mirror of
https://github.com/c-cube/sidekick.git
synced 2026-01-23 01:46:43 -05:00
remove dead library
This commit is contained in:
parent
70749155bf
commit
c44e9bc16d
4 changed files with 0 additions and 376 deletions
|
|
@ -1,243 +0,0 @@
|
|||
(**************************************************************************)
|
||||
(* *)
|
||||
(* Alt-Ergo Zero *)
|
||||
(* *)
|
||||
(* Sylvain Conchon and Alain Mebsout *)
|
||||
(* Universite Paris-Sud 11 *)
|
||||
(* *)
|
||||
(* Copyright 2011. This file is distributed under the terms of the *)
|
||||
(* Apache Software License version 2.0 *)
|
||||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
module type Arg = Tseitin_intf.Arg
|
||||
|
||||
module type S = Tseitin_intf.S
|
||||
|
||||
module Make (A : Tseitin_intf.Arg) = struct
|
||||
module F = A.Form
|
||||
|
||||
exception Empty_Or
|
||||
type combinator = And | Or | Imp | Not
|
||||
|
||||
type atom = A.Form.t
|
||||
type t =
|
||||
| True
|
||||
| Lit of atom
|
||||
| Comb of combinator * t list
|
||||
|
||||
let rec print fmt phi =
|
||||
match phi with
|
||||
| True -> Format.fprintf fmt "true"
|
||||
| Lit a -> F.print fmt a
|
||||
| Comb (Not, [f]) ->
|
||||
Format.fprintf fmt "not (%a)" print f
|
||||
| Comb (And, l) -> Format.fprintf fmt "(%a)" (print_list "and") l
|
||||
| Comb (Or, l) -> Format.fprintf fmt "(%a)" (print_list "or") l
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
Format.fprintf fmt "(%a => %a)" print f1 print f2
|
||||
| _ -> assert false
|
||||
and print_list sep fmt = function
|
||||
| [] -> ()
|
||||
| [f] -> print fmt f
|
||||
| f::l -> Format.fprintf fmt "%a %s %a" print f sep (print_list sep) l
|
||||
|
||||
let make comb l = Comb (comb, l)
|
||||
|
||||
let make_atom p = Lit p
|
||||
|
||||
let f_true = True
|
||||
let f_false = Comb(Not, [True])
|
||||
|
||||
let rec flatten comb acc = function
|
||||
| [] -> acc
|
||||
| (Comb (c, l)) :: r when c = comb ->
|
||||
flatten comb (List.rev_append l acc) r
|
||||
| a :: r ->
|
||||
flatten comb (a :: acc) r
|
||||
|
||||
let rec opt_rev_map f acc = function
|
||||
| [] -> acc
|
||||
| a :: r -> begin match f a with
|
||||
| None -> opt_rev_map f acc r
|
||||
| Some b -> opt_rev_map f (b :: acc) r
|
||||
end
|
||||
|
||||
let remove_true l =
|
||||
let aux = function
|
||||
| True -> None
|
||||
| f -> Some f
|
||||
in
|
||||
opt_rev_map aux [] l
|
||||
|
||||
let remove_false l =
|
||||
let aux = function
|
||||
| Comb(Not, [True]) -> None
|
||||
| f -> Some f
|
||||
in
|
||||
opt_rev_map aux [] l
|
||||
|
||||
|
||||
let make_not f = make Not [f]
|
||||
|
||||
let make_and l =
|
||||
let l' = remove_true (flatten And [] l) in
|
||||
if List.exists ((=) f_false) l' then
|
||||
f_false
|
||||
else
|
||||
make And l'
|
||||
|
||||
let make_or l =
|
||||
let l' = remove_false (flatten Or [] l) in
|
||||
if List.exists ((=) f_true) l' then
|
||||
f_true
|
||||
else match l' with
|
||||
| [] -> raise Empty_Or
|
||||
| [a] -> a
|
||||
| _ -> Comb (Or, l')
|
||||
|
||||
let make_imply f1 f2 = make Imp [f1; f2]
|
||||
let make_equiv f1 f2 = make_and [ make_imply f1 f2; make_imply f2 f1]
