feat(proof): progress on preprocessing; proper proofs for th-bool

This commit is contained in:
Simon Cruanes 2021-04-26 22:06:58 -04:00
parent 502dce503c
commit c02da6ce8a
8 changed files with 235 additions and 118 deletions

View file

@ -11,7 +11,7 @@ type lit =
| L_a of term
| L_na of term
let not = function
let lit_not = function
| L_eq (a,b) -> L_neq(a,b)
| L_neq (a,b) -> L_eq(a,b)
| L_a t -> L_na t
@ -23,11 +23,11 @@ let pp_lit out = function
| L_a t -> Fmt.fprintf out "(@[+@ %a@])" T.pp t
| L_na t -> Fmt.fprintf out "(@[-@ %a@])" T.pp t
let a t = L_a t
let na t = L_na t
let eq t u = L_eq (t,u)
let neq t u = L_neq (t,u)
let lit_st (t,b) = if b then a t else na t
let lit_a t = L_a t
let lit_na t = L_na t
let lit_eq t u = L_eq (t,u)
let lit_neq t u = L_neq (t,u)
let lit_st (t,b) = if b then lit_a t else lit_na t
type clause = lit list
@ -48,8 +48,10 @@ type t =
| Bool_true_is_true
| Bool_true_neq_false
| Bool_eq of term * term (* equal by pure boolean reasoning *)
| Bool_c of clause (* boolean tautology *)
| Ite_true of term (* given [if a b c] returns [a=T |- if a b c=b] *)
| Ite_false of term
| With_def of term list * t (* [with_def ts p] is [p] using definitions of [ts] *)
| LRA of clause
| Composite of {
(* some named (atomic) assumptions *)
@ -63,11 +65,10 @@ and composite_step =
res: clause; (* result of [proof] *)
proof: t; (* sub-proof *)
}
| S_define_t of term * term (* [const := t] *)
(* TODO: do we need that here? or is it only during printing
that it becomes important?
| S_define_t of string * term (* name this term *)
*)
(* TODO: step to name a term (not define it), to keep sharing?
or do we do that when we print/serialize the proof *)
and hres_step =
| R of { pivot: term; p: t}
@ -80,8 +81,12 @@ let r1 p = R1 p
let p p ~lhs ~rhs : hres_step = P { p; lhs; rhs }
let p1 p = P1 p
let defc ~name res proof : composite_step =
S_define_c {proof;name;res}
let defc ~name res proof : composite_step = S_define_c {proof;name;res}
let deft c rhs : composite_step = S_define_t (c,rhs)
let is_trivial_refl = function
| Refl _ -> true
| _ -> false
let default=Unspecified
let sorry_c c = Sorry_c (Iter.to_rev_list c)
@ -96,6 +101,7 @@ let cc_imply2 h1 h2 t u : t = CC_lemma_imply ([h1; h2], t, u)
let assertion t = Assertion t
let assertion_c c = Assertion_c (Iter.to_rev_list c)
let assertion_c_l c = Assertion_c c
let with_defs ts p = match ts with [] -> p | _ -> With_def (ts, p)
let composite_l ?(assms=[]) steps : t =
Composite {assumptions=assms; steps}
let composite_iter ?(assms=[]) steps : t =
@ -111,6 +117,7 @@ let ite_false t = Ite_false t
let true_is_true : t = Bool_true_is_true
let true_neq_false : t = Bool_true_neq_false
let bool_eq a b : t = Bool_eq (a,b)
let bool_c c : t = Bool_c c
let hres_l c l : t = Hres (c,l)
let hres_iter c i : t = Hres (c, Iter.to_list i)
@ -142,11 +149,12 @@ module Quip = struct
| Bool_true_is_true -> Fmt.string out "true-is-true"
| Bool_true_neq_false -> Fmt.string out "(@[!= T F@])"
| Bool_eq (a,b) -> Fmt.fprintf out "(@[bool-eq@ %a@ %a@])" T.pp a T.pp b
| Bool_c c -> Fmt.fprintf out "(@[bool-c@ %a@])" pp_cl c
| Assertion t -> Fmt.fprintf out "(@[assert@ %a@])" T.pp t
| Assertion_c c ->
Fmt.fprintf out "(@[assert-c@ %a@])" pp_cl c
| Hres (c, l) ->
Fmt.fprintf out "(@[hres@ (@[init@ %a@]) %a@])" pp_rec c
Fmt.fprintf out "(@[hres@ (@[init@ %a@])@ %a@])" pp_rec c
(pp_l pp_hres_step) l
| DT_isa_split (ty,l) ->
Fmt.fprintf out "(@[dt.isa.split@ (@[ty %a@])@ (@[cases@ %a@])@])"
@ -158,6 +166,8 @@ module Quip = struct
i Cstor.pp c (pp_l T.pp) ts Cstor.pp c (pp_l T.pp) us
| Ite_true t -> Fmt.fprintf out "(@[ite-true@ %a@])" T.pp t
| Ite_false t -> Fmt.fprintf out "(@[ite-false@ %a@])" T.pp t
| With_def (ts,p) ->
Fmt.fprintf out "(@[with-defs (@[%a@])@ %a@])" (pp_l T.pp) ts pp_rec p
| LRA c -> Fmt.fprintf out "(@[lra@ %a@])" pp_cl c
| Composite {steps; assumptions} ->
let pp_ass out (n,a) = Fmt.fprintf out "(@[assuming@ (name %s) %a@])" n pp_lit a in
@ -166,7 +176,10 @@ module Quip = struct
and pp_composite_step out = function
| S_define_c {name;res;proof} ->
Fmt.fprintf out "(@[defc %s %a@ %a@])" name pp_cl res pp_rec proof
Fmt.fprintf out "(@[defc %s@ %a@ %a@])" name pp_cl res pp_rec proof
| S_define_t (c,rhs) ->
Fmt.fprintf out "(@[deft@ %a@ %a@])" Term.pp c Term.pp rhs
(*
| S_define_t (name, t) ->
Fmt.fprintf out "(@[deft %s %a@])" name Term.pp t

