->
|
||||
begin match A.view_as_lra t with
|
||||
| LRA_pred (pred, a, b) ->
|
||||
let a = try T.Tbl.find self.t_defs a with _ -> as_linexp_id a in
|
||||
let b = try T.Tbl.find self.t_defs b with _ -> as_linexp_id b in
|
||||
assert_pred pred a b
|
||||
| _ -> ()
|
||||
end
|
||||
end)
|
||||
end;
|
||||
Log.debug 5 "lra: call arith solver";
|
||||
|
|
@ -286,14 +341,56 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
(fun k->k "(@[LRA.needs-th-combination:@ %a@])"
|
||||
(Util.pp_iter @@ Fmt.within "`" "`" T.pp) (T.Tbl.keys self.needs_th_combination));
|
||||
Log.debugf 30 (fun k->k "(@[LRA.model@ %a@])" FM_A.pp_model model);
|
||||
() (* TODO: get a model + model combination *)
|
||||
| FM_A.Unsat lits ->
|
||||
|
||||
(* theory combination: for [t1,t2] terms in [self.needs_th_combination]
|
||||
that have same value, but are not provably equal, push
|
||||
decision [t1=t2] into the SAT solver. *)
|
||||
begin
|
||||
let by_val: T.t list Q_map.t =
|
||||
T.Tbl.to_iter self.needs_th_combination
|
||||
|> Iter.map (fun (t,le) -> FM_A.eval_model model le, t)
|
||||
|> Iter.fold
|
||||
(fun m (q,t) ->
|
||||
let l = Q_map.get_or ~default:[] q m in
|
||||
Q_map.add q (t::l) m)
|
||||
Q_map.empty
|
||||
in
|
||||
Q_map.iter
|
||||
(fun _q ts ->
|
||||
begin match ts with
|
||||
| [] | [_] -> ()
|
||||
| ts ->
|
||||
(* several terms! see if they are already equal *)
|
||||
CCList.diagonal ts
|
||||
|> List.iter
|
||||
(fun (t1,t2) ->
|
||||
Log.debugf 50
|
||||
(fun k->k "(@[LRA.th-comb.check-pair[val=%a]@ %a@ %a@])"
|
||||
Q.pp_print _q T.pp t1 T.pp t2);
|
||||
(* FIXME: we need these equalities to be considered
|
||||
by the congruence closure *)
|
||||
if not (SI.cc_are_equal si t1 t2) then (
|
||||
Log.debug 50 "LRA.th-comb.must-decide-equal";
|
||||
let t = A.mk_lra (SI.tst si) (LRA_pred (Eq, t1, t2)) in
|
||||
let lit = SI.mk_lit si acts t in
|
||||
SI.push_decision si acts lit
|
||||
)
|
||||
)
|
||||
end)
|
||||
by_val;
|
||||
()
|
||||
end;
|
||||
()
|
||||
| FM_A.Unsat tags ->
|
||||
(* we tagged assertions with their lit, so the certificate being an
|
||||
unsat core translates directly into a conflict clause *)
|
||||
Log.debugf 5 (fun k->k"lra: solver returns UNSAT@ with cert %a"
|
||||
(Fmt.Dump.list Lit.pp) lits);
|
||||
(Fmt.Dump.list Tag.pp) tags);
|
||||
let confl =
|
||||
List.rev_map Lit.neg lits |> dedup_lits
|
||||
tags
|
||||
|> CCList.flat_map (fun t -> Tag.to_lits si t)
|
||||
|> List.rev_map Lit.neg
|
||||
|> dedup_lits
|
||||
in
|
||||
(* TODO: produce and store a proper LRA resolution proof *)
|
||||
SI.raise_conflict si acts confl SI.P.default
|
||||
|
|
@ -306,6 +403,11 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
(* TODO SI.add_simplifier si (simplify st); *)
|
||||
SI.add_preprocess si (preproc_lra st);
|
||||
SI.on_final_check si (final_check_ st);
|
||||
SI.on_cc_post_merge si
|
||||
(fun _ _ n1 n2 ->
|
||||
if A.has_ty_real (N.term n1) then (
|
||||
Backtrack_stack.push st.local_eqs (n1, n2)
|
||||
));
|
||||
(* SI.add_preprocess si (cnf st); *)
|
||||
(* TODO: theory combination *)
|
||||
st
|
||||
|
|
@ -313,6 +415,6 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
let theory =
|
||||
A.S.mk_theory
|
||||
