refactor(th-lra): adapt to new code

This commit is contained in:
Simon Cruanes 2022-07-30 21:51:46 -04:00
parent 05faac97e7
commit df9fa11507
No known key found for this signature in database
GPG key ID: EBFFF6F283F3A2B4
2 changed files with 817 additions and 0 deletions

7
src/th-lra/dune Normal file
View file

@ -0,0 +1,7 @@
(library
(name sidekick_arith_lra)
(public_name sidekick.arith-lra)
(synopsis "Solver for LRA (real arithmetic)")
(flags :standard -warn-error -a+8 -w -32 -open Sidekick_util)
(libraries containers sidekick.arith sidekick.simplex sidekick.cc
sidekick.smt-solver))

View file

@ -0,0 +1,810 @@
(** Linear Rational Arithmetic *)
(* Reference:
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *)
open Sidekick_core
module SMT = Sidekick_smt_solver
module Predicate = Sidekick_simplex.Predicate
module Linear_expr = Sidekick_simplex.Linear_expr
module Linear_expr_intf = Sidekick_simplex.Linear_expr_intf
module type INT = Sidekick_arith.INT
module type RATIONAL = Sidekick_arith.RATIONAL
module S_op = Sidekick_simplex.Op
type term = Term.t
type ty = Term.t
type pred = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
type op = Linear_expr_intf.op = Plus | Minus
type ('num, 'a) lra_view =
| LRA_pred of pred * 'a * 'a
| LRA_op of op * 'a * 'a
| LRA_mult of 'num * 'a
| LRA_const of 'num
| LRA_other of 'a
let map_view f (l : _ lra_view) : _ lra_view =
match l with
| LRA_pred (p, a, b) -> LRA_pred (p, f a, f b)
| LRA_op (p, a, b) -> LRA_op (p, f a, f b)
| LRA_mult (n, a) -> LRA_mult (n, f a)
| LRA_const q -> LRA_const q
| LRA_other x -> LRA_other (f x)
module type ARG = sig
module Z : INT
module Q : RATIONAL with type bigint = Z.t
val view_as_lra : Term.t -> (Q.t, Term.t) lra_view
(** Project the Term.t into the theory view *)
val mk_lra : Term.store -> (Q.t, Term.t) lra_view -> Term.t
(** Make a Term.t from the given theory view *)
val ty_lra : Term.store -> ty
val has_ty_real : Term.t -> bool
(** Does this term have the type [Real] *)
val lemma_lra : Lit.t Iter.t -> Proof_term.t
module Gensym : sig
type t
val create : Term.store -> t
val tst : t -> Term.store
val copy : t -> t
val fresh_term : t -> pre:string -> ty -> term
(** Make a fresh term of the given type *)
end
end
module type S = sig
module A : ARG
(*
module SimpVar : Sidekick_simplex.VAR with type lit = A.Lit.t
module LE_ : Linear_expr_intf.S with module Var = SimpVar
module LE = LE_.Expr
*)
module SimpSolver : Sidekick_simplex.S
(** Simplexe *)
type state
val create : ?stat:Stat.t -> SMT.Solver_internal.t -> state
(* TODO: be able to declare some variables as ints *)
(*
val simplex : state -> Simplex.t
*)
val k_state : state SMT.Registry.key
(** Key to access the state from outside,
available when the theory has been setup *)
val theory : SMT.Theory.t
end
module Make (A : ARG) = (* : S with module A = A *) struct
module A = A
module SI = SMT.Solver_internal
open Sidekick_cc
open struct
module Pr = Proof_trace
end
module Tag = struct
type t = Lit of Lit.t | CC_eq of E_node.t * E_node.t
let pp out = function
| Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l
| CC_eq (n1, n2) ->
Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" E_node.pp n1 E_node.pp n2
let to_lits si = function
| Lit l -> [ l ]