View file

@ -9,6 +9,7 @@ val isa_disj : ty -> term -> term -> t
val cstor_inj : Cstor.t -> int -> term list -> term list -> t
val bool_eq : term -> term -> t
val bool_c : lit list -> t
val ite_true : term -> t
val ite_false : term -> t

View file

@ -661,7 +661,7 @@ module Make (A: CC_ARG)
let proof =
let lits =
Iter.of_list lits
|> Iter.map (fun lit -> P.lit_st (Lit.signed_term lit))
|> Iter.map (fun lit -> P.lit_not @@ P.lit_st (Lit.signed_term lit))
in
P.cc_lemma lits
in

View file

@ -170,15 +170,21 @@ module type PROOF = sig
(** Proof representation of literals *)
val pp_lit : lit Fmt.printer
val a : term -> lit
val na : term -> lit
val lit_a : term -> lit
val lit_na : term -> lit
val lit_st : term * bool -> lit
val eq : term -> term -> lit
val neq : term -> term -> lit
val not : lit -> lit
val lit_eq : term -> term -> lit
val lit_neq : term -> term -> lit
val lit_not : lit -> lit
type composite_step
val defc : name:string -> lit list -> t -> composite_step
val deft : term -> term -> composite_step (** define a (new) atomic term *)
val is_trivial_refl : t -> bool
(** is this a proof of [|- t=t]? This can be used to remove
some trivial steps that would build on the proof (e.g. rewriting
using [refl t] is useless). *)
val assertion : term -> t
val assertion_c : lit Iter.t -> t
@ -189,6 +195,7 @@ module type PROOF = sig
val refl : term -> t (* proof of [| t=t] *)
val true_is_true : t (* proof of [|- true] *)
val true_neq_false : t (* proof of [|- not (true=false)] *)
val with_defs : term list -> t -> t (* proof under definition of given terms *)
val cc_lemma : lit Iter.t -> t (* equality tautology, unsigned *)
val cc_imply2 : t -> t -> term -> term -> t (* tautology [p1, p2 |- t=u] *)
val cc_imply_l : t list -> term -> term -> t (* tautology [hyps |- t=u] *)
@ -585,8 +592,16 @@ module type SOLVER_INTERNAL = sig
type lit = Lit.t
(** {3 Proof helpers} *)
val define_const : t -> const:term -> rhs:term -> unit
(** [define_const si ~const ~rhs] adds the definition [const := rhs]
to the (future) proof. [const] should be a fresh constant that
occurs nowhere else, and [rhs] a term defined without [const]. *)
(** {3 Congruence Closure} *)
(** Congruence closure instance *)
module CC : CC_S
with module T = T
and module P = P
@ -966,18 +981,22 @@ module type SOLVER = sig
val add_theory_l : t -> theory list -> unit
val mk_atom_lit : t -> lit -> Atom.t
(** Turn a literal into a SAT solver literal. *)
val mk_atom_lit : t -> lit -> Atom.t * P.t
(** [mk_atom_lit _ lit] returns [atom, pr]
where [atom] is an internal atom for the solver,
and [pr] is a proof of [|- lit = atom] *)
val mk_atom_t : t -> ?sign:bool -> term -> Atom.t
(** Turn a boolean term, with a sign, into a SAT solver's literal. *)
val mk_atom_t : t -> ?sign:bool -> term -> Atom.t * P.t
(** [mk_atom_t _ ~sign t] returns [atom, pr]
where [atom] is an internal representation of [± t],
and [pr] is a proof of [|- atom = (± t)] *)
val add_clause : t -> Atom.t IArray.t -> P.t -> unit
(** [add_clause solver cs] adds a boolean clause to the solver.
Subsequent calls to {!solve} will need to satisfy this clause. *)
val add_clause_l : t -> Atom.t list -> P.t -> unit
(** Same as {!add_clause} but with a list of atoms. *)
(** Add a clause to the solver, given as a list. *)
(** {2 Internal representation of proofs}