~name:"th-lra"
|
||||
~create_and_setup
|
||||
~create_and_setup ~push_level ~pop_levels
|
||||
()
|
||||
end
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ module type S = sig
|
|||
type model
|
||||
|
||||
val get_model : model -> term -> Q.t
|
||||
val eval_model : model -> LE.t -> Q.t
|
||||
val pp_model : model Fmt.printer
|
||||
|
||||
type res =
|
||||
|
|
@ -320,19 +321,23 @@ module Make(A : ARG)
|
|||
(Fmt.Dump.list Constr.pp) self.empties
|
||||
(Util.pp_iter pp_idxkv) (T_map.to_iter self.idx)
|
||||
|
||||
(* TODO: be able to provide a model for SAT *)
|
||||
let build_model_ (self:pre_model) : _ T_map.t =
|
||||
let l = T_map.to_iter self |> Iter.to_rev_list in
|
||||
(* order matters: we need to compute values for lowest variables first *)
|
||||
let l = T_map.to_iter self |> Iter.to_list in
|
||||
(* INVARIANT: assert (CCList.is_sorted ~cmp:(fun (a,_) (b,_) -> T.compare a b) l); *)
|
||||
|
||||
let m = ref T_map.empty in
|
||||
|
||||
(* how to evaluate a linexpr in the model *)
|
||||
let eval_le (le:LE.t) : Q.t =
|
||||
let eval_le ~for_v (le:LE.t) : Q.t =
|
||||
let find x =
|
||||
assert (T.compare for_v x > 0);
|
||||
try T_map.find x !m
|
||||
with Not_found ->
|
||||
Log.debugf 50 (fun k->k "LRA.model: add default value for %a" T.pp x);
|
||||
m := T_map.add x Q.zero !m; (* remember this choice *)
|
||||
Q.zero in
|
||||
Q.zero
|
||||
in
|
||||
T_map.to_iter le.LE.le
|
||||
|> Iter.fold
|
||||
(fun sum (t,coeff) -> Q.(sum + coeff * find t))
|
||||
|
|
@ -355,12 +360,13 @@ module Make(A : ARG)
|
|||
begin fun (v,cs_v) ->
|
||||
(* update [v] using its constraints [cs_v].
|
||||
[m] is the model to update *)
|
||||
Log.debugf 40 (fun k->k "LRA.model: compute value for %a" T.pp v);
|
||||
let val_v =
|
||||
match cs_v with
|
||||
| lazy (PM_eq le) -> eval_le le
|
||||
| lazy (PM_eq le) -> eval_le ~for_v:v le
|
||||
| lazy (PM_bounds {lower; upper}) ->
|
||||
let lower = List.map (fun (s,le) -> s, eval_le le) lower in
|
||||
let upper = List.map (fun (s,le) -> s, eval_le le) upper in
|
||||
let lower = List.map (fun (s,le) -> s, eval_le ~for_v:v le) lower in
|
||||
let upper = List.map (fun (s,le) -> s, eval_le ~for_v:v le) upper in
|
||||
let strict_low, lower = match lower with
|
||||
| [] -> NonStrict, Q.minus_inf
|
||||
| x :: l -> List.fold_left max_pair x l
|
||||
|
|
@ -383,7 +389,10 @@ module Make(A : ARG)
|
|||
Q.zero (* no bounds *)
|
||||
)
|
||||
in
|
||||
assert (not (T_map.mem v !m)); (* by ordering *)
|
||||
if T_map.mem v !m then (
|
||||
(* error: by ordering [v] should not have been touched yet *)
|
||||
Error.errorf "LRA.build-model: variable %a already has a value" T.pp v
|
||||
);
|
||||
m := T_map.add v val_v !m;
|
||||
end
|
||||
l;
|
||||
|
|
@ -394,6 +403,12 @@ module Make(A : ARG)
|
|||
try T_map.find v m
|
||||
with Not_found -> Q.zero
|
||||
|
||||
let eval_model m (le:LE.t) : Q.t =
|
||||
T_map.fold
|
||||
(fun v coeff sum ->
|
||||
Q.(sum + coeff * get_model m v))
|
||||
le.LE.le le.LE.const
|
||||
|
||||
let pp_model out (m:model) : unit =
|
||||
let lazy m = m in
|
||||
let pp_pair out (v,q) = Fmt.fprintf out "(@[%a@ %a@])" T.pp v Q.pp_print q in
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue