wip: heavy refactoring of SAT solver, making most things backtrackable

the idea is that most changes should be undone upon backtracking,
using the global `on_backtrack` command and `at_level_0` to
know when something is going to be permanent.

In particular, should be (possibly optionally) undone on backtracking:
- addition of clauses (clauses being attached)
- propagations of atoms
- addition of literals to the heap
- internalization of literals (tbd)

clauses should also be added immediately, not pushed into a queue
This commit is contained in:
Simon Cruanes 2018-02-11 22:49:33 -06:00
parent fb7e422413
commit e1717f3afe
9 changed files with 362 additions and 294 deletions

View file

@ -27,18 +27,19 @@ module Make
exception Restart
exception Conflict of clause
(* Log levels *)
let error = 1
let warn = 3
let info = 5
let debug = 50
let var_decay : float = 1. /. 0.95
(* inverse of the activity factor for variables. Default 1/0.999 *)
let clause_decay : float = 1. /. 0.999
(* inverse of the activity factor for clauses. Default 1/0.95 *)
let restart_first : int = 100
(* intial restart limit *)
let learntsize_factor : float = 1. /. 3.
(* initial limit for the number of learnt clauses, 1/3 of initial
number of clauses by default *)
let restart_inc : float = 1.5
(* multiplicative factor for restart limit, default 1.5 *)
@ -63,12 +64,6 @@ module Make
(* Temp clauses, corresponding to the local assumptions. This vec is used
only to have an efficient way to access the list of local assumptions. *)
clauses_root : clause Stack.t;
(* Clauses that should propagate at level 0, but couldn't *)
clauses_to_add : clause Stack.t;
(* Clauses either assumed or pushed by the theory, waiting to be added. *)
mutable unsat_conflict : clause option;
(* conflict clause at [base_level], if any *)
mutable next_decision : atom option;
@ -89,6 +84,9 @@ module Make
backtrack : (unit -> unit) Vec.t;
(** Actions to call when backtracking *)
to_redo_after_backtrack: (unit -> unit) Vec.t;
(** Actions to re-do after backtracking *)
mutable th_head : int;
(* Start offset in the queue {!trail} of
unit facts not yet seen by the theory. *)
@ -114,13 +112,6 @@ module Make
mutable clause_incr : float;
(* increment for clauses' activity *)
mutable restart_first : int;
(* intial restart limit, default 100 *)
mutable learntsize_factor : float;
(* initial limit for the number of learnt clauses, 1/3 of initial
number of clauses by default *)
mutable dirty: bool;
(* is there a [pop()] on top of the stack for examining
current model/proof? *)
@ -137,9 +128,6 @@ module Make
clauses_learnt = Vec.make 0 Clause.dummy;
clauses_temp = Vec.make 0 Clause.dummy;
clauses_root = Stack.create ();
clauses_to_add = Stack.create ();
th_head = 0;
elt_head = 0;
@ -147,54 +135,80 @@ module Make
elt_levels = Vec.make size_lvl (-1);
backtrack_levels = Vec.make size_lvl (-1);
backtrack = Vec.make size_lvl (fun () -> ());
to_redo_after_backtrack = Vec.make 10 (fun () -> ());
user_levels = Vec.make 0 (-1);
order = H.create();
var_incr = 1.;
clause_incr = 1.;
restart_first = 100;
learntsize_factor = 1. /. 3. ;
dirty=false;
}
let[@inline] theory st = Lazy.force st.th
let[@inline] on_backtrack st f : unit = Vec.push st.backtrack f
let[@inline] at_level_0 st : bool = Vec.is_empty st.backtrack_levels
(* schedule [f] as a backtrack action, iff the solver's current
level is not 0. *)
let[@inline] on_backtrack_if_not_at_0 st f =
if not (at_level_0 st) then (
on_backtrack st f;
)
let[@inline] st t = t.st
let[@inline] nb_clauses st = Vec.size st.clauses_hyps
let[@inline] decision_level st = Vec.size st.elt_levels
let[@inline] base_level st = Vec.size st.user_levels
let[@inline] mk_atom st (f:St.formula) : atom = Atom.make st.st f
(* [redo_down_to_level_0 f ~undo] performs [f] now. Upon backtracking
before current level, some undo actions scheduled by [f]
might run;
later [f] will be called again
to re-perform the action, and this cycle [f(); backtrack; f(); ] is
done until we backtrack at level 0.
Once at level 0, [f()] is called and will never be undone again.
*)
let rec redo_down_to_level_0 (st:t) (f:unit->unit) : unit =
if not (at_level_0 st) then (
on_backtrack st
(fun () ->
Vec.push st.to_redo_after_backtrack
(fun () -> redo_down_to_level_0 st f))
);
f()
(* Misc functions *)
let to_float = float_of_int
let to_int = int_of_float
let[@inline] st t = t.st
let[@inline] nb_clauses st = Vec.size st.clauses_hyps
(* let nb_vars () = St.nb_elt () *)
let[@inline] decision_level st = Vec.size st.elt_levels
let[@inline] base_level st = Vec.size st.user_levels
(* Are the assumptions currently unsat ? *)
let[@inline] is_unsat st =
match st.unsat_conflict with
| Some _ -> true
| None -> false
(* When we have a new literal,
we need to first create the list of its subterms. *)
let[@inline] mk_atom st (f:St.formula) : atom = Atom.make st.st f
(* Variable and literal activity.
Activity is used to decide on which variable to decide when propagation
is done. Uses a heap (implemented in Iheap), to keep track of variable activity.
To be more general, the heap only stores the variable/literal id (i.e an int).
When we add a variable (which wraps a formula), we also need to add all
its subterms.
is done. Uses a heap (implemented in {!Heap}), to keep track of variable activity.
*)
let[@inline] insert_var_order st (v:var) : unit = H.insert st.order v
let insert_var_order st (v:var) : unit =