View file

@ -212,6 +212,7 @@ module Make(A : ARG) : S with module A = A = struct
| exception Not_found ->
(* new variable to represent [le_comb] *)
let proxy = fresh_term self ~pre (A.ty_lra self.tst) in
(* TODO: define proxy *)
self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le;
Log.debugf 50
(fun k->k "(@[lra.encode-le@ `%a`@ :into-var %a@])" LE_.Comb.pp le_comb T.pp proxy);
@ -269,10 +270,10 @@ module Make(A : ARG) : S with module A = A = struct
let lit_t = mk_lit t in
let lit_u1 = mk_lit u1 in
let lit_u2 = mk_lit u2 in
add_clause [SI.Lit.neg lit_t; lit_u1] A.S.P.(A.proof_lra_l [na t; a u1]) ;
add_clause [SI.Lit.neg lit_t; lit_u2] A.S.P.(A.proof_lra_l [na t; a u2]);
add_clause [SI.Lit.neg lit_t; lit_u1] A.S.P.(A.proof_lra_l [lit_na t; lit_a u1]) ;
add_clause [SI.Lit.neg lit_t; lit_u2] A.S.P.(A.proof_lra_l [lit_na t; lit_a u2]);
add_clause [SI.Lit.neg lit_u1; SI.Lit.neg lit_u2; lit_t]
A.S.P.(A.proof_lra_l [a t;na u1;na u2]);
A.S.P.(A.proof_lra_l [lit_a t; lit_na u1; lit_na u2]);
);
None