|
||||
let make_xor f1 f2 = make_or [ make_and [ make_not f1; f2 ];
|
||||
make_and [ f1; make_not f2 ] ]
|
||||
|
||||
(* simplify formula *)
|
||||
let (%%) f g x = f (g x)
|
||||
|
||||
let rec sform f k = match f with
|
||||
| True | Comb (Not, [True]) -> k f
|
||||
| Comb (Not, [Lit a]) -> k (Lit (F.neg a))
|
||||
| Comb (Not, [Comb (Not, [f])]) -> sform f k
|
||||
| Comb (Not, [Comb (Or, l)]) -> sform_list_not [] l (k %% make_and)
|
||||
| Comb (Not, [Comb (And, l)]) -> sform_list_not [] l (k %% make_or)
|
||||
| Comb (And, l) -> sform_list [] l (k %% make_and)
|
||||
| Comb (Or, l) -> sform_list [] l (k %% make_or)
|
||||
| Comb (Imp, [f1; f2]) ->
|
||||
sform (make_not f1) (fun f1' -> sform f2 (fun f2' -> k (make_or [f1'; f2'])))
|
||||
| Comb (Not, [Comb (Imp, [f1; f2])]) ->
|
||||
sform f1 (fun f1' -> sform (make_not f2) (fun f2' -> k (make_and [f1';f2'])))
|
||||
| Comb ((Imp | Not), _) -> assert false
|
||||
| Lit _ -> k f
|
||||
and sform_list acc l k = match l with
|
||||
| [] -> k acc
|
||||
| f :: tail ->
|
||||
sform f (fun f' -> sform_list (f'::acc) tail k)
|
||||
and sform_list_not acc l k = match l with
|
||||
| [] -> k acc
|
||||
| f :: tail ->
|
||||
sform (make_not f) (fun f' -> sform_list_not (f'::acc) tail k)
|
||||
|
||||
let ( @@ ) l1 l2 = List.rev_append l1 l2
|
||||
(* let ( @ ) = `Use_rev_append_instead (* prevent use of non-tailrec append *) *)
|
||||
|
||||
type fresh_state = A.t
|
||||
|
||||
type state = {
|
||||
fresh: fresh_state;
|
||||
mutable acc_or : (atom * atom list) list;
|
||||
mutable acc_and : (atom * atom list) list;
|
||||
|
||||
}
|
||||
|
||||
let create fresh : state = {
|
||||
fresh;
|
||||
acc_or=[];
|
||||
acc_and=[];
|
||||
}
|
||||
|
||||
let mk_proxy st : F.t = A.fresh st.fresh
|
||||
|
||||
(* build a clause by flattening (if sub-formulas have the
|
||||
same combinator) and proxy-ing sub-formulas that have the
|
||||
opposite operator. *)
|
||||
let rec cnf st f = match f with
|
||||
| Lit a -> None, [a]
|
||||
| Comb (Not, [Lit a]) -> None, [F.neg a]
|
||||
|
||||
| Comb (And, l) ->
|
||||
List.fold_left
|
||||
(fun (_, acc) f ->
|
||||
match cnf st f with
|
||||
| _, [] -> assert false
|
||||
| _cmb, [a] -> Some And, a :: acc
|
||||
| Some And, l ->
|
||||
Some And, l @@ acc
|
||||
(* let proxy = mk_proxy () in *)
|
||||
(* acc_and := (proxy, l) :: !acc_and; *)
|
||||
(* proxy :: acc *)
|
||||
| Some Or, l ->
|
||||
let proxy = mk_proxy st in
|
||||
st.acc_or <- (proxy, l) :: st.acc_or;
|
||||
Some And, proxy :: acc
|
||||
| None, l -> Some And, l @@ acc
|
||||
| _ -> assert false
|
||||
) (None, []) l
|
||||
|
||||
| Comb (Or, l) ->
|
||||
List.fold_left
|
||||
(fun (_, acc) f ->
|
||||
match cnf st f with
|
||||
| _, [] -> assert false
|
||||
| _cmb, [a] -> Some Or, a :: acc
|
||||
| Some Or, l ->
|
||||
Some Or, l @@ acc
|
||||
(* let proxy = mk_proxy () in *)
|
||||
(* acc_or := (proxy, l) :: !acc_or; *)
|
||||
(* proxy :: acc *)
|
||||
| Some And, l ->
|
||||
let proxy = mk_proxy st in
|
||||
st.acc_and <- (proxy, l) :: st.acc_and;
|
||||
Some Or, proxy :: acc
|
||||
| None, l -> Some Or, l @@ acc
