mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-08 12:15:48 -05:00
wip: refactor: update theories
This commit is contained in:
parent
2978821b6e
commit
e4f20d08c7
7 changed files with 164 additions and 303 deletions
|
|
@ -35,9 +35,9 @@ module Make_dyn_tseitin(A : ARG)
|
|||
--> maybe, cache the clause inside the literal *)
|
||||
|
||||
module A = A
|
||||
module Solver = A.S.Internal
|
||||
module T = Solver.A.Term
|
||||
module Lit = Solver.A.Lit
|
||||
module SI = A.S.Solver_internal
|
||||
module T = SI.A.Term
|
||||
module Lit = SI.A.Lit
|
||||
|
||||
type term = T.t
|
||||
|
||||
|
|
@ -47,12 +47,12 @@ module Make_dyn_tseitin(A : ARG)
|
|||
expanded: unit T_tbl.t; (* set of literals already expanded *)
|
||||
}
|
||||
|
||||
let tseitin ~final (self:t) (solver:Solver.t) (lit:Lit.t) (lit_t:term) (v:term View.t) : unit =
|
||||
let tseitin ~final (self:t) (solver:SI.t) (lit:Lit.t) (lit_t:term) (v:term View.t) : unit =
|
||||
Log.debugf 5 (fun k->k "(@[th_bool.tseitin@ %a@])" Lit.pp lit);
|
||||
let expanded () = T_tbl.mem self.expanded lit_t in
|
||||
let add_axiom c =
|
||||
T_tbl.replace self.expanded lit_t ();
|
||||
Solver.add_persistent_axiom solver c
|
||||
SI.add_persistent_axiom solver c
|
||||
in
|
||||
match v with
|
||||
| B_not _ -> assert false (* normalized *)
|
||||
|
|
@ -62,13 +62,13 @@ module Make_dyn_tseitin(A : ARG)
|
|||
(* propagate [lit => subs_i] *)
|
||||
IArray.iter
|
||||
(fun sub ->
|
||||
let sublit = Solver.mk_lit solver sub in
|
||||
Solver.propagate_l solver sublit [lit])
|
||||
let sublit = SI.mk_lit solver sub in
|
||||
SI.propagate_l solver sublit [lit])
|
||||
subs
|
||||
) else if final && not @@ expanded () then (
|
||||
(* axiom [¬lit => ∨_i ¬ subs_i] *)
|
||||
let subs = IArray.to_list subs in
|
||||
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:false) subs in
|
||||
let c = Lit.neg lit :: List.map (SI.mk_lit solver ~sign:false) subs in
|
||||
add_axiom c
|
||||
)
|
||||
| B_or subs ->
|
||||
|
|
@ -76,13 +76,13 @@ module Make_dyn_tseitin(A : ARG)
|
|||
(* propagate [¬lit => ¬subs_i] *)
|
||||
IArray.iter
|
||||
(fun sub ->
|
||||
let sublit = Solver.mk_lit solver ~sign:false sub in
|
||||
Solver.add_local_axiom solver [Lit.neg lit; sublit])
|
||||
let sublit = SI.mk_lit solver ~sign:false sub in
|
||||
SI.add_local_axiom solver [Lit.neg lit; sublit])
|
||||
subs
|
||||
) else if final && not @@ expanded () then (
|
||||
(* axiom [lit => ∨_i subs_i] *)
|
||||
let subs = IArray.to_list subs in
|
||||
let c = Lit.neg lit :: List.map (Solver.mk_lit solver ~sign:true) subs in
|
||||
let c = Lit.neg lit :: List.map (SI.mk_lit solver ~sign:true) subs in
|
||||
add_axiom c
|
||||
)
|
||||
| B_imply (guard,concl) ->
|
||||
|
|
@ -90,17 +90,17 @@ module Make_dyn_tseitin(A : ARG)
|
|||
(* axiom [lit => ∨_i ¬guard_i ∨ concl] *)
|
||||
let guard = IArray.to_list guard in
|
||||
let c =
|
||||
Solver.mk_lit solver concl :: Lit.neg lit ::
|
||||
List.map (Solver.mk_lit solver ~sign:false) guard in
|
||||
SI.mk_lit solver concl :: Lit.neg lit ::
|
||||
List.map (SI.mk_lit solver ~sign:false) guard in
|
||||
add_axiom c
|
||||
) else if not @@ Lit.sign lit then (
|
||||
(* propagate [¬lit => ¬concl] *)
|
||||
Solver.propagate_l solver (Solver.mk_lit solver ~sign:false concl) [lit];
|
||||
SI.propagate_l solver (SI.mk_lit solver ~sign:false concl) [lit];