View file

@ -196,7 +196,8 @@ module Make(A : ARG)
simp: Simplify.t;
mutable preprocess: preprocess_hook list;
mutable mk_model: model_hook list;
preprocess_cache: (Term.t * P.t) Term.Tbl.t;
preprocess_cache: (Term.t * P.t list) Term.Tbl.t;
mutable t_defs : (term*term) list; (* term definitions *)
mutable th_states : th_states; (** Set of theories *)
mutable on_partial_check: (t -> actions -> lit Iter.t -> unit) list;
mutable on_final_check: (t -> actions -> lit Iter.t -> unit) list;
@ -231,6 +232,9 @@ module Make(A : ARG)
let[@inline] ty_st t = t.ty_st
let stats t = t.stat
let define_const (self:t) ~const ~rhs : unit =
self.t_defs <- (const,rhs) :: self.t_defs
let simplifier self = self.simp
let simplify_t self (t:Term.t) : _ option = Simplify.normalize self.simp t
let simp_t self (t:Term.t) : Term.t * P.t = Simplify.normalize_t self.simp t
@ -262,12 +266,15 @@ module Make(A : ARG)
let preprocess_term_ (self:t) ~add_clause (t:term) : term * proof =
let mk_lit t = Lit.atom self.tst t in (* no further simplification *)
(* compute and cache normal form of [t] *)
let rec aux t : term * proof =
(* compute and cache normal form [u] of [t].
Also cache a list of proofs [ps] such
that [ps |- t=u] by CC. *)
let rec aux t : term * proof list =
match Term.Tbl.find self.preprocess_cache t with
| up -> up
| u, ps ->
u, ps
| exception Not_found ->
let sub_p = ref [] in
let sub_p: P.t list ref = ref [] in
(* try rewrite at root *)
let t1 = aux_rec ~sub_p t self.preprocess in
@ -276,9 +283,9 @@ module Make(A : ARG)
let t2 =
Term.map_shallow self.tst
(fun t_sub ->
let u_sub, p_t = aux t_sub in
let u_sub, ps_t = aux t_sub in
if not (Term.equal t_sub u_sub) then (
sub_p := p_t :: !sub_p;
sub_p := List.rev_append ps_t !sub_p;
);
u_sub)
t1
@ -287,9 +294,9 @@ module Make(A : ARG)
let u =
if not (Term.equal t t2) then (
(* fixpoint *)
let v, p_t2_v = aux t2 in
let v, ps_t2_v = aux t2 in
if not (Term.equal t2 v) then (
sub_p := p_t2_v :: !sub_p
sub_p := List.rev_append ps_t2_v !sub_p
);
v
) else (
@ -299,18 +306,12 @@ module Make(A : ARG)
if t != u then (
Log.debugf 5
(fun k->k "(@[msat-solver.preprocess.term@ \
:from %a@ :to %a@])" Term.pp t Term.pp u);
(fun k->k "(@[msat-solver.preprocess.term@ :from %a@ :to %a@])"
Term.pp t Term.pp u);
);
let p_t_u =
if t != u then (
P.cc_imply_l !sub_p t u (* proof: [sub_p |- t=u] *)
) else P.refl t
in
Term.Tbl.add self.preprocess_cache t (u,p_t_u);
u, p_t_u
Term.Tbl.add self.preprocess_cache t (u,!sub_p);
u, !sub_p
(* try each function in [hooks] successively *)
and aux_rec ~sub_p t hooks : term =
@ -319,32 +320,41 @@ module Make(A : ARG)
| h :: hooks_tl ->
match h self ~mk_lit ~add_clause t with
| None -> aux_rec ~sub_p t hooks_tl
| Some (u, p_t_u) ->
sub_p := p_t_u :: !sub_p;
let v, p_u_v = aux u in
| Some (u, ps_t_u) ->
sub_p := ps_t_u :: !sub_p;
let v, ps_u_v = aux u in
if t != v then (
sub_p := p_u_v :: !sub_p;
sub_p := List.rev_append ps_u_v !sub_p;
);
v
in
let t1, p_t_t1 = simp_t self t in
let u, p_t1_u = aux t1 in
if t != u then (
let pr = P.cc_imply2 p_t_t1 p_t1_u t u in
u, pr
) else (
u, P.refl u
)
let u, ps_t1_u = aux t1 in
let pr_t_u =
if t != u then (
let hyps =
if t == t1 then ps_t1_u
else p_t_t1 :: ps_t1_u in
P.cc_imply_l hyps t u
) else P.refl u
in
u, pr_t_u
(* return preprocessed lit + proof they are equal *)
let preprocess_lit_ (self:t) ~add_clause (lit:lit) : lit * proof =