| CC_eq (n1, n2) ->
let r = CC.explain_eq (SI.cc si) n1 n2 in
(* FIXME
assert (not (SI.CC.Resolved_expl.is_semantic r));
*)
r.lits
end
module SimpVar : Linear_expr.VAR with type t = Term.t and type lit = Tag.t =
struct
type t = Term.t
let pp = Term.pp_debug
let compare = Term.compare
type lit = Tag.t
let pp_lit = Tag.pp
let not_lit = function
| Tag.Lit l -> Some (Tag.Lit (Lit.neg l))
| _ -> None
end
module LE_ = Linear_expr.Make (A.Q) (SimpVar)
module LE = LE_.Expr
module SimpSolver = Sidekick_simplex.Make (struct
module Z = A.Z
module Q = A.Q
module Var = SimpVar
let mk_lit _ _ _ = assert false
end)
module Subst = SimpSolver.Subst
module Comb_map = CCMap.Make (LE_.Comb)
(* turn the term into a linear expression. Apply [f] on leaves. *)
let rec as_linexp (t : Term.t) : LE.t =
let open LE.Infix in
match A.view_as_lra t with
| LRA_other _ -> LE.monomial1 t
| LRA_pred _ ->
Error.errorf "type error: in linexp, LRA predicate %a" Term.pp_debug t
| LRA_op (op, t1, t2) ->
let t1 = as_linexp t1 in
let t2 = as_linexp t2 in
(match op with
| Plus -> t1 + t2
| Minus -> t1 - t2)
| LRA_mult (n, x) ->
let t = as_linexp x in
LE.(n * t)
| LRA_const q -> LE.of_const q
(* monoid to track linear expressions in congruence classes, to clash on merge *)
module Monoid_exprs = struct
let name = "lra.const"
type single = { le: LE.t; n: E_node.t }
type t = single list
let pp_single out { le = _; n } = E_node.pp out n
let pp out self =
match self with
| [] -> ()
| [ x ] -> pp_single out x
| _ -> Fmt.fprintf out "(@[exprs@ %a@])" (Util.pp_list pp_single) self
let of_term _cc n t =
match A.view_as_lra t with
| LRA_const _ | LRA_op _ | LRA_mult _ ->
let le = as_linexp t in
Some [ { n; le } ], []
| LRA_other _ | LRA_pred _ -> None, []
exception Confl of Expl.t
(* merge lists. If two linear expressions equal up to a constant are
merged, conflict. *)
let merge _cc n1 l1 n2 l2 expl_12 : _ result =
try
let i = Iter.(product (of_list l1) (of_list l2)) in
i (fun (s1, s2) ->
let le = LE.(s1.le - s2.le) in
if LE.is_const le && not (LE.is_zero le) then (
(* conflict: [le+c = le + d] is impossible *)
let expl =
let open Expl in
mk_list [ mk_merge s1.n n1; mk_merge s2.n n2; expl_12 ]
in
raise (Confl expl)
));
Ok (List.rev_append l1 l2, [])
with Confl expl -> Error (CC.Handler_action.Conflict expl)
end
module ST_exprs = Sidekick_cc.Plugin.Make (Monoid_exprs)
type state = {
tst: Term.store;
proof: Proof_trace.t;
gensym: A.Gensym.t;
in_model: unit Term.Tbl.t; (* terms to add to model *)
encoded_eqs: unit Term.Tbl.t;
(* [a=b] gets clause [a = b <=> (a >= b /\ a <= b)] *)
needs_th_combination: unit Term.Tbl.t;
(* terms that require theory combination *)
simp_preds: (Term.t * S_op.t * A.Q.t) Term.Tbl.t;
(* term -> its simplex meaning *)
simp_defined: LE.t Term.Tbl.t;
(* (rational) terms that are equal to a linexp *)
st_exprs: ST_exprs.t;
mutable encoded_le: Term.t Comb_map.t; (* [le] -> var encoding [le] *)
simplex: SimpSolver.t;
mutable last_res: SimpSolver.result option;
}
let create ?(stat = Stat.create ()) (si : SI.t) : state =
let proof = SI.proof si in
let tst = SI.tst si in
{
tst;
proof;
in_model = Term.Tbl.create 8;
st_exprs = ST_exprs.create_and_setup (SI.cc si);
gensym = A.Gensym.create tst;
simp_preds = Term.Tbl.create 32;
