Lots of fixes for proof generation.

This commit is contained in:
Guillaume Bury 2014-11-07 15:11:32 +01:00
parent 7d7859010e
commit e1486b416d
5 changed files with 90 additions and 64 deletions

View file

@ -20,6 +20,7 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
| Resolution of atom * int_cl * int_cl
(* lits, c1, c2 with lits the literals used to resolve c1 and c2 *)
exception Insuficient_hyps
exception Resolution_error of string
(* Proof graph *)
@ -38,7 +39,7 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
let equal = equal_cl
end)
let proof : node H.t = H.create 1007;;
let unit_learnt : clause H.t = H.create 37;;
let unit_hyp : (clause * St.atom list) H.t = H.create 37;;
(* Misc functions *)
let equal_atoms a b = St.(a.aid) = St.(b.aid)
@ -47,14 +48,6 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
let _c = ref 0
let fresh_pcl_name () = incr _c; "P" ^ (string_of_int !_c)
let clause_unit a =
try
H.find unit_learnt [a]
with Not_found ->
let new_c = St.(make_clause (fresh_pcl_name ()) [a] 1 true a.var.vpremise) in
H.add unit_learnt [a] new_c;
new_c
(* Printing functions *)
let print_atom fmt a =
Format.fprintf fmt "%s%d" St.(if a.var.pa == a then "" else "¬ ") St.(a.var.vid + 1)
@ -96,6 +89,25 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
| [a] -> St.(a.var.level = 0 && a.var.reason = None && a.var.vpremise <> [])
| _ -> false
let make_unit_hyp a =
let aux a = St.(make_clause (fresh_name ()) [a] 1 false []) in
if St.(a.is_true) then
aux a
else if St.(a.neg.is_true) then
aux St.(a.neg)
else
assert false
let unit_hyp a =
let a = St.(a.var.pa) in
try
H.find unit_hyp [a]
with Not_found ->
let c = make_unit_hyp a in
let cl = to_list c in
H.add unit_hyp [a] (c, cl);
(c, cl)
let is_proved (c, cl) =
if H.mem proof cl then
true
@ -112,7 +124,7 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
Log.debug 7 " %a" St.pp_clause c;
Log.debug 7 " %a" St.pp_clause d;
assert (is_proved (c, cl_c));
assert (is_proved (c, cl_d));
assert (is_proved (d, cl_d));
let l = List.merge compare_atoms cl_c cl_d in
let resolved, new_clause = resolve l in
match resolved with
@ -134,22 +146,31 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
diff_learnt (b :: acc) l r'
| _ -> raise (Resolution_error "Impossible to derive correct clause")
let clause_unit a = match St.(a.var.level, a.var.reason) with
| 0, Some c -> c, to_list c
| 0, None ->
let c, cl = unit_hyp a in
if is_proved (c, cl) then
c, cl
else
assert false
| _ ->
raise (Resolution_error "Could not find a reason needed to resolve")
let add_clause c cl l = (* We assume that all clauses in l are already proved ! *)
match l with
| a :: ((_ :: _) as r) ->
Log.debug 5 "Resolving (with history) %a" St.pp_clause c;
let temp_c, temp_cl = List.fold_left add_res a r in
Log.debug 10 " Switching to unit resolutions";
let unit_to_use = diff_learnt [] cl temp_cl in
let unit_r = List.map St.(fun a -> clause_unit a.neg, [a.neg]) unit_to_use in
let new_c, new_cl = List.fold_left add_res (temp_c, temp_cl) unit_r in
if not (equal_cl cl new_cl) then begin
(* We didn't get the expected clause, raise an error *)
Log.debug 0 "Expected the following clauses to be equal :";
Log.debug 0 "expected : %s" (Log.on_fmt print_cl cl);
Log.debug 0 "found : %a" St.pp_clause new_c;
assert false
end
let new_c, new_cl = (ref temp_c, ref temp_cl) in
while not (equal_cl cl !new_cl) do
let unit_to_use = diff_learnt [] cl !new_cl in
let unit_r = List.map St.(fun a -> clause_unit a) unit_to_use in
let temp_c, temp_cl = List.fold_left add_res (!new_c, !new_cl) unit_r in
new_c := temp_c;
new_cl := temp_cl;
done
| _ -> assert false
let need_clause (c, cl) =
@ -186,7 +207,9 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
Log.debug 2 "Eliminating %a in %a" St.pp_atom a St.pp_clause c;
let d = match St.(a.var.level, a.var.reason) with
| 0, Some d -> d
| 0, None -> clause_unit St.(a.neg)
| 0, None ->
let d, cl_d = unit_hyp a in
if is_proved (d, cl_d) then d else raise Exit
| _ -> raise Exit
in
prove d;
@ -199,11 +222,15 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
with Exit ->
false
exception Cannot
let learn v =
Vec.iter (fun c -> Log.debug 15 "history : %a" St.pp_clause c) v;
Vec.iter prove v
let assert_can_prove_unsat c =
Log.debug 1 "=================== Proof =====================";
prove c;
if not (prove_unsat_cl (c, to_list c)) then raise Cannot
if not (prove_unsat_cl (c, to_list c)) then
raise Insuficient_hyps
(* Interface exposed *)
type proof_node = {
@ -279,32 +306,35 @@ module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
(print_dot_edge id) (c_id p2)
let rec print_dot_proof fmt p =
match p.step with
| Hypothesis ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>Hypothesis</TD><TD>%s</TD></TR>"
print_clause p.conclusion St.(p.conclusion.name)
in
print_dot_rule "BGCOLOR=\"LIGHTBLUE\"" aux () fmt p.conclusion
| Lemma _ ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\"BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>Lemma</TD><TD>%s</TD></TR>"
print_clause p.conclusion St.(p.conclusion.name)
in
print_dot_rule "BGCOLOR=\"RED\"" aux () fmt p.conclusion
| Resolution (proof1, proof2, a) ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>%s</TD><TD>%s</TD></TR>"
print_clause p.conclusion
"Resolution" St.(p.conclusion.name)
in
let p1 = proof1 () in
let p2 = proof2 () in
Format.fprintf fmt "%a%a%a%a"
(print_dot_rule "" aux ()) p.conclusion
(print_res_node p.conclusion p1.conclusion p2.conclusion) a
print_dot_proof p1
print_dot_proof p2
if not (is_drawn p.conclusion) then begin
has_drawn p.conclusion;
match p.step with
| Hypothesis ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>Hypothesis</TD><TD>%s</TD></TR>"
print_clause p.conclusion St.(p.conclusion.name)
in
print_dot_rule "BGCOLOR=\"LIGHTBLUE\"" aux () fmt p.conclusion
| Lemma _ ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\"BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>Lemma</TD><TD>%s</TD></TR>"
print_clause p.conclusion St.(p.conclusion.name)
in
print_dot_rule "BGCOLOR=\"RED\"" aux () fmt p.conclusion
| Resolution (proof1, proof2, a) ->
let aux fmt () =
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>%s</TD><TD>%s</TD></TR>"
print_clause p.conclusion
"Resolution" St.(p.conclusion.name)
in
let p1 = proof1 () in
let p2 = proof2 () in
Format.fprintf fmt "%a%a%a%a"
(print_dot_rule "" aux ()) p.conclusion
(print_res_node p.conclusion p1.conclusion p2.conclusion) a
print_dot_proof p1
print_dot_proof p2
end
let print_dot fmt proof =
clear_ids ();