let t, p = Lit.term lit |> preprocess_term_ self ~add_clause in
let lit' = Lit.atom self.tst ~sign:(Lit.sign lit) t in
Log.debugf 10
(fun k->k "(@[msat-solver.preprocess.lit@ :lit %a@ :into %a@ :proof %a@])"
Lit.pp lit Lit.pp lit' P.Quip.pp p);
if not (Lit.equal lit lit') then (
Log.debugf 10
(fun k->k "(@[msat-solver.preprocess.lit@ :lit %a@ :into %a@ :proof %a@])"
Lit.pp lit Lit.pp lit' P.pp_debug p);
);
lit', p
(* add a clause using [acts] *)
@ -491,6 +501,7 @@ module Make(A : ARG)
count_preprocess_clause = Stat.mk_int stat "solver.preprocess-clause";
count_propagate = Stat.mk_int stat "solver.th-propagations";
count_conflict = Stat.mk_int stat "solver.th-conflicts";
t_defs=[];
on_partial_check=[];
on_final_check=[];
level=0;
@ -511,6 +522,7 @@ module Make(A : ARG)
type t = {
msat: Sat_solver.proof;
tdefs: (term*term) list; (* term definitions *)
p: P.t lazy_t;
}
@ -531,7 +543,7 @@ module Make(A : ARG)
clause [c] under given assumptions (each assm is a lit),
and return [-a1 \/ \/ -an \/ c], discharging assumptions
*)
let conv_proof (msat:Sat_solver.proof) : P.t =
let conv_proof (msat:Sat_solver.proof) (t_defs:_ list) : P.t =
let assms = ref [] in
let steps = ref [] in
@ -618,10 +630,13 @@ module Make(A : ARG)
(* this should traverse from the leaves, so that order of [steps] is correct *)
Sat_solver.Proof.fold tr_node_to_step () msat;
let assms = !assms in
P.composite_l ~assms (List.rev !steps)
let make (msat: Sat_solver.proof) : t =
{ msat; p=lazy (conv_proof msat) }
(* gather all term definitions *)
let t_defs = CCList.map (fun (c,rhs) -> P.deft c rhs) t_defs in
P.composite_l ~assms (CCList.append t_defs (List.rev !steps))
let make (msat: Sat_solver.proof) (tdefs: _ list) : t =
{ msat; tdefs; p=lazy (conv_proof msat tdefs) }
let check self = SP.check self.msat
let pp out (self:t) = P.Quip.pp out (to_proof self)
@ -726,21 +741,36 @@ module Make(A : ARG)
CC.set_as_lit cc (CC.add_term cc sub ) (Sat_solver.Atom.formula atom);
())
let rec mk_atom_lit self lit : Atom.t =
let lit, _proof = preprocess_lit_ self lit in
let rec mk_atom_lit self lit : Atom.t * P.t =
let lit, proof = preprocess_lit_ self lit in
add_bool_subterms_ self (Lit.term lit);
Sat_solver.make_atom self.solver lit
Sat_solver.make_atom self.solver lit, proof
and preprocess_lit_ self lit : Lit.t * P.t =
Solver_internal.preprocess_lit_
~add_clause:(fun lits proof ->
(* recursively add these sub-literals, so they're also properly processed *)
Stat.incr self.si.count_preprocess_clause;
let atoms = List.map (mk_atom_lit self) lits in
let pr_l = ref [] in
let atoms =
List.map
(fun lit ->
let a, pr = mk_atom_lit self lit in
if not (P.is_trivial_refl pr) then (
pr_l := pr :: !pr_l;
);
a)
lits
in
(* do paramodulation if needed *)
let proof =
if !pr_l=[] then proof
else P.(hres_l proof (List.rev_map p1 !pr_l))
in
Sat_solver.add_clause self.solver atoms proof)
self.si lit
let[@inline] mk_atom_t self ?sign t : Atom.t =
let[@inline] mk_atom_t self ?sign t : Atom.t * P.t =
let lit = Lit.atom (tst self) ?sign t in
mk_atom_lit self lit
@ -896,7 +926,7 @@ module Make(A : ARG)
try
let pr = us.get_proof () in
if check then Sat_solver.Proof.check pr;
Some (Pre_proof.make pr)
Some (Pre_proof.make pr (List.rev self.si.t_defs))
with Msat.Solver_intf.No_proof -> None
) in
let unsat_core = lazy (us.Msat.unsat_assumptions ()) in