|
||||
(* propagate [¬lit => ∧_i guard_i] *)
|
||||
IArray.iter
|
||||
(fun sub ->
|
||||
let sublit = Solver.mk_lit solver ~sign:true sub in
|
||||
Solver.propagate_l solver sublit [lit])
|
||||
let sublit = SI.mk_lit solver ~sign:true sub in
|
||||
SI.propagate_l solver sublit [lit])
|
||||
guard
|
||||
)
|
||||
|
||||
|
|
@ -118,10 +118,10 @@ module Make_dyn_tseitin(A : ARG)
|
|||
let final_check (self:t) acts (lits:Lit.t Iter.t) =
|
||||
check_ ~final:true self acts lits
|
||||
|
||||
let create_and_setup (solver:Solver.t) : t =
|
||||
let create_and_setup (solver:SI.t) : t =
|
||||
let self = {expanded=T_tbl.create 24} in
|
||||
Solver.on_final_check solver (final_check self);
|
||||
Solver.on_partial_check solver (partial_check self);
|
||||
SI.on_final_check solver (final_check self);
|
||||
SI.on_partial_check solver (partial_check self);
|
||||
self
|
||||
|
||||
let theory =
|
||||
|
|
|
|||
|
|
@ -19,11 +19,11 @@ end
|
|||
|
||||
module Make(A : ARG) : S with module A = A = struct
|
||||
module A = A
|
||||
module Solver = A.S.Internal
|
||||
module SI = A.S.Solver_internal
|
||||
module T = A.S.A.Term
|
||||
module N = Solver.N
|
||||
module N = SI.N
|
||||
module Fun = A.S.A.Fun
|
||||
module Expl = Solver.Expl
|
||||
module Expl = SI.Expl
|
||||
|
||||
type data = {
|
||||
t: T.t;
|
||||
|
|
@ -39,10 +39,10 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
end
|
||||
|
||||
type t = {
|
||||
k: data Solver.Key.t;
|
||||
k: data SI.Key.t;
|
||||
}
|
||||
|
||||
let on_merge (solver:Solver.t) n1 tc1 n2 tc2 e_n1_n2 : unit =
|
||||
let on_merge (solver:SI.t) n1 tc1 n2 tc2 e_n1_n2 : unit =
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[th-cstor.on_merge@ @[:c1 %a@ (term %a)@]@ @[:c2 %a@ (term %a)@]@])"
|
||||
N.pp n1 T.pp tc1.t N.pp n2 T.pp tc2.t);
|
||||
|
|
@ -54,11 +54,11 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
(* same function: injectivity *)
|
||||
assert (List.length l1 = List.length l2);
|
||||
List.iter2
|
||||
(fun u1 u2 -> Solver.cc_merge_t solver u1 u2 expl)
|
||||
(fun u1 u2 -> SI.cc_merge_t solver u1 u2 expl)
|
||||
l1 l2
|
||||
) else (
|
||||
(* different function: disjointness *)
|
||||
Solver.raise_conflict solver expl
|
||||
SI.raise_conflict solver expl
|
||||
)
|
||||
| _ -> assert false
|
||||
|
||||
|
|
@ -68,10 +68,10 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
| T_cstor _ -> Some {t;n}
|
||||
| _ -> None
|
||||
|
||||
let create_and_setup (solver:Solver.t) : t =
|
||||
let k = Solver.Key.create solver ~on_merge (module Data) in
|
||||
Solver.on_cc_merge solver ~k on_merge;
|
||||
Solver.on_cc_new_term solver ~k on_new_term;
|
||||
let create_and_setup (solver:SI.t) : t =
|
||||
let k = SI.Key.create solver (module Data) in
|
||||
SI.on_cc_merge solver ~k on_merge;
|
||||
SI.on_cc_new_term solver ~k on_new_term;
|
||||
{k}
|
||||
|
||||
let theory = A.S.mk_theory ~name ~create_and_setup ()
|
||||
|
|
|
|||
|
|
@ -1,68 +1,46 @@
|
|||
|
||||
module type ARG = sig
|
||||
include Sidekick_core.TERM_LIT
|
||||
|
||||
module Arg_distinct : sig
|
||||
val as_distinct : Term.t -> Term.t Iter.t option
|
||||
val mk_eq : Term.state -> Term.t -> Term.t -> Term.t
|
||||
end
|
||||
module S : Sidekick_core.SOLVER
|
||||
val as_distinct : S.A.Term.t -> S.A.Term.t Iter.t option
|
||||