if not (Var.in_heap v) then (
(* remove variable when we backtrack *)
on_backtrack_if_not_at_0 st (fun () -> H.remove st.order v);
H.insert st.order v;
)
let new_atom st (p:formula) : unit =
let new_atom ~permanent st (p:formula) : unit =
let a = mk_atom st p in
insert_var_order st a.var
if permanent then (
(* TODO: also internalize term… *)
redo_down_to_level_0 st
(fun () -> insert_var_order st a.var)
) else (
insert_var_order st a.var
)
(* Rather than iterate over all the heap when we want to decrease all the
variables/literals activity, we instead increase the value by which
@ -252,7 +266,8 @@ module Make
let trivial = ref false in
let duplicates = ref [] in
let res = ref [] in
Array.iter (fun a ->
Array.iter
(fun a ->
if Atom.seen a then duplicates := a :: !duplicates
else (
Atom.mark a;
@ -264,12 +279,13 @@ module Make
if Var.seen_both a.var then trivial := true;
Var.clear a.var)
!res;
if !trivial then
if !trivial then (
raise Trivial
else if !duplicates = [] then
) else if !duplicates = [] then (
clause
else
) else (
Clause.make !res (History [clause])
)
(* Partition literals for new clauses, into:
- true literals (maybe makes the clause trivial if the lit is proved true at level 0)
@ -333,27 +349,36 @@ module Make
Vec.push st.backtrack_levels (Vec.size st.backtrack); (* save the current theory state *)
()
(* Attach/Detach a clause.
(* Attach a clause.
A clause is attached (to its watching lits) when it is first added,
either because it is assumed or learnt.
*)
let attach_clause c =
assert (not c.attached);
Log.debugf debug (fun k -> k "Attaching %a" Clause.debug c);
Vec.push c.atoms.(0).neg.watched c;
Vec.push c.atoms.(1).neg.watched c;
c.attached <- true;
()
let attach_clause (self:t) (c:clause) : unit =
if not (Clause.attached c) then (
Log.debugf 5 (fun k -> k "(@[sat.attach_clause@ %a@])" Clause.debug c);
if not (at_level_0 self) then (
on_backtrack self
(fun () ->
Clause.set_attached c false)
);
Vec.push c.atoms.(0).neg.watched c;
Vec.push c.atoms.(1).neg.watched c;
Clause.set_attached c true;
)
let backtrack_down_to (st:t) (l:int): unit =
Log.debugf 2
(fun k->k "@{<Yellow>** now at level %d (backtrack)@}" l);
while Vec.size st.backtrack > l do
(* perform all backtracking actions down to level [l].
To be called only from [cancel_until] *)
let backtrack_down_to (st:t) (lvl:int): unit =
Log.debugf 2 (fun k->k "(@[@{<Yellow>sat.backtrack@} now at level %d@])" lvl);
while Vec.size st.backtrack > lvl do
let f = Vec.pop_last st.backtrack in
f()
done;
(* now re-do permanent actions that were backtracked *)
while not (Vec.is_empty st.to_redo_after_backtrack) do
let f = Vec.pop_last st.to_redo_after_backtrack in
f()
done;
()
(* Backtracking.
@ -361,12 +386,11 @@ module Make
i.e we want to go back to the state the solver was in
when decision level [lvl] was created. *)
let cancel_until st lvl =
Log.debugf 5 (fun k -> k "(@[@{<yellow>sat.cancel_until@}@ :level %d@])" lvl);
assert (lvl >= base_level st);
(* Nothing to do if we try to backtrack to a non-existent level. *)
if decision_level st <= lvl then (
Log.debugf debug (fun k -> k "Already at level <= %d" lvl)
) else (
Log.debugf info (fun k -> k "Backtracking to lvl %d" lvl);
(* We set the head of the solver and theory queue to what it was. *)
let head = ref (Vec.get st.elt_levels lvl) in
st.elt_head <- !head;
@ -408,7 +432,7 @@ module Make
(* Unsatisfiability is signaled through an exception, since it can happen
in multiple places (adding new clauses, or solving for instance). *)
let report_unsat st confl : _ =
Log.debugf info (fun k -> k "@[Unsat conflict: %a@]" Clause.debug confl);
Log.debugf 3 (fun k -> k "(@[sat.unsat_conflict@ %a@])" Clause.debug confl);
st.unsat_conflict <- Some confl;
raise Unsat
@ -433,12 +457,12 @@ module Make
and set it as the cause for the propagation of [a], that way we can
rebuild the whole resolution tree when we want to prove [a]. *)
let c' = Clause.make l (History (cl :: history)) in
Log.debugf debug
Log.debugf 5
(fun k -> k "Simplified reason: @[<v>%a@,%a@]" Clause.debug cl Clause.debug c');
Bcp c'
)
| _ ->
Log.debugf error
Log.debugf 1
(fun k ->
k "@[<v 2>Failed at reason simplification:@,%a@,%a@]"
(Vec.print ~sep:"" Atom.debug)
@ -450,23 +474,25 @@ module Make
(* Boolean propagation.
Wrapper function for adding a new propagated formula. *)
let enqueue_bool st a ~level:lvl reason : unit =
let enqueue_bool st a reason : unit =
if a.neg.is_true then (
Log.debugf error (fun k->k "Trying to enqueue a false literal: %a" Atom.debug a);
assert false
Util.errorf "(@[sat.enqueue_bool@ :false-literal %a@])" Atom.debug a
);
assert (not a.is_true && a.var.v_level < 0 &&
a.var.reason = None && lvl >= 0);
let reason =
if lvl > 0 then reason
else simpl_reason reason
in
let level = Vec.size st.trail in
Log.debugf 5
(fun k->k "(@[sat.enqueue_bool@ :lvl %d@ %a@])" level Atom.debug a);
let reason = if at_level_0 st then simpl_reason reason else reason in
(* backtrack assignment if needed. Trail is backtracked automatically. *)
assert (not a.is_true && a.var.v_level < 0 && a.var.reason = None);
on_backtrack_if_not_at_0 st
(fun () ->
a.var.v_level <- -1;
a.is_true <- false;
a.var.reason <- None);
a.is_true <- true;
a.var.v_level <- lvl;
a.var.v_level <- level;
a.var.reason <- Some reason;
Vec.push st.trail a;
Log.debugf debug
(fun k->k "Enqueue (%d): %a" (Vec.size st.trail) Atom.debug a);
()
(* swap elements of array *)