View file

@ -250,8 +250,13 @@ let process_stmt
Log.debug 1 "exit";
raise Exit
| Statement.Stmt_check_sat l ->
(* FIXME: how to map [l] to [assumptions] in proof? *)
let assumptions =
List.map (fun (sign,t) -> Solver.mk_atom_t solver ~sign t) l
List.map
(fun (sign,t) ->
let a, _pr = Solver.mk_atom_t solver ~sign t in
a)
l
in
solve
?gc ?restarts ?dot_proof ~check ?pp_proof ?pp_model
@ -265,23 +270,41 @@ let process_stmt
| Statement.Stmt_decl (f,ty_args,ty_ret) ->
decl_fun f ty_args ty_ret;
E.return ()
| Statement.Stmt_assert t ->
if pp_cnf then (
Format.printf "(@[<hv1>assert@ %a@])@." Term.pp t
);
let atom = Solver.mk_atom_t solver t in
let atom, pr_atom = Solver.mk_atom_t solver t in
CCOpt.iter (fun h -> Vec.push h [atom]) hyps;
Solver.add_clause solver (IArray.singleton atom) (Proof.assertion t);
Solver.add_clause solver (IArray.singleton atom)
Proof.(hres_l (assertion t) [p1 pr_atom]);
E.return()
| Statement.Stmt_assert_clause c_ts ->
if pp_cnf then (
Format.printf "(@[<hv1>assert-clause@ %a@])@." (Util.pp_list Term.pp) c_ts
);
let c = List.map (Solver.mk_atom_t solver) c_ts in
let pr_l = ref [] in
let c =
List.map
(fun lit ->
let a, pr = Solver.mk_atom_t solver lit in
if not (Proof.is_trivial_refl pr) then pr_l := pr :: !pr_l;
a)
c_ts in
CCOpt.iter (fun h -> Vec.push h c) hyps;
let proof = Proof.(assertion_c (Iter.of_list c_ts |> Iter.map (fun t->a t))) in
let proof =
let open Proof in
let p = assertion_c (Iter.of_list c_ts |> Iter.map (fun t->lit_a t)) in
(* rewrite with preprocessing proofs *)
if !pr_l = [] then p else hres_l p (List.rev_map p1 !pr_l)
in
Solver.add_clause solver (IArray.of_list c) proof ;
E.return()
| Statement.Stmt_data _ ->
E.return()
| Statement.Stmt_define _ ->
@ -333,7 +356,8 @@ module Th_bool = Sidekick_th_bool_static.Make(struct
module S = Solver
type term = S.T.Term.t
include Form
let proof_bool = Proof.bool_eq
let proof_bool_eq = Proof.bool_eq
let proof_bool_c = Proof.bool_c
let proof_ite_true = Proof.ite_true
let proof_ite_false = Proof.ite_false
end)