|
||||
| _ -> assert false)
|
||||
(None, []) l
|
||||
| _ -> assert false
|
||||
|
||||
let cnf st f =
|
||||
let acc = match f with
|
||||
| True -> []
|
||||
| Comb(Not, [True]) -> [[]]
|
||||
| Comb (And, l) -> List.rev_map (fun f -> snd(cnf st f)) l
|
||||
| _ -> [snd (cnf st f)]
|
||||
in
|
||||
let proxies = ref [] in
|
||||
(* encore clauses that make proxies in !acc_and equivalent to
|
||||
their clause *)
|
||||
let acc =
|
||||
List.fold_left
|
||||
(fun acc (p,l) ->
|
||||
proxies := p :: !proxies;
|
||||
let np = F.neg p in
|
||||
(* build clause [cl = l1 & l2 & ... & ln => p] where [l = [l1;l2;..]]
|
||||
also add clauses [p => l1], [p => l2], etc. *)
|
||||
let cl, acc =
|
||||
List.fold_left
|
||||
(fun (cl,acc) a -> (F.neg a :: cl), [np; a] :: acc)
|
||||
([p],acc) l in
|
||||
cl :: acc)
|
||||
acc st.acc_and
|
||||
in
|
||||
(* encore clauses that make proxies in !acc_or equivalent to
|
||||
their clause *)
|
||||
let acc =
|
||||
List.fold_left
|
||||
(fun acc (p,l) ->
|
||||
proxies := p :: !proxies;
|
||||
(* add clause [p => l1 | l2 | ... | ln], and add clauses
|
||||
[l1 => p], [l2 => p], etc. *)
|
||||
let acc = List.fold_left (fun acc a -> [p; F.neg a]::acc)
|
||||
acc l in
|
||||
(F.neg p :: l) :: acc)
|
||||
acc st.acc_or
|
||||
in
|
||||
acc
|
||||
|
||||
let make_cnf st f : _ list list =
|
||||
st.acc_or <- [];
|
||||
st.acc_and <- [];
|
||||
cnf st (sform f (fun f' -> f'))
|
||||
|
||||
(* Naive CNF XXX remove???
|
||||
let make_cnf f = mk_cnf (sform f)
|
||||
*)
|
||||
end
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
(*
|
||||
MSAT is free software, using the Apache license, see file LICENSE
|
||||
Copyright 2014 Guillaume Bury
|
||||
Copyright 2014 Simon Cruanes
|
||||
*)
|
||||
|
||||
(** Tseitin CNF conversion
|
||||
|
||||
This modules implements Tseitin's Conjunctive Normal Form conversion, i.e.
|
||||
the ability to transform an arbitrary boolean formula into an equi-satisfiable
|
||||
CNF, that can then be fed to a SAT/SMT/McSat solver.
|
||||
*)
|
||||
|
||||
module type Arg = Tseitin_intf.Arg
|
||||
(** The implementation of formulas required to implement Tseitin's CNF conversion. *)
|
||||
|
||||
module type S = Tseitin_intf.S
|
||||
(** The exposed interface of Tseitin's CNF conversion. *)
|
||||
|
||||
module Make(A : Arg) : S with type atom = A.Form.t and type fresh_state = A.t
|
||||
(** This functor provides an implementation of Tseitin's CNF conversion. *)
|
||||
|
||||
|
|
@ -1,99 +0,0 @@
|
|||
(**************************************************************************)
|
||||
(* *)
|
||||
(* Alt-Ergo Zero *)
|
||||
(* *)
|
||||
(* Sylvain Conchon and Alain Mebsout *)
|
||||
(* Universite Paris-Sud 11 *)
|
||||
(* *)
|
||||
(* Copyright 2011. This file is distributed under the terms of the *)
|
||||
(* Apache Software License version 2.0 *)
|
||||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
(** Interfaces for Tseitin's CNF conversion *)
|
||||
|
||||
module type Arg = sig
|
||||
(** Formulas
|
||||
|
||||
This defines what is needed of formulas in order to implement
|
||||
Tseitin's CNF conversion.