@ -546,14 +572,14 @@ module Make
let conflict_level =
Array.fold_left (fun acc p -> max acc p.var.v_level) 0 c_clause.atoms
in
Log.debugf debug
Log.debugf 5
(fun k -> k "Analyzing conflict (%d): %a" conflict_level Clause.debug c_clause);
while !cond do
begin match !c with
| None ->
Log.debug debug " skipping resolution for semantic propagation"
Log.debug 5 " skipping resolution for semantic propagation"
| Some clause ->
Log.debugf debug (fun k->k" Resolving clause: %a" Clause.debug clause);
Log.debugf 5 (fun k->k" Resolving clause: %a" Clause.debug clause);
begin match clause.cpremise with
| History _ -> clause_bump_activity st clause
| Hyp | Local | Lemma _ -> ()
@ -589,7 +615,7 @@ module Make
(* look for the next node to expand *)
while
let a = Vec.get st.trail !tr_ind in
Log.debugf debug (fun k -> k " looking at: %a" St.Atom.debug a);
Log.debugf 5 (fun k -> k " looking at: %a" St.Atom.debug a);
(not (Var.seen_both a.var)) || (a.var.v_level < conflict_level)
do
decr tr_ind;
@ -622,11 +648,6 @@ module Make
let[@inline] analyze st c_clause : conflict_res =
analyze_sat st c_clause
(*
if St.mcsat
then analyze_mcsat c_clause
else analyze_sat c_clause
*)
(* add the learnt clause to the clause database, propagate, etc. *)
let record_learnt_clause st (confl:clause) (cr:conflict_res): unit =
@ -640,15 +661,15 @@ module Make
let uclause = Clause.make cr.cr_learnt (History cr.cr_history) in
Vec.push st.clauses_learnt uclause;
(* no need to attach [uclause], it is true at level 0 *)
enqueue_bool st fuip ~level:0 (Bcp uclause)
enqueue_bool st fuip (Bcp uclause)
)
| fuip :: _ ->
let lclause = Clause.make cr.cr_learnt (History cr.cr_history) in
Vec.push st.clauses_learnt lclause;
attach_clause lclause;
attach_clause st lclause;
clause_bump_activity st lclause;
if cr.cr_is_uip then (
enqueue_bool st fuip ~level:cr.cr_backtrack_lvl (Bcp lclause)
enqueue_bool st fuip (Bcp lclause)
) else (
st.next_decision <- Some fuip.neg
)
@ -662,7 +683,7 @@ module Make
- report unsat if conflict at level 0
*)
let add_boolean_conflict st (confl:clause): unit =
Log.debugf info (fun k -> k "Boolean conflict: %a" Clause.debug confl);
Log.debugf 3 (fun k -> k "(@[@{<Yellow>boolean conflict@}@ %a@])" Clause.debug confl);
st.next_decision <- None;
assert (decision_level st >= base_level st);
if decision_level st = base_level st ||
@ -675,23 +696,80 @@ module Make
record_learnt_clause st confl cr
(* Get the correct vector to insert a clause in. *)
let clause_vector st c =
let rec clause_vector st c =
match c.cpremise with
| Hyp -> st.clauses_hyps
| Local -> st.clauses_temp
| History [c'] -> clause_vector st c' (* simplified version of [d] *)
| Lemma _ | History _ -> st.clauses_learnt
(* TODO: rewrite this, accounting for backtracking semantics.
- if clause is already true, probably just do nothing
- if clause is unit, propagate lit immediately (with clause as justification)
but do not add clause
TODO: also, remove buffering of clauses to add
*)
(* add permanent clause, to be kept down to level 0.
precond: non empty clause
@param atoms list of atoms of [c]
@param c the clause itself *)
let add_clause_permanent st (atoms:atom list) (clause:clause) : unit =
Log.debugf 5 (fun k->k "(@[sat.add_clause_permanent@ %a@])" Clause.debug clause);
let vec_for_clause = clause_vector st clause in
match atoms with
| [] -> assert false
| [a] ->
if a.neg.is_true then (
(* Since we cannot propagate the atom [a], in order to not lose
the information that [a] must be true, we add clause to the list
of clauses to add, so that it will be e-examined later. *)
Log.debug 5 "Unit clause, report failure";
report_unsat st clause
) else if a.is_true then (
(* If the atom is already true, then it should be because of a local hyp.
However it means we can't propagate it at level 0. In order to not lose
that information, we store the clause in a stack of clauses that we will
add to the solver at the next pop. *)
Log.debug 5 "Unit clause, adding to root clauses";
assert (0 < a.var.v_level && a.var.v_level <= base_level st);
on_backtrack_if_not_at_0 st (fun () -> Vec.pop vec_for_clause);
Vec.push vec_for_clause clause;
) else (
Log.debugf 5
(fun k->k "(@[sat.add_clause.unit-clause@ :propagating %a@])" Atom.debug a);
on_backtrack_if_not_at_0 st (fun () -> Vec.pop vec_for_clause);
Vec.push vec_for_clause clause;
enqueue_bool st a (Bcp clause)
)
| a::b::_ ->
Vec.push vec_for_clause clause;
if a.neg.is_true then (
(* Atoms need to be sorted in decreasing order of decision level,
or we might watch the wrong literals. *)
put_high_level_atoms_first clause.atoms;
attach_clause st clause;
add_boolean_conflict st clause
) else (
attach_clause st clause;
if b.neg.is_true && not a.is_true && not a.neg.is_true then (
let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in
cancel_until st (max lvl (base_level st));
enqueue_bool st a (Bcp clause)
)
)
(* Add a new clause, simplifying, propagating, and backtracking if
the clause is false in the current trail *)
let add_clause st (init:clause) : unit =
Log.debugf debug (fun k -> k "Adding clause: @[<hov>%a@]" Clause.debug init);
(* Insertion of new lits is done before simplification. Indeed, else a lit in a
trivial clause could end up being not decided on, which is a bug. *)
Array.iter (fun x -> insert_var_order st x.var) init.atoms;
let vec = clause_vector st init in
try
let c = eliminate_duplicates init in