simp_defined = Term.Tbl.create 16;
encoded_eqs = Term.Tbl.create 8;
needs_th_combination = Term.Tbl.create 8;
encoded_le = Comb_map.empty;
simplex = SimpSolver.create ~stat ();
last_res = None;
}
let[@inline] reset_res_ (self : state) : unit = self.last_res <- None
let[@inline] n_levels self : int = ST_exprs.n_levels self.st_exprs
let push_level self =
ST_exprs.push_level self.st_exprs;
SimpSolver.push_level self.simplex;
()
let pop_levels self n =
reset_res_ self;
ST_exprs.pop_levels self.st_exprs n;
SimpSolver.pop_levels self.simplex n;
()
let fresh_term self ~pre ty = A.Gensym.fresh_term self.gensym ~pre ty
let fresh_lit (self : state) ~mk_lit ~pre : Lit.t =
let t = fresh_term ~pre self (Term.bool self.tst) in
mk_lit t
let pp_pred_def out (p, l1, l2) : unit =
Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" Predicate.pp p LE.pp l1 LE.pp l2
let[@inline] t_const self n : Term.t = A.mk_lra self.tst (LRA_const n)
let[@inline] t_zero self : Term.t = t_const self A.Q.zero
let[@inline] is_const_ t =
match A.view_as_lra t with
| LRA_const _ -> true
| _ -> false
let[@inline] as_const_ t =
match A.view_as_lra t with
| LRA_const n -> Some n
| _ -> None
let[@inline] is_zero t =
match A.view_as_lra t with
| LRA_const n -> A.Q.(n = zero)
| _ -> false
let t_of_comb (self : state) (comb : LE_.Comb.t) ~(init : Term.t) : Term.t =
let[@inline] ( + ) a b = A.mk_lra self.tst (LRA_op (Plus, a, b)) in
let[@inline] ( * ) a b = A.mk_lra self.tst (LRA_mult (a, b)) in
let cur = ref init in
LE_.Comb.iter
(fun t c ->
let tc =
if A.Q.(c = of_int 1) then
t
else
c * t
in
cur :=
if is_zero !cur then
tc
else
!cur + tc)
comb;
!cur
(* encode back into a term *)
let t_of_linexp (self : state) (le : LE.t) : Term.t =
let comb = LE.comb le in
let const = LE.const le in
t_of_comb self comb ~init:(A.mk_lra self.tst (LRA_const const))
(* return a variable that is equal to [le_comb] in the simplex. *)
let var_encoding_comb ~pre self (le_comb : LE_.Comb.t) : Term.t =
assert (not (LE_.Comb.is_empty le_comb));
match LE_.Comb.as_singleton le_comb with
| Some (c, x) when A.Q.(c = one) -> x (* trivial linexp *)
| _ ->
(match Comb_map.find le_comb self.encoded_le with
| x -> x (* already encoded that *)
| exception Not_found ->
(* new variable to represent [le_comb] *)
let proxy = fresh_term self ~pre (A.ty_lra self.tst) in
(* TODO: define proxy *)
self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le;
Log.debugf 50 (fun k ->
k "(@[lra.encode-linexp@ `@[%a@]`@ :into-var %a@])" LE_.Comb.pp
le_comb Term.pp_debug proxy);
LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb;
SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb);
proxy)
let add_clause_lra_ ?using (module PA : SI.PREPROCESS_ACTS) lits =
let pr = Pr.add_step PA.proof @@ A.lemma_lra (Iter.of_list lits) in
let pr =
match using with
| None -> pr
| Some using ->
Pr.add_step PA.proof
@@ Proof_core.lemma_rw_clause pr ~res:(Iter.of_list lits) ~using
in
PA.add_clause lits pr
let s_op_of_pred pred : S_op.t =
match pred with
| Eq | Neq -> assert false (* unreachable *)
| Leq -> S_op.Leq
| Lt -> S_op.Lt
| Geq -> S_op.Geq
| Gt -> S_op.Gt
(* TODO: refactor that and {!var_encoding_comb} *)
(* turn a linear expression into a single constant and a coeff.