View file

@ -33,8 +33,11 @@ module type ARG = sig
(** [proof_ite_false (ite a b c)] is [a=false |- ite a b c = c] *)
val proof_ite_false : S.T.Term.t -> S.P.t
(** By basic boolean logic to prove [a=b] *)
val proof_bool : S.T.Term.t -> S.T.Term.t -> S.P.t
(** Basic boolean logic for [|- a=b] *)
val proof_bool_eq : S.T.Term.t -> S.T.Term.t -> S.P.t
(** Basic boolean logic for a clause [|- c] *)
val proof_bool_c : S.P.lit list -> S.P.t
val mk_bool : S.T.Term.state -> (term, term IArray.t) bool_view -> term
(** Make a term from the given boolean view. *)
@ -117,7 +120,7 @@ module Make(A : ARG) : S with module A = A = struct
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : (T.t * SI.P.t) option =
let tst = self.tst in
let ret u = Some (u, A.proof_bool t u) in
let ret u = Some (u, A.proof_bool_eq t u) in
match A.view_as_bool t with
| B_bool _ -> None
| B_not u when is_true u -> ret (T.bool tst false)
@ -172,9 +175,9 @@ module Make(A : ARG) : S with module A = A = struct
assert (Ty.equal ty (T.ty u));
u
let fresh_lit (self:state) ~for_ ~mk_lit ~pre : Lit.t =
let fresh_lit (self:state) ~for_ ~mk_lit ~pre : T.t * Lit.t =
let proxy = fresh_term ~for_ ~pre self (Ty.bool self.ty_st) in
mk_lit proxy
proxy, mk_lit proxy
(* preprocess "ite" away *)
let preproc_ite self si ~mk_lit ~add_clause (t:T.t) : (T.t * SI.P.t) option =
@ -192,18 +195,26 @@ module Make(A : ARG) : S with module A = A = struct
Some (c, proof)
| _ ->
let t_ite = fresh_term self ~for_:t ~pre:"ite" (T.ty b) in
SI.define_const si ~const:t_ite ~rhs:t;
let lit_a = mk_lit a in
let pr = SI.P.sorry in (* FIXME: proper proof by-def(t_ite) + bool *)
add_clause [Lit.neg lit_a; mk_lit (eq self.tst t_ite b)] pr;
add_clause [lit_a; mk_lit (eq self.tst t_ite c)] pr;
(* TODO: by def t_ite + ite-true + ite-false
+ case split [a=true \/ a=false] *)
Some (t_ite, SI.P.sorry)
add_clause [Lit.neg lit_a; mk_lit (eq self.tst t_ite b)]
SI.P.(with_defs [t_ite] (A.proof_ite_true t));
add_clause [lit_a; mk_lit (eq self.tst t_ite c)]
SI.P.(with_defs [t_ite] (A.proof_ite_false t));
Some (t_ite, SI.P.(with_defs [t_ite] (refl t)))
end
| _ -> None
let[@inline] pr_lit lit = SI.P.(lit_st (Lit.signed_term lit))
let[@inline] pr_def_refl proxy t = SI.P.(with_defs [proxy] (refl t))
(* prove clause [l] by boolean lemma *)
let pr_bool_c proxy l : SI.P.t =
let cl = List.rev_map pr_lit l in
SI.P.(with_defs [proxy] (A.proof_bool_c cl))
(* TODO: polarity? *)
let cnf (self:state) (_si:SI.t) ~mk_lit ~add_clause (t:T.t) : (T.t * SI.P.t) option =
let cnf (self:state) (si:SI.t) ~mk_lit ~add_clause (t:T.t) : (T.t * SI.P.t) option =
let rec get_lit_and_proof_ (t:T.t) : Lit.t * SI.P.t =
let t_abs, t_sign = T.abs self.tst t in
let lit_abs, pr =
@ -211,7 +222,7 @@ module Make(A : ARG) : S with module A = A = struct
| lit_pr -> lit_pr (* cached *)
| exception Not_found ->
(* compute and cache *)
let lit, pr = get_lit_uncached t_abs in
let lit, pr = get_lit_uncached si t_abs in
if not (T.equal (Lit.term lit) t_abs) then (
T.Tbl.add self.cnf t_abs (lit, pr);
Log.debugf 20
@ -224,22 +235,27 @@ module Make(A : ARG) : S with module A = A = struct
let lit = if t_sign then lit_abs else Lit.neg lit_abs in
lit, pr
and equiv_ ~get_lit ~is_xor ~for_ a b : Lit.t =
let a = get_lit a in
let b = get_lit b in
and equiv_ si ~get_lit ~is_xor ~for_ t_a t_b : Lit.t * SI.P.t =
let a = get_lit t_a in
let b = get_lit t_b in
let a = if is_xor then Lit.neg a else a in (* [a xor b] is [(¬a) = b] *)
let proxy = fresh_lit ~for_ ~mk_lit ~pre:"equiv_" self in
let t_proxy, proxy = fresh_lit ~for_ ~mk_lit ~pre:"equiv_" self in