|
||||
*)
|
||||
|
||||
module Form : sig
|
||||
type t
|
||||
(** Type of atomic formulas. *)
|
||||
|
||||
val neg : t -> t
|
||||
(** Negation of atomic formulas. *)
|
||||
|
||||
val print : Format.formatter -> t -> unit
|
||||
(** Print the given formula. *)
|
||||
end
|
||||
|
||||
type t
|
||||
(** State *)
|
||||
|
||||
val fresh : t -> Form.t
|
||||
(** Generate fresh formulas (that are different from any other). *)
|
||||
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
(** CNF conversion
|
||||
|
||||
This modules allows to convert arbitrary boolean formulas
|
||||
into CNF.
|
||||
*)
|
||||
|
||||
type atom
|
||||
(** The type of atomic formulas. *)
|
||||
|
||||
type t
|
||||
(** The type of arbitrary boolean formulas. Arbitrary boolean formulas
|
||||
can be built using functions in this module, and then converted
|
||||
to a CNF, which is a list of clauses that only use atomic formulas. *)
|
||||
|
||||
val f_true : t
|
||||
(** The [true] formula, i.e a formula that is always satisfied. *)
|
||||
|
||||
val f_false : t
|
||||
(** The [false] formula, i.e a formula that cannot be satisfied. *)
|
||||
|
||||
val make_atom : atom -> t
|
||||
(** [make_atom p] builds the boolean formula equivalent to the atomic formula [p]. *)
|
||||
|
||||
val make_not : t -> t
|
||||
(** Creates the negation of a boolean formula. *)
|
||||
|
||||
val make_and : t list -> t
|
||||
(** Creates the conjunction of a list of formulas. An empty conjunction is always satisfied. *)
|
||||
|
||||
val make_or : t list -> t
|
||||
(** Creates the disjunction of a list of formulas. An empty disjunction is never satisfied. *)
|
||||
|
||||
val make_xor : t -> t -> t
|
||||
(** [make_xor p q] creates the boolean formula "[p] xor [q]". *)
|
||||
|
||||
val make_imply : t -> t -> t
|
||||
(** [make_imply p q] creates the boolean formula "[p] implies [q]". *)
|
||||
|
||||
val make_equiv : t -> t -> t
|
||||
(** [make_equiv p q] creates the boolena formula "[p] is equivalent to [q]". *)
|
||||
|
||||
type fresh_state
|
||||
(** State used to produce fresh atoms *)
|
||||
|
||||
type state
|
||||
(** State used for the Tseitin transformation *)
|
||||
|
||||
val create : fresh_state -> state
|
||||
|
||||
val make_cnf : state -> t -> atom list list
|
||||
(** [make_cnf f] returns a conjunctive normal form of [f] under the form: a
|
||||
list (which is a conjunction) of lists (which are disjunctions) of
|
||||
atomic formulas. *)
|
||||
|
||||
val print : Format.formatter -> t -> unit
|
||||
(** [print fmt f] prints the formula on the formatter [fmt].*)
|
||||
|
||||
end
|
||||
|
|
@ -1,12 +0,0 @@
|
|||
; vim:ft=lisp:
|
||||
|
||||
(library
|
||||
((name CDCL_tseitin)
|
||||
(public_name sidekick.tseitin)
|
||||
(synopsis "Tseitin transformation for CDCL")
|
||||
(libraries ())
|
||||
(flags (:standard -w +a-4-42-44-48-50-58-32-60@8 -color always -safe-string))
|
||||
(ocamlopt_flags (:standard -O3 -bin-annot
|
||||
-unbox-closures -unbox-closures-factor 20))
|
||||
))
|
||||
|
||||
Loading…
Add table
Reference in a new issue