This might define a side variable in the simplex. *)
let le_comb_to_singleton_ (self : state) (le_comb : LE_.Comb.t) :
Term.t * A.Q.t =
match LE_.Comb.as_singleton le_comb with
| Some (coeff, v) -> v, coeff
| None ->
(* non trivial linexp, give it a fresh name in the simplex *)
(match Comb_map.get le_comb self.encoded_le with
| Some x -> x, A.Q.one (* already encoded that *)
| None ->
let proxy = fresh_term self ~pre:"_le_comb" (A.ty_lra self.tst) in
self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le;
LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb;
SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb);
Log.debugf 50 (fun k ->
k "(@[lra.encode-linexp.to-term@ `@[%a@]`@ :new-t %a@])" LE_.Comb.pp
le_comb Term.pp_debug proxy);
proxy, A.Q.one)
(* look for subterms of type Real, for they will need theory combination *)
let on_subterm (self : state) (t : Term.t) : unit =
Log.debugf 50 (fun k -> k "(@[lra.cc-on-subterm@ %a@])" Term.pp_debug t);
match A.view_as_lra t with
| LRA_other _ when not (A.has_ty_real t) -> ()
| LRA_pred _ | LRA_const _ -> ()
| LRA_op _ | LRA_other _ | LRA_mult _ ->
if not (Term.Tbl.mem self.needs_th_combination t) then (
Log.debugf 5 (fun k ->
k "(@[lra.needs-th-combination@ %a@])" Term.pp_debug t);
Term.Tbl.add self.needs_th_combination t ()
)
(* preprocess linear expressions away *)
let preproc_lra (self : state) si (module PA : SI.PREPROCESS_ACTS)
(t : Term.t) : unit =
Log.debugf 50 (fun k -> k "(@[lra.preprocess@ %a@])" Term.pp_debug t);
let tst = SI.tst si in
(* tell the CC this term exists *)
let declare_term_to_cc ~sub t =
Log.debugf 50 (fun k ->
k "(@[lra.declare-term-to-cc@ %a@])" Term.pp_debug t);
ignore (CC.add_term (SI.cc si) t : E_node.t);
if sub then on_subterm self t
in
match A.view_as_lra t with
| _ when Term.Tbl.mem self.simp_preds t ->
() (* already turned into a simplex predicate *)
| LRA_pred (((Eq | Neq) as pred), t1, t2) when is_const_ t1 && is_const_ t2
->
(* comparison of constants: can decide right now *)
(match A.view_as_lra t1, A.view_as_lra t2 with
| LRA_const n1, LRA_const n2 ->
let is_eq = pred = Eq in
let t_is_true = is_eq = A.Q.equal n1 n2 in
let lit = PA.mk_lit ~sign:t_is_true t in
add_clause_lra_ (module PA) [ lit ]
| _ -> assert false)
| LRA_pred ((Eq | Neq), t1, t2) ->
(* equality: just punt to [t1 = t2 <=> (t1 <= t2 /\ t1 >= t2)] *)
let _, t = Term.abs t in
if not (Term.Tbl.mem self.encoded_eqs t) then (
let u1 = A.mk_lra tst (LRA_pred (Leq, t1, t2)) in
let u2 = A.mk_lra tst (LRA_pred (Geq, t1, t2)) in
Term.Tbl.add self.encoded_eqs t ();
(* encode [t <=> (u1 /\ u2)] *)
let lit_t = PA.mk_lit t in
let lit_u1 = PA.mk_lit u1 in
let lit_u2 = PA.mk_lit u2 in
add_clause_lra_ (module PA) [ Lit.neg lit_t; lit_u1 ];
add_clause_lra_ (module PA) [ Lit.neg lit_t; lit_u2 ];
add_clause_lra_ (module PA) [ Lit.neg lit_u1; Lit.neg lit_u2; lit_t ]
)
| LRA_pred (pred, t1, t2) ->
let l1 = as_linexp t1 in
let l2 = as_linexp t2 in
let le = LE.(l1 - l2) in
let le_comb, le_const = LE.comb le, LE.const le in
let le_const = A.Q.neg le_const in
let op = s_op_of_pred pred in
(* now we have [le_comb op le_const] *)
(* obtain a single variable for the linear combination *)
let v, c_v = le_comb_to_singleton_ self le_comb in
declare_term_to_cc ~sub:false v;
LE_.Comb.iter (fun v _ -> declare_term_to_cc ~sub:true v) le_comb;
(* turn into simplex constraint. For example,