Log.debugf debug (fun k -> k "Doublons eliminated: %a" Clause.debug c);
let add_clause ~permanent st (init:clause) : unit =
Log.debugf 5
(fun k -> k "(@[@{<Yellow>sat.add_clause@}@ :permanent %B@ %a@])"
permanent Clause.debug init);
let vec_for_clause = clause_vector st init in
match eliminate_duplicates init with
| c ->
Log.debugf 5 (fun k -> k "(@[sat.add_clause.after_eliminate_dups@ %a@])" Clause.debug c);
let atoms, history = partition c.atoms in
let clause =
if history = []
@ -699,87 +777,83 @@ module Make
(* update order of atoms *)
List.iteri (fun i a -> c.atoms.(i) <- a) atoms;
c
) else (
Clause.make atoms (History (c :: history))
)
else Clause.make atoms (History (c :: history))
in
Log.debugf info (fun k->k "New clause: @[<hov>%a@]" Clause.debug clause);
Log.debugf 3 (fun k->k "(@[sat.add_clause.new_clause@ %a@])" Clause.debug clause);
match atoms with
| [] ->
(* Report_unsat will raise, and the current clause will be lost if we do not
store it somewhere. Since the proof search will end, any of env.clauses_to_add
or env.clauses_root is adequate. *)
Stack.push clause st.clauses_root;
(* report Unsat immediately *)
report_unsat st clause
| [a] ->
cancel_until st (base_level st);
| _::_ when permanent ->
(* add clause, down to level 0 *)
redo_down_to_level_0 st
(fun () -> add_clause_permanent st atoms clause)
| [a] ->
if a.neg.is_true then (
(* Since we cannot propagate the atom [a], in order to not lose
the information that [a] must be true, we add clause to the list
of clauses to add, so that it will be e-examined later. *)
Log.debug debug "Unit clause, adding to clauses to add";
Stack.push clause st.clauses_to_add;
Log.debug 5 "(sat.add_clause: false unit clause, report unsat)";
report_unsat st clause
) else if a.is_true then (
(* If the atom is already true, then it should be because of a local hyp.
However it means we can't propagate it at level 0. In order to not lose
that information, we store the clause in a stack of clauses that we will
add to the solver at the next pop. *)
Log.debug debug "Unit clause, adding to root clauses";
Log.debug 5 "(sat.add_clause: true unit clause, ignore)";
assert (0 < a.var.v_level && a.var.v_level <= base_level st);
Stack.push clause st.clauses_root;
()
) else (
Log.debugf debug (fun k->k "Unit clause, propagating: %a" Atom.debug a);
Vec.push vec clause;
enqueue_bool st a ~level:0 (Bcp clause)
Log.debugf 5
(fun k->k "(@[sat.add_clause.unit-clause@ :propagating %a@])" Atom.debug a);
(* propagate but without adding the clause. May need to
re-propagate after backtracking *)
redo_down_to_level_0 st
(fun () -> enqueue_bool st a (Bcp clause))
)
| a::b::_ ->
Vec.push vec clause;
on_backtrack_if_not_at_0 st (fun () -> Vec.pop vec_for_clause);
Vec.push vec_for_clause clause;
if a.neg.is_true then (
(* Atoms need to be sorted in decreasing order of decision level,
or we might watch the wrong literals. *)
put_high_level_atoms_first clause.atoms;
attach_clause clause;
attach_clause st clause;
add_boolean_conflict st clause
) else (
attach_clause clause;
attach_clause st clause;
if b.neg.is_true && not a.is_true && not a.neg.is_true then (
let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in
cancel_until st (max lvl (base_level st));
enqueue_bool st a ~level:lvl (Bcp clause)
enqueue_bool st a (Bcp clause)
)
)
with Trivial ->
Vec.push vec init;
Log.debugf info (fun k->k "Trivial clause ignored : @[%a@]" Clause.debug init)
let flush_clauses st =
if not (Stack.is_empty st.clauses_to_add) then (
let nbv = St.nb_elt st.st in
H.grow_to_at_least st.order nbv;
while not (Stack.is_empty st.clauses_to_add) do
let c = Stack.pop st.clauses_to_add in
add_clause st c
done
)
| exception Trivial ->
Vec.push vec_for_clause init;
Log.debugf 3 (fun k->k "(@[sat.add_clause.ignore-trivial@ %a@])" Clause.debug init)
type watch_res =
| Watch_kept
| Watch_removed
exception Exn_remove_watch
(* boolean propagation.
[a] is the false atom, one of [c]'s two watch literals
[i] is the index of [c] in [a.watched]
@return whether [c] was removed from [a.watched]
*)
let propagate_in_clause st (a:atom) (c:clause) (i:int): watch_res =
let propagate_in_clause st (a:atom) (c:clause) : watch_res =
let atoms = c.atoms in
let first = atoms.(0) in
if first == a.neg then (
(* false lit must be at index 1 *)
atoms.(0) <- atoms.(1);
atoms.(1) <- first
) else assert (a.neg == atoms.(1));
) else (
assert (a.neg == atoms.(1));
);
let first = atoms.(0) in
if first.is_true
then Watch_kept (* true clause, keep it in watched *)
@ -789,13 +863,11 @@ module Make
let ak = atoms.(k) in
if not (ak.neg.is_true) then (
(* watch lit found: update and exit *)
atoms.(1) <- ak;
atoms.(k) <- a.neg;
Array.unsafe_set atoms 1 ak;
Array.unsafe_set atoms k a.neg;
(* remove [c] from [a.watched], add it to [ak.neg.watched] *)
Vec.push ak.neg.watched c;
assert (Vec.get a.watched i == c);
Vec.fast_remove a.watched i;
raise Exit
raise Exn_remove_watch
)
done;
(* no watch lit found *)
@ -804,10 +876,10 @@ module Make
st.elt_head <- Vec.size st.trail;
raise (Conflict c)
) else (
enqueue_bool st first ~level:(decision_level st) (Bcp c)
enqueue_bool st first (Bcp c)
);
Watch_kept
with Exit ->
with Exn_remove_watch ->
Watch_removed
)
@ -815,31 +887,23 @@ module Make
clause watching [a] to see if the clause is false, unit, or has
other possible watches
@param res the optional conflict clause that the propagation might trigger *)