View file

@ -9,9 +9,12 @@ module type S = sig
val is_proven : clause -> bool
(** Returns [true] if the clause has a derivation in the current proof graph, and [false] otherwise. *)
exception Cannot
exception Insuficient_hyps
val learn : clause Vec.t -> unit
(** Learn and build proofs for the clause in the vector. Clauses in the vector should be in the order they were learned. *)
val assert_can_prove_unsat : clause -> unit
(** [prove_unsat c] tries and prove the empty clause from [c].
(** [prove_unsat c] tries and prove the empty clause from [c]. [c] may be a learnt clause not yet proved.
@raise Cannot if it is impossible. *)
type proof_node = {

View file

@ -120,6 +120,7 @@ module Make(Dummy : sig end) = struct
let eval = SatSolver.eval
let get_proof () =
SatSolver.Proof.learn (SatSolver.history ());
match SatSolver.unsat_conflict () with
| None -> assert false
| Some c -> SatSolver.Proof.prove_unsat c

View file

@ -498,18 +498,10 @@ module Make (F : Formula_intf.S)
(* remove from [vec] the clauses that are satisfied in the current trail *)
let remove_satisfied vec =
let j = ref 0 in
let k = Vec.size vec - 1 in
for i = 0 to k do
for i = 0 to Vec.size vec - 1 do
let c = Vec.get vec i in
if satisfied c then remove_clause c
else begin
Vec.set vec !j (Vec.get vec i);
incr j
end
done;
Vec.shrink vec (k + 1 - !j)
done
module HUC = Hashtbl.Make
(struct type t = clause let equal = (==) let hash = Hashtbl.hash end)
@ -548,11 +540,11 @@ module Make (F : Formula_intf.S)
| [] -> assert false
| [fuip] ->
assert (blevel = 0);
fuip.var.vpremise <- history;
let name = fresh_lname () in
let uclause = make_clause name learnt size true history in
Log.debug 2 "Unit clause learnt : %a" St.pp_atom fuip;
Log.debug 2 "Unit clause learnt : %a" St.pp_clause uclause;
Vec.push env.learnts uclause;
fuip.var.vpremise <- history;
enqueue fuip 0 (Some uclause)
| fuip :: _ ->
let name = fresh_lname () in

View file

@ -7,7 +7,7 @@ solvertest () {
for f in `find -L $1 -name *.cnf -type f`
do
echo -ne "\r\033[KTesting $f..."
"$SOLVER" -t 30s -s 1G $f | grep $2 > /dev/null 2> /dev/null
"$SOLVER" -check -t 30s -s 1G $f | grep $2 > /dev/null 2> /dev/null
RET=$?
if [ $RET -ne 0 ];
then