[c . v <= const] becomes a direct simplex constraint [v <= const/c]
(beware the sign) *)
(* make sure to swap sides if multiplying with a negative coeff *)
let q = A.Q.(le_const / c_v) in
let op =
if A.Q.(c_v < zero) then
S_op.neg_sign op
else
op
in
let lit = PA.mk_lit t in
let constr = SimpSolver.Constraint.mk v op q in
SimpSolver.declare_bound self.simplex constr (Tag.Lit lit);
Term.Tbl.add self.simp_preds t (v, op, q);
Log.debugf 50 (fun k ->
k "(@[lra.preproc@ :t %a@ :to-constr %a@])" Term.pp_debug t
SimpSolver.Constraint.pp constr)
| LRA_op _ | LRA_mult _ ->
if not (Term.Tbl.mem self.simp_defined t) then (
(* we define these terms so their value in the model make sense *)
let le = as_linexp t in
Term.Tbl.add self.simp_defined t le
)
| LRA_const _n -> ()
| LRA_other t when A.has_ty_real t -> ()
| LRA_other _ -> ()
let simplify (self : state) (_recurse : _) (t : Term.t) :
(Term.t * Proof_step.id Iter.t) option =
let proof_eq t u =
Pr.add_step self.proof
@@ A.lemma_lra (Iter.return (Lit.atom (Term.eq self.tst t u)))
in
let proof_bool t ~sign:b =
let lit = Lit.atom ~sign:b t in
Pr.add_step self.proof @@ A.lemma_lra (Iter.return lit)
in
match A.view_as_lra t with
| LRA_op _ | LRA_mult _ ->
let le = as_linexp t in
if LE.is_const le then (
let c = LE.const le in
let u = A.mk_lra self.tst (LRA_const c) in
let pr = proof_eq t u in
Some (u, Iter.return pr)
) else (
let u = t_of_linexp self le in
if t != u then (
let pr = proof_eq t u in
Some (u, Iter.return pr)
) else
None
)
| LRA_pred ((Eq | Neq), _, _) ->
(* never change equalities, it can affect theory combination *)
None
| LRA_pred (pred, l1, l2) ->
let le = LE.(as_linexp l1 - as_linexp l2) in
if LE.is_const le then (
let c = LE.const le in
let is_true =
match pred with
| Leq -> A.Q.(c <= zero)
| Geq -> A.Q.(c >= zero)
| Lt -> A.Q.(c < zero)
| Gt -> A.Q.(c > zero)
| Eq -> A.Q.(c = zero)
| Neq -> A.Q.(c <> zero)
in
let u = Term.bool_val self.tst is_true in
let pr = proof_bool t ~sign:is_true in
Some (u, Iter.return pr)
) else (
(* le <= const *)
let u =
A.mk_lra self.tst
(LRA_pred
( pred,
t_of_comb self (LE.comb le) ~init:(t_zero self),
t_const self (A.Q.neg @@ LE.const le) ))
in
if t != u then (
let pr = proof_eq t u in
Some (u, Iter.return pr)
) else
None
)
| _ -> None
(* raise conflict from certificate *)
let fail_with_cert si acts cert : 'a =
Profile.with1 "lra.simplex.check-cert" SimpSolver._check_cert cert;
let confl =
SimpSolver.Unsat_cert.lits cert
|> CCList.flat_map (Tag.to_lits si)
|> List.rev_map Lit.neg
in
let pr = Pr.add_step (SI.proof si) @@ A.lemma_lra (Iter.of_list confl) in
SI.raise_conflict si acts confl pr
let on_propagate_ si acts lit ~reason =
match lit with
| Tag.Lit lit ->
(* TODO: more detailed proof certificate *)
SI.propagate si acts lit ~reason:(fun () ->
let lits = CCList.flat_map (Tag.to_lits si) reason in
let pr =
Pr.add_step (SI.proof si)
@@ A.lemma_lra Iter.(cons lit (of_list lits))
in
CCList.flat_map (Tag.to_lits si) reason, pr)
| _ -> ()
(** Check satisfiability of simplex, and sets [self.last_res] *)
let check_simplex_ self si acts : SimpSolver.Subst.t =
Log.debugf 5 (fun k ->
k "(@[lra.check-simplex@ :n-vars %d :n-rows %d@])"
(SimpSolver.n_vars self.simplex)
(SimpSolver.n_rows self.simplex));
let res =
Profile.with_ "lra.simplex.solve" @@ fun () ->
SimpSolver.check self.simplex ~on_propagate:(on_propagate_ si acts)
in