let propagate_atom st a (res:clause option ref) : unit =
let propagate_atom st a : unit =
let watched = a.watched in
begin
try
let rec aux i =
if i >= Vec.size watched then ()
else (
let c = Vec.get watched i in
assert c.attached;
let j = match propagate_in_clause st a c i with
| Watch_kept -> i+1
| Watch_removed -> i (* clause at this index changed *)
in
aux j
)
in
aux 0
with Conflict c ->
assert (!res = None);
res := Some c
end;
()
(* Propagation (boolean and theory) *)
let[@inline] create_atom st f = mk_atom st f
let i = ref 0 in
while !i < Vec.size watched do
let c = Vec.get watched !i in
assert (Clause.attached c);
if not (Clause.attached c) then (
Vec.fast_remove watched !i (* remove *)
) else (
match propagate_in_clause st a c with
| Watch_kept -> incr i
| Watch_removed ->
Vec.fast_remove watched !i;
(* remove clause [c] from watches, then look again at [!i]
since it's now another clause *)
)
done
let slice_iter st (f:_ -> unit) : unit =
let n = Vec.size st.trail in
@ -848,14 +912,15 @@ module Make
f a.lit
done
let act_push st (l:formula list) (lemma:proof): unit =
let atoms = List.rev_map (create_atom st) l in
let act_push_ ~permanent st (l:formula list) (lemma:proof): unit =
let atoms = List.rev_map (mk_atom st) l in
let c = Clause.make atoms (Lemma lemma) in
Log.debugf info (fun k->k "(@[sat.push_clause@ %a@])" Clause.debug c);
Stack.push c st.clauses_to_add
Log.debugf 3 (fun k->k "(@[sat.push_clause@ %a@])" Clause.debug c);
add_clause ~permanent st c
(* TODO: ensure that the clause is removed upon backtracking *)
let act_push_local = act_push
let act_push_local = act_push_ ~permanent:false
let act_push = act_push_ ~permanent:true
(* TODO: ensure that the clause is removed upon backtracking *)
let act_propagate (st:t) f causes proof : unit =
@ -863,24 +928,19 @@ module Make
if List.for_all (fun a -> a.is_true) l then (
let p = mk_atom st f in
let c = Clause.make (p :: List.map Atom.neg l) (Lemma proof) in
if p.is_true then ()
else if p.neg.is_true then (
Stack.push c st.clauses_to_add
if p.is_true then (
) else if p.neg.is_true then (
add_clause ~permanent:false st c
) else (
H.grow_to_at_least st.order (St.nb_elt st.st);
insert_var_order st p.var;
enqueue_bool st p ~level:(decision_level st) (Bcp c)
enqueue_bool st p (Bcp c)
)
) else (
invalid_arg "the solver.Internal.slice_propagate"
Util.errorf "(@[sat.act_propagate.invalid_guard@ :guard %a@ \
:error all lits are not true@])"
(Util.pp_list Atom.debug) l
)
let slice_on_backtrack st f : unit =
Vec.push st.backtrack f
let slice_at_level_0 st () : bool =
Vec.is_empty st.backtrack_levels
let current_slice st = Theory_intf.Slice_acts {
slice_iter = slice_iter st;
}
@ -890,11 +950,13 @@ module Make
slice_iter = slice_iter st;
}
let act_at_level_0 st () = at_level_0 st
let actions st = Theory_intf.Actions {
push = act_push st;
push_local = act_push_local st;
on_backtrack = slice_on_backtrack st;
at_level_0 = slice_at_level_0 st;
on_backtrack = on_backtrack st;
at_level_0 = act_at_level_0 st;
propagate = act_propagate st;
}
@ -912,6 +974,10 @@ module Make
) in
Lazy.force solver
let[@inline] propagation_fixpoint (st:t) : bool =
st.elt_head = Vec.size st.trail &&
st.th_head = st.elt_head
(* some boolean literals were decided/propagated within the solver. Now we
need to inform the theory of those assumptions, so it can do its job.
@return the conflict clause, if the theory detects unsatisfiability *)
@ -928,8 +994,7 @@ module Make
propagate st
| Theory_intf.Unsat (l, p) ->
(* conflict *)
let l = List.rev_map (create_atom st) l in
H.grow_to_at_least st.order (St.nb_elt st.st);
let l = List.rev_map (mk_atom st) l in
List.iter (fun a -> insert_var_order st a.var) l;
let c = St.Clause.make l (Lemma p) in
Some c
@ -938,8 +1003,6 @@ module Make
(* fixpoint between boolean propagation and theory propagation
@return a conflict clause, if any *)
and propagate (st:t) : clause option =
(* First, treat the stack of lemmas added by the theory, if any *)
flush_clauses st;
(* Now, check that the situation is sane *)
assert (st.elt_head <= Vec.size st.trail);
if st.elt_head = Vec.size st.trail then
@ -950,7 +1013,7 @@ module Make
while st.elt_head < Vec.size st.trail do
let a = Vec.get st.trail st.elt_head in
incr num_props;
propagate_atom st a res;
propagate_atom st a;
st.elt_head <- st.elt_head + 1;
done;
match !res with
@ -971,8 +1034,7 @@ module Make
pick_branch_lit st
) else (
new_decision_level st;
let current_level = decision_level st in
enqueue_bool st atom ~level:current_level Decision
enqueue_bool st atom Decision
)
and pick_branch_lit st =
@ -994,14 +1056,7 @@ module Make
match propagate st with
| Some confl -> (* Conflict *)
incr conflictC;
(* When the theory has raised Unsat, add_boolean_conflict
might 'forget' the initial conflict clause, and only add the
analyzed backtrack clause. So in those case, we use add_clause
to make sure the initial conflict clause is also added. *)
if confl.attached then
add_boolean_conflict st confl
else
add_clause st confl
add_boolean_conflict st confl
| None -> (* No Conflict *)
assert (st.elt_head = Vec.size st.trail);
@ -1009,7 +1064,7 @@ module Make
if Vec.size st.trail = St.nb_elt st.st
then raise Sat;
if n_of_conflicts > 0 && !conflictC >= n_of_conflicts then (
Log.debug info "Restarting...";
Log.debug 3 "Restarting...";
cancel_until st (base_level st);
raise Restart
);
@ -1043,11 +1098,12 @@ module Make
