perf(simplex): optim: no new variable for constraints like a·x <= b

This commit is contained in:
Simon Cruanes 2021-02-05 14:16:34 -05:00
parent 14a25f95a8
commit dc80c1de1a
4 changed files with 46 additions and 12 deletions

View file

@ -36,6 +36,13 @@ module Make(C : COEFF)(Var : VAR) = struct
let monomial1 x = Var_map.singleton x C.one let monomial1 x = Var_map.singleton x C.one
let as_singleton m =
if is_empty m then None
else (
let x, c = Var_map.choose m in
if is_empty (Var_map.remove x m) then Some (c, x) else None
)
let add c x e = let add c x e =
let c' = Var_map.get_or ~default:C.zero x e in let c' = Var_map.get_or ~default:C.zero x e in
let c' = C.(c + c') in let c' = C.(c + c') in

View file

@ -157,6 +157,9 @@ module type S = sig
val monomial1 : var -> t val monomial1 : var -> t
(** [monome1 v] creates the linear combination [1 * v] *) (** [monome1 v] creates the linear combination [1 * v] *)
val as_singleton : t -> (C.t * var) option
(** [as_singleton l] returns [Some (c,x)] if [l = c * x], [None] otherwise *)
val add : C.t -> var -> t -> t val add : C.t -> var -> t -> t
(** [add n v t] adds the monome [n * v] to the combination [t]. *) (** [add n v t] adds the monome [n * v] to the combination [t]. *)

View file

@ -9,6 +9,14 @@ let neg = function
| Geq -> Lt | Geq -> Lt
| Gt -> Leq | Gt -> Leq
let neg_sign = function
| Leq -> Geq
| Lt -> Gt
| Geq -> Leq
| Gt -> Lt
| Neq -> Neq
| Eq -> Eq
let to_string = function let to_string = function
| Leq -> "=<" | Geq -> ">=" | Lt -> "<" | Leq -> "=<" | Geq -> ">=" | Lt -> "<"
| Gt -> ">" | Eq -> "=" | Neq -> "!=" | Gt -> ">" | Eq -> "=" | Neq -> "!="

View file

@ -726,19 +726,35 @@ module Make_full_for_expr(V : VAR_GEN)
(* add a constraint *) (* add a constraint *)
let add_constr (t:t) (c:constr) (reason:lit) : unit = let add_constr (t:t) (c:constr) (reason:lit) : unit =
let (x:var) = V.Fresh.fresh t.param in
let e, op, q = L.Constr.split c in let e, op, q = L.Constr.split c in
add_eq t (x, L.Comb.to_list e); match L.Comb.as_singleton e with
begin match op with | Some (c0, x0) ->
| Leq -> add_upper_bound t ~strict:false ~reason x q (* no need for a fresh variable, just add constraint on [x0] *)
| Geq -> add_lower_bound t ~strict:false ~reason x q let q = Q.div q c0 in
| Lt -> add_upper_bound t ~strict:true ~reason x q let op = if Q.sign c0 < 0 then Predicate.neg_sign op else op in
| Gt -> add_lower_bound t ~strict:true ~reason x q begin match op with
| Eq -> add_bounds t (x,q,q) | Leq -> add_upper_bound t ~strict:false ~reason x0 q
~strict_lower:false ~strict_upper:false | Geq -> add_lower_bound t ~strict:false ~reason x0 q
~lower_reason:reason ~upper_reason:reason | Lt -> add_upper_bound t ~strict:true ~reason x0 q
| Neq -> assert false | Gt -> add_lower_bound t ~strict:true ~reason x0 q
end | Eq -> add_bounds t (x0,q,q)
~strict_lower:false ~strict_upper:false
~lower_reason:reason ~upper_reason:reason
| Neq -> assert false
end
| None ->
let (x:var) = V.Fresh.fresh t.param in
add_eq t (x, L.Comb.to_list e);
begin match op with
| Leq -> add_upper_bound t ~strict:false ~reason x q
| Geq -> add_lower_bound t ~strict:false ~reason x q
| Lt -> add_upper_bound t ~strict:true ~reason x q
| Gt -> add_lower_bound t ~strict:true ~reason x q
| Eq -> add_bounds t (x,q,q)
~strict_lower:false ~strict_upper:false
~lower_reason:reason ~upper_reason:reason
| Neq -> assert false
end
end end
module Make_full(V : VAR_GEN) module Make_full(V : VAR_GEN)