Log.debug 5 "(lra.check-simplex.done)";
self.last_res <- Some res;
match res with
| SimpSolver.Sat m -> m
| SimpSolver.Unsat cert ->
Log.debugf 10 (fun k ->
k "(@[lra.check.unsat@ :cert %a@])" SimpSolver.Unsat_cert.pp cert);
fail_with_cert si acts cert
(* TODO: trivial propagations *)
let add_local_eq_t (self : state) si acts t1 t2 ~tag : unit =
Log.debugf 20 (fun k ->
k "(@[lra.add-local-eq@ %a@ %a@])" Term.pp_debug t1 Term.pp_debug t2);
reset_res_ self;
let t1, t2 =
if Term.compare t1 t2 > 0 then
t2, t1
else
t1, t2
in
let le = LE.(as_linexp t1 - as_linexp t2) in
let le_comb, le_const = LE.comb le, LE.const le in
let le_const = A.Q.neg le_const in
if LE_.Comb.is_empty le_comb then (
if A.Q.(le_const <> zero) then (
(* [c=0] when [c] is not 0 *)
let lit = Lit.atom ~sign:false @@ Term.eq self.tst t1 t2 in
let pr = Pr.add_step self.proof @@ A.lemma_lra (Iter.return lit) in
SI.add_clause_permanent si acts [ lit ] pr
)
) else (
let v = var_encoding_comb ~pre:"le_local_eq" self le_comb in
try
let c1 = SimpSolver.Constraint.geq v le_const in
SimpSolver.add_constraint self.simplex c1 tag
~on_propagate:(on_propagate_ si acts);
let c2 = SimpSolver.Constraint.leq v le_const in
SimpSolver.add_constraint self.simplex c2 tag
~on_propagate:(on_propagate_ si acts)
with SimpSolver.E_unsat cert -> fail_with_cert si acts cert
)
let add_local_eq (self : state) si acts n1 n2 : unit =
let t1 = E_node.term n1 in
let t2 = E_node.term n2 in
add_local_eq_t self si acts t1 t2 ~tag:(Tag.CC_eq (n1, n2))
(* evaluate a term directly, as a variable *)
let eval_in_subst_ subst t =
match A.view_as_lra t with
| LRA_const n -> n
| _ -> Subst.eval subst t |> Option.value ~default:A.Q.zero
(* evaluate a linear expression *)
let eval_le_in_subst_ subst (le : LE.t) = LE.eval (eval_in_subst_ subst) le
(* FIXME: rename, this is more "provide_model_to_cc" *)
let do_th_combination (self : state) _si _acts : _ Iter.t =
Log.debug 1 "(lra.do-th-combinations)";
let model =
match self.last_res with
| Some (SimpSolver.Sat m) -> m
| _ -> assert false
in
let vals = Subst.to_iter model |> Term.Tbl.of_iter in
(* also include terms that occur under function symbols, if they're
not in the model already *)
Term.Tbl.iter
(fun t () ->
if not (Term.Tbl.mem vals t) then (
let v = eval_in_subst_ model t in
Term.Tbl.add vals t v
))
self.needs_th_combination;
(* also consider subterms that are linear expressions,
and evaluate them using the value of each variable
in that linear expression. For example a term [a + 2b]
is evaluated as [eval(a) + 2 × eval(b)]. *)
Term.Tbl.iter
(fun t le ->
if not (Term.Tbl.mem vals t) then (
let v = eval_le_in_subst_ model le in
Term.Tbl.add vals t v
))
self.simp_defined;
(* return whole model *)
Term.Tbl.to_iter vals |> Iter.map (fun (t, v) -> t, t_const self v)
(* partial checks is where we add literals from the trail to the
simplex. *)
let partial_check_ self si acts trail : unit =
Profile.with_ "lra.partial-check" @@ fun () ->
reset_res_ self;
let changed = ref false in
let examine_lit lit =
let sign = Lit.sign lit in
let lit_t = Lit.term lit in
match Term.Tbl.get self.simp_preds lit_t, A.view_as_lra lit_t with
| Some (v, op, q), _ ->
Log.debugf 50 (fun k ->
k "(@[lra.partial-check.add@ :lit %a@ :lit-t %a@])" Lit.pp lit
Term.pp_debug lit_t);
(* need to account for the literal's sign *)
let op =
if sign then
op
else
S_op.not_ op
in