let solve (st:t) : unit =
Log.debug 5 "solve";
if is_unsat st then raise Unsat;
let n_of_conflicts = ref (to_float st.restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses st)) *. st.learntsize_factor) in
let n_of_conflicts = ref (to_float restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses st)) *. learntsize_factor) in
try
while true do
begin try
begin
try
search st (to_int !n_of_conflicts) (to_int !n_of_learnts)
with
| Restart ->
@ -1056,42 +1112,59 @@ module Make
| Sat ->
assert (st.elt_head = Vec.size st.trail);
begin match Th.if_sat (theory st) (full_slice st) with
| Theory_intf.Sat -> ()
| Theory_intf.Sat ->
(* if no propagation is to be done, exit;
otherwise continue loop *)
if propagation_fixpoint st then (
raise Sat
)
| Theory_intf.Unsat (l, p) ->
let atoms = List.rev_map (create_atom st) l in
let atoms = List.rev_map (mk_atom st) l in
let c = Clause.make atoms (Lemma p) in
Log.debugf info (fun k -> k "Theory conflict clause: %a" Clause.debug c);
Stack.push c st.clauses_to_add
Log.debugf 3
(fun k -> k "(@[@{<Yellow>sat.theory_conflict_clause@}@ %a@])" Clause.debug c);
(* must backtrack *)
(* TODO: assert that this is indeed a conflict,
then call [add_boolean_conflict st c] *)
add_clause ~permanent:false st c
end;
if Stack.is_empty st.clauses_to_add then raise Sat
end
done
with Sat -> ()
let assume st ?tag cnf =
List.iter
(fun l ->
let atoms = List.rev_map (mk_atom st) l in
let c = Clause.make ?tag atoms Hyp in
Log.debugf debug (fun k -> k "Assuming clause: @[<hov 2>%a@]" Clause.debug c);
Stack.push c st.clauses_to_add)
let assume ~permanent st ?tag cnf =
let cs = List.rev_map
(fun atoms ->
let atoms = List.rev_map (mk_atom st) atoms in
Clause.make ?tag atoms Hyp)
cnf
in
let add_clauses () =
List.iter
(fun c ->
Log.debugf 5 (fun k -> k "(@[sat.assume@ %a@])" Clause.debug c);
add_clause ~permanent:false st c)
cs
in
if permanent
then redo_down_to_level_0 st add_clauses
else add_clauses()
(* create a factice decision level for local assumptions *)
let push st : unit =
Log.debug debug "Pushing a new user level";
Log.debug 5 "Pushing a new user level";
cancel_until st (base_level st);
Log.debugf debug
Log.debugf 5
(fun k -> k "@[<v>Status:@,@[<hov 2>trail: %d - %d@,%a@]"
st.elt_head st.th_head (Vec.print ~sep:"" Atom.debug) st.trail);
begin match propagate st with
| Some confl ->
report_unsat st confl
| None ->
Log.debugf debug
Log.debugf 5
(fun k -> k "@[<v>Current trail:@,@[<hov>%a@]@]"
(Vec.print ~sep:"" Atom.debug) st.trail);
Log.debug info "Creating new user level";
Log.debug 3 "Creating new user level";
new_decision_level st;
Vec.push st.user_levels (Vec.size st.clauses_temp);
assert (decision_level st = base_level st)
@ -1099,17 +1172,14 @@ module Make
(* pop the last factice decision level *)
let pop st : unit =
if base_level st = 0 then
Log.debug warn "Cannot pop (already at level 0)"
else (
Log.debug info "Popping user level";
if base_level st = 0 then (
Log.debug 2 "(sat.error: cannot pop (already at level 0))"
) else (
Log.debug 3 "(sat.pop-user-level)";
assert (base_level st > 0);
st.unsat_conflict <- None;
let n = Vec.last st.user_levels in
Vec.pop st.user_levels; (* before the [cancel_until]! *)
(* Add the root clauses to the clauses to add *)
Stack.iter (fun c -> Stack.push c st.clauses_to_add) st.clauses_root;
Stack.clear st.clauses_root;
(* remove from env.clauses_temp the now invalid caluses. *)
Vec.shrink st.clauses_temp n;
assert (Vec.for_all (fun c -> Array.length c.atoms = 1) st.clauses_temp);
@ -1118,36 +1188,32 @@ module Make
)
(* Add local hyps to the current decision level *)
let local (st:t) (l:_ list) : unit =
let aux lit =
let local (st:t) (assumptions:formula list) : unit =
let add_lit lit : unit =
let a = mk_atom st lit in
Log.debugf info (fun k-> k "Local assumption: @[%a@]" Atom.debug a);
Log.debugf 3 (fun k-> k "(@[sat.local_assumption@ %a@])" Atom.debug a);
assert (decision_level st = base_level st);
if not a.is_true then (
let c = Clause.make [a] Local in
Log.debugf debug (fun k -> k "Temp clause: @[%a@]" Clause.debug c);
Log.debugf 5 (fun k -> k "(@[sat.add_temp_clause@ %a@])" Clause.debug c);
Vec.push st.clauses_temp c;
if a.neg.is_true then (
(* conflict between assumptions: UNSAT *)
report_unsat st c;
) else (
(* Grow the heap, because when the lit is backtracked,
it will be added to the heap. *)
H.grow_to_at_least st.order (St.nb_elt st.st);
(* make a decision, propagate *)
let level = decision_level st in
enqueue_bool st a ~level (Bcp c);
enqueue_bool st a (Bcp c);
)
)
in
assert (base_level st > 0);
match st.unsat_conflict with
| None ->
Log.debug info "Adding local assumption";
Log.debug 3 "(sat.adding_local_assumptions)";
cancel_until st (base_level st);
List.iter aux l
List.iter add_lit assumptions
| Some _ ->
Log.debug warn "Cannot add local assumption (already unsat)"
Log.debug 2 "(sat.local_assumptions.error: already unsat)"
(* Check satisfiability *)
let check_clause c =
@ -1157,7 +1223,7 @@ module Make
else raise UndecidedLit) c.atoms in
let res = Array.exists (fun x -> x) tmp in
if not res then (
Log.debugf debug
Log.debugf 5
(fun k -> k "Clause not satisfied: @[<hov>%a@]" Clause.debug c);
false
) else
@ -1174,8 +1240,6 @@ module Make
false
let check st : bool =
Stack.is_empty st.clauses_to_add &&
check_stack st.clauses_root &&
check_vec st.clauses_hyps &&
check_vec st.clauses_learnt &&
check_vec st.clauses_temp