SI.define_const si ~const:t_proxy ~rhs:for_;
let add_clause c =
add_clause c (pr_bool_c t_proxy c)
in
(* proxy => a<=> b,
¬proxy => a xor b *)
let proof = SI.P.sorry in (* FIXME: by_def(proxy) + bool *)
add_clause [Lit.neg proxy; Lit.neg a; b] proof;
add_clause [Lit.neg proxy; Lit.neg b; a] proof;
add_clause [proxy; a; b] proof;
add_clause [proxy; Lit.neg a; Lit.neg b] proof;
proxy
add_clause [Lit.neg proxy; Lit.neg a; b];
add_clause [Lit.neg proxy; Lit.neg b; a];
add_clause [proxy; a; b];
add_clause [proxy; Lit.neg a; Lit.neg b];
proxy, pr_def_refl t_proxy for_
(* make a literal for [t], with a proof of [|- abs(t) = abs(lit)] *)
and get_lit_uncached t : Lit.t * SI.P.t =
and get_lit_uncached si t : Lit.t * SI.P.t =
let sub_p = ref [] in
let get_lit t =
@ -250,43 +266,56 @@ module Make(A : ARG) : S with module A = A = struct
lit
in
let add_clause_by_def_ proxy c : unit =
let pr = pr_bool_c proxy c in
add_clause c pr
in
match A.view_as_bool t with
| B_bool b -> mk_lit (T.bool self.tst b), SI.P.refl t
| B_opaque_bool t -> mk_lit t, SI.P.refl t
| B_not u ->
let lit, pr = get_lit_and_proof_ u in
Lit.neg lit, pr
| B_and l ->
let subs = l |> Iter.map get_lit |> Iter.to_list in
let proxy = fresh_lit ~for_:t ~mk_lit ~pre:"and_" self in
let t_proxy, proxy = fresh_lit ~for_:t ~mk_lit ~pre:"and_" self in
SI.define_const si ~const:t_proxy ~rhs:t;
(* add clauses *)
let proof = SI.P.sorry in (* FIXME: by_def(proxy) + bool *)
List.iter (fun u -> add_clause [Lit.neg proxy; u] proof) subs;
add_clause (proxy :: List.map Lit.neg subs) proof;
proxy, proof (* FIXME: use sub_p, by-def(proxy), A.proof_bool *)
List.iter
(fun u -> add_clause_by_def_ t_proxy [Lit.neg proxy; u])
subs;
add_clause_by_def_ t_proxy (proxy :: List.map Lit.neg subs);
proxy, pr_def_refl t_proxy t
| B_or l ->
let subs = l |> Iter.map get_lit |> Iter.to_list in
let proxy = fresh_lit ~for_:t ~mk_lit ~pre:"or_" self in
let t_proxy, proxy = fresh_lit ~for_:t ~mk_lit ~pre:"or_" self in
SI.define_const si ~const:t_proxy ~rhs:t;
(* add clauses *)
let proof = SI.P.sorry in (* FIXME: by_def(proxy) + bool *)
List.iter (fun u -> add_clause [Lit.neg u; proxy] proof) subs;
add_clause (Lit.neg proxy :: subs) proof;
proxy, proof (* FIXME: use sub_p, by-def(proxy), A.proof_bool *)
List.iter (fun u -> add_clause_by_def_ t_proxy [Lit.neg u; proxy]) subs;
add_clause_by_def_ t_proxy (Lit.neg proxy :: subs);
proxy, pr_def_refl t_proxy t
| B_imply (args, u) ->
(* transform into [¬args \/ u] on the fly *)
let args = args |> Iter.map get_lit |> Iter.map Lit.neg |> Iter.to_list in
let u = get_lit u in
let subs = u :: args in
(* now the or-encoding *)
let proxy = fresh_lit ~for_:t ~mk_lit ~pre:"implies_" self in
let t_proxy, proxy = fresh_lit ~for_:t ~mk_lit ~pre:"implies_" self in
SI.define_const si ~const:t_proxy ~rhs:t;
(* add clauses *)
let proof = SI.P.sorry in (* FIXME: by_def(proxy) + bool *)
List.iter (fun u -> add_clause [Lit.neg u; proxy] proof) subs;
add_clause (Lit.neg proxy :: subs) proof;
proxy, proof (* FIXME: by_def(proxy) + sub_p + A.proof_bool *)
List.iter (fun u -> add_clause_by_def_ t_proxy [Lit.neg u; proxy]) subs;
add_clause_by_def_ t_proxy (Lit.neg proxy :: subs);
proxy, pr_def_refl t_proxy t
| B_ite _ | B_eq _ | B_neq _ -> mk_lit t, SI.P.refl t
| B_equiv (a,b) -> equiv_ ~get_lit ~for_:t ~is_xor:false a b, SI.P.sorry (* FIXME *)
| B_xor (a,b) -> equiv_ ~get_lit ~for_:t ~is_xor:true a b, SI.P.sorry (* FIXME *)
| B_equiv (a,b) -> equiv_ si ~get_lit ~for_:t ~is_xor:false a b
| B_xor (a,b) -> equiv_ si ~get_lit ~for_:t ~is_xor:true a b
| B_atom u -> mk_lit u, SI.P.refl u
in