(* assert new constraint to Simplex *)
let constr = SimpSolver.Constraint.mk v op q in
Log.debugf 10 (fun k ->
k "(@[lra.partial-check.assert@ %a@])" SimpSolver.Constraint.pp
constr);
changed := true;
(try
SimpSolver.add_var self.simplex v;
SimpSolver.add_constraint self.simplex constr (Tag.Lit lit)
~on_propagate:(on_propagate_ si acts)
with SimpSolver.E_unsat cert ->
Log.debugf 10 (fun k ->
k "(@[lra.partial-check.unsat@ :cert %a@])"
SimpSolver.Unsat_cert.pp cert);
fail_with_cert si acts cert)
| None, LRA_pred (Eq, t1, t2) when sign ->
add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit)
| None, LRA_pred (Neq, t1, t2) when not sign ->
add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit)
| None, _ -> ()
in
Iter.iter examine_lit trail;
(* incremental check *)
if !changed then ignore (check_simplex_ self si acts : SimpSolver.Subst.t);
()
let final_check_ (self : state) si (acts : SI.theory_actions)
(_trail : _ Iter.t) : unit =
Log.debug 5 "(th-lra.final-check)";
Profile.with_ "lra.final-check" @@ fun () ->
reset_res_ self;
(* add equalities between linear-expressions merged in the congruence closure *)
ST_exprs.iter_all self.st_exprs (fun (_, l) ->
Iter.diagonal_l l (fun (s1, s2) -> add_local_eq self si acts s1.n s2.n));
(* TODO: jiggle model to reduce the number of variables that
have the same value *)
let model = check_simplex_ self si acts in
Log.debugf 20 (fun k -> k "(@[lra.model@ %a@])" SimpSolver.Subst.pp model);
Log.debug 5 "(lra: solver returns SAT)";
()
(* help generating model *)
let model_ask_ (self : state) ~recurse:_ _si n : _ option =
let t = E_node.term n in
match self.last_res with
| Some (SimpSolver.Sat m) ->
Log.debugf 50 (fun k -> k "(@[lra.model-ask@ %a@])" Term.pp_debug t);
(match A.view_as_lra t with
| LRA_const n -> Some n (* always eval constants to themselves *)
| _ -> SimpSolver.V_map.get t m)
|> Option.map (t_const self)
| _ -> None
(* help generating model *)
let model_complete_ (self : state) _si ~add : unit =
Log.debugf 30 (fun k -> k "(lra.model-complete)");
match self.last_res with
| Some (SimpSolver.Sat m) when Term.Tbl.length self.in_model > 0 ->
Log.debugf 50 (fun k ->
k "(@[lra.in_model@ %a@])"
(Util.pp_iter Term.pp_debug)
(Term.Tbl.keys self.in_model));
let add_t t () =
match SimpSolver.V_map.get t m with
| None -> ()
| Some u -> add t (t_const self u)
in
Term.Tbl.iter add_t self.in_model
| _ -> ()
let k_state = SMT.Registry.create_key ()
let create_and_setup si =
Log.debug 2 "(th-lra.setup)";
let stat = SI.stats si in
let st = create ~stat si in
SMT.Registry.set (SI.registry si) k_state st;
SI.add_simplifier si (simplify st);
SI.on_preprocess si (preproc_lra st);
SI.on_final_check si (final_check_ st);
SI.on_partial_check si (partial_check_ st);
SI.on_model si ~ask:(model_ask_ st) ~complete:(model_complete_ st);
SI.on_cc_is_subterm si (fun (_, _, t) ->
on_subterm st t;
[]);
SI.on_cc_pre_merge si (fun (_cc, n1, n2, expl) ->
match as_const_ (E_node.term n1), as_const_ (E_node.term n2) with
| Some q1, Some q2 when A.Q.(q1 <> q2) ->
(* classes with incompatible constants *)
Log.debugf 30 (fun k ->
k "(@[lra.merge-incompatible-consts@ %a@ %a@])" E_node.pp n1
E_node.pp n2);
Error (CC.Handler_action.Conflict expl)
| _ -> Ok []);
SI.on_th_combination si (do_th_combination st);
st
let theory =
SMT.Solver.mk_theory ~name:"th-lra" ~create_and_setup ~push_level
~pop_levels ()
end