View file

@ -244,21 +244,21 @@ module Make(St : Solver_types.S) = struct
let rec aux res acc = function
| [] -> res, acc
| c :: r ->
if not c.St.visited then (
c.St.visited <- true;
if not (Clause.visited c) then (
Clause.set_visited c true;
match c.St.cpremise with
| St.Hyp | St.Local | St.Lemma _ -> aux (c :: res) acc r
| St.History h ->
let l = List.fold_left (fun acc c ->
if not c.St.visited then c :: acc else acc) r h in
if not (Clause.visited c) then c :: acc else acc) r h in
aux res (c :: acc) l
) else (
aux res acc r
)
in
let res, tmp = aux [] [] [proof] in
List.iter (fun c -> c.St.visited <- false) res;
List.iter (fun c -> c.St.visited <- false) tmp;
List.iter (fun c -> Clause.set_visited c false) res;
List.iter (fun c -> Clause.set_visited c false) tmp;
res
module Tbl = Clause.Tbl

View file

@ -81,13 +81,13 @@ module Make
let theory = S.theory
(* Wrappers around internal functions*)
let[@inline] assume st ?tag cls : unit =
let[@inline] assume ?(permanent=true) st ?tag cls : unit =
cleanup_ st;
S.assume st ?tag cls
S.assume ~permanent st ?tag cls
let[@inline] add_clause st c : unit =
let[@inline] add_clause ~permanent st c : unit =
cleanup_ st;
S.assume st [c]
S.add_clause ~permanent st c
let solve (st:t) ?(assumptions=[]) () =
cleanup_ st;
@ -118,9 +118,9 @@ module Make
let get_tag cl = St.(cl.tag)
let[@inline] new_atom st a =
let[@inline] new_atom ~permanent st a =
cleanup_ st;
S.new_atom st a
S.new_atom ~permanent st a
let actions = S.actions

View file

@ -83,13 +83,14 @@ module type S = sig
val theory : t -> theory
val assume : t -> ?tag:int -> atom list list -> unit
val assume : ?permanent:bool -> t -> ?tag:int -> atom list list -> unit
(** Add the list of clauses to the current set of assumptions.
Modifies the sat solver state in place. *)
Modifies the sat solver state in place.
@param permanent if true, kept after backtracking (default true) *)
(* TODO: provide a local, backtrackable version *)
val add_clause : t -> atom list -> unit
(** Lower level addition of clauses *)
val add_clause : permanent:bool -> t -> clause -> unit
(** Lower level addition of clauses. See {!Clause} to create clauses.
@param permanent if true, kept after backtracking *)
val solve : t -> ?assumptions:atom list -> unit -> res
(** Try and solves the current set of clauses.
@ -97,10 +98,11 @@ module type S = sig
The assumptions are just used for this call to [solve], they are
not saved in the solver's state. *)
val new_atom : t -> atom -> unit
val new_atom : permanent:bool -> t -> atom -> unit
(** Add a new atom (i.e propositional formula) to the solver.
This formula will be decided on at some point during solving,
wether it appears in clauses or not. *)
whether it appears in clauses or not.
@param permanent if true, kept after backtracking *)
val unsat_core : Proof.proof -> clause list
(** Returns the unsat core of a given proof, ie a subset of all the added

View file

@ -6,6 +6,11 @@ let v_field_seen_neg = Var_fields.mk_field()
let v_field_seen_pos = Var_fields.mk_field()
let () = Var_fields.freeze()
module C_fields = Solver_types_intf.C_fields
let c_field_attached = C_fields.mk_field () (* watching literals? *)
let c_field_visited = C_fields.mk_field () (* used during propagation and proof generation. *)
(* Solver types for McSat Solving *)
(* ************************************************************************ *)
@ -14,12 +19,6 @@ module Make (E : Theory_intf.S) = struct
type formula = E.Form.t
type proof = E.proof
type seen =
| Nope
| Both
| Positive
| Negative
type var = {
vid : int;
pa : atom;
@ -46,8 +45,7 @@ module Make (E : Theory_intf.S) = struct
atoms : atom array;
mutable cpremise : premise;
mutable activity : float;
mutable attached : bool;
mutable visited : bool;
mutable c_flags : C_fields.t
}
and reason =
@ -79,15 +77,16 @@ module Make (E : Theory_intf.S) = struct
but we have to break the cycle *)
neg = dummy_atom;
is_true = false;
aid = -102 }
aid = -102;
}
let dummy_clause =
{ name = -1;
tag = None;
atoms = [| |];
activity = -1.;
attached = false;
visited = false;
cpremise = History [] }
c_flags = C_fields.empty;
cpremise = History [];
}
let () = dummy_atom.watched <- Vec.make_empty dummy_clause
@ -145,6 +144,8 @@ module Make (E : Theory_intf.S) = struct
let[@inline] set_idx v i = v.v_idx <- i
let[@inline] set_weight v w = v.v_weight <- w
let[@inline] in_heap v = v.v_idx >= 0
let make (st:state) (t:formula) : var * Theory_intf.negated =
let lit, negated = E.Form.norm t in
try
@ -264,7 +265,7 @@ module Make (E : Theory_intf.S) = struct
Format.fprintf fmt ""
let debug out a =
Format.fprintf out "%s%d[%a][atom:@[<hov>%a@]]"
Format.fprintf out "%s%d[%a][@[%a@]]"
(sign a) (a.var.vid+1) debug_value a E.Form.print a.lit
let debug_a out vec =
@ -284,10 +285,10 @@ module Make (E : Theory_intf.S) = struct
{ name;
tag = tag;
atoms = atoms;
visited = false;
attached = false;
c_flags = C_fields.empty;
activity = 0.;
cpremise = premise}
cpremise = premise;
}
let empty = make [] (History [])
let name = name_of_clause
@ -300,11 +301,11 @@ module Make (E : Theory_intf.S) = struct
let[@inline] premise c = c.cpremise
let[@inline] set_premise c p = c.cpremise <- p
let[@inline] visited c = c.visited
let[@inline] set_visited c b = c.visited <- b
let[@inline] visited c = C_fields.get c_field_visited c.c_flags
let[@inline] set_visited c b = c.c_flags <- C_fields.set c_field_visited b c.c_flags
let[@inline] attached c = c.attached
let[@inline] set_attached c b = c.attached <- b
let[@inline] attached c = C_fields.get c_field_attached c.c_flags
let[@inline] set_attached c b = c.c_flags <- C_fields.set c_field_attached b c.c_flags
let[@inline] activity c = c.activity
let[@inline] set_activity c w = c.activity <- w

View file

@ -11,8 +11,6 @@
module type S = Solver_types_intf.S
(** Interface for the internal types. *)
module Var_fields = Solver_types_intf.Var_fields
module Make (E : Theory_intf.S):
S with type formula = E.formula
and type proof = E.proof

View file

@ -5,6 +5,7 @@
*)
module Var_fields = BitField.Make()
module C_fields = BitField.Make()
type 'a printer = Format.formatter -> 'a -> unit
@ -22,12 +23,6 @@ module type S = sig
type proof
(** The types of formulas and proofs. All of these are user-provided. *)
type seen =
| Nope
| Both
| Positive
| Negative
(* TODO: hide these types (from the outside of [Msat]);
instead, provide well defined modules [module Lit : sig type t val ]
that define their API in Msat itself (not here) *)
@ -65,8 +60,7 @@ module type S = sig
mutable cpremise : premise; (** The premise of the clause, i.e. the justification
of why the clause must be satisfied. *)
mutable activity : float; (** Clause activity, used for the heap heuristics. *)
mutable attached : bool; (** Is the clause attached, i.e. does it watch literals. *)
mutable visited : bool; (** Boolean used during propagation and proof generation. *)
mutable c_flags: C_fields.t; (** Boolean flags for the clause *)
}
(** The type of clauses. Each clause generated should be true, i.e. enforced
by the current problem (for more information, see the cpremise field). *)
@ -125,6 +119,8 @@ module type S = sig
val set_idx : t -> int -> unit
val set_weight : t -> float -> unit
val in_heap : t -> bool
val make : state -> formula -> t * Theory_intf.negated
(** Returns the variable linked with the given formula,
and whether the atom associated with the formula
@ -180,6 +176,11 @@ module type S = sig
val tag : t -> int option
val premise : t -> premise
val attached : t -> bool
val set_attached : t -> bool -> unit
val visited : t -> bool
val set_visited : t -> bool -> unit
val empty : t
(** The empty clause *)

View file

@ -10,7 +10,7 @@ let pp out c = match lits c with
| [lit] -> Lit.pp out lit
| l ->
Format.fprintf out "[@[<hv>%a@]]"
(Util.pp_list ~sep:"; " Lit.pp) l
(Util.pp_list ~sep:" " Lit.pp) l
(* canonical form: sorted list *)
let make =

View file

@ -389,7 +389,9 @@ let do_on_exit ~on_exit =
()
let assume (self:t) (c:Clause.t) : unit =
Sat_solver.add_clause (solver self) (Clause.lits c)
let sat = solver self in
let c = Sat_solver.Clause.make sat (Clause.lits c) in
Sat_solver.add_clause ~permanent:false sat c
(*
type unsat_core = Sat.clause list