val mk_eq : S.A.Term.state -> S.A.Term.t -> S.A.Term.t -> S.A.Term.t
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
type term
|
||||
type term_state
|
||||
type lit
|
||||
|
||||
module Data : sig
|
||||
type t
|
||||
val empty : t
|
||||
val merge : t -> t -> t
|
||||
end
|
||||
|
||||
val th : Sidekick_smt.Theory.t
|
||||
module A : ARG
|
||||
val theory : A.S.theory
|
||||
end
|
||||
|
||||
module Make(A : ARG with type Lit.t = Sidekick_smt.Lit.t
|
||||
and type T.t = Sidekick_smt.Term.t
|
||||
and type T.state = Sidekick_smt.Term.state) = struct
|
||||
module T = A.T
|
||||
module Lit = A.Lit
|
||||
module Make(A : ARG) : S with module A = A = struct
|
||||
module A = A
|
||||
module SI = A.S.Solver_internal
|
||||
module T = A.S.A.Term
|
||||
module Lit = A.S.A.Lit
|
||||
module IM = CCMap.Make(Lit)
|
||||
module N = SI.N
|
||||
module Expl = SI.Expl
|
||||
|
||||
type term = T.t
|
||||
type term_state = T.state
|
||||
type lit = A.Lit.t
|
||||
type data = term IM.t (* "distinct" lit -> term appearing under it*)
|
||||
|
||||
let pp_data out m =
|
||||
Fmt.fprintf out
|
||||
"{@[%a@]}" Fmt.(seq ~sep:(return ",@ ") @@ pair Lit.pp T.pp) (IM.to_seq m)
|
||||
module Data = struct
|
||||
type t = T.t IM.t (* "distinct" lit -> term appearing under it*)
|
||||
|
||||
let key : (term,lit,data) Sidekick_cc.Key.t =
|
||||
let merge m1 m2 =
|
||||
IM.merge_safe m1 m2
|
||||
~f:(fun _ pair -> match pair with
|
||||
| `Left x | `Right x -> Some x
|
||||
| `Both (x,_) -> Some x)
|
||||
and eq = IM.equal T.equal in
|
||||
Sidekick_cc.Key.create
|
||||
~pp:pp_data
|
||||
~name:"distinct"
|
||||
~merge ~eq ()
|
||||
|
||||
(* micro theory *)
|
||||
module Micro(CC : Sidekick_cc.Congruence_closure.S
|
||||
with type term = T.t
|
||||
and type lit = Lit.t
|
||||
and module Key = Sidekick_cc.Key) = struct
|
||||
exception E_exit
|
||||
let pp out m =
|
||||
Fmt.fprintf out
|
||||
"{@[%a@]}" Fmt.(seq ~sep:(return ",@ ") @@ pair Lit.pp T.pp) (IM.to_seq m)
|
||||
end
|
||||
|
||||
let on_merge cc n1 m1 n2 m2 expl12 =
|
||||
(* called when two classes with "distinct" sets are merged *)
|
||||
let on_merge (solver:SI.t) n1 m1 n2 m2 expl12 =
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[th_distinct.on_merge@ @[:n1 %a@ :map2 %a@]@ @[:n2 %a@ :map2 %a@]@])"
|
||||
CC.N.pp n1 pp_data m1 CC.N.pp n2 pp_data m2);
|
||||
try
|
||||
let _i =
|
||||
N.pp n1 Data.pp m1 N.pp n2 Data.pp m2);
|
||||
let _i: Data.t =
|
||||
IM.merge
|
||||
(fun lit o1 o2 ->
|
||||
match o1, o2 with
|
||||
|
|
@ -73,58 +51,43 @@ module Make(A : ARG with type Lit.t = Sidekick_smt.Lit.t
|
|||
[lit, t1=n1, t2=n2, expl-merge(n1,n2) ==> false]
|
||||
*)
|
||||
assert (not @@ T.equal t1 t2);
|
||||
let expl = CC.Expl.mk_list
|
||||
let expl = Expl.mk_list
|
||||
[expl12;
|
||||
CC.Expl.mk_lit lit;
|
||||
CC.Expl.mk_merge n1 (CC.Theory.add_term cc t1);
|
||||
CC.Expl.mk_merge n2 (CC.Theory.add_term cc t2);
|
||||
Expl.mk_lit lit;
|
||||
Expl.mk_merge n1 (SI.cc_add_term solver t1);
|
||||
Expl.mk_merge n2 (SI.cc_add_term solver t2);
|
||||
] in
|
||||
CC.Theory.raise_conflict cc expl;
|
||||
raise_notrace E_exit
|
||||
SI.raise_conflict solver expl
|
||||
| _ -> None)
|
||||
m1 m2
|
||||
in
|
||||
()
|
||||
with E_exit -> ()
|
||||
|
||||
let on_new_term _ _ _ = None
|
||||
|
||||
let th =
|
||||
CC.Theory.make ~key ~on_merge ~on_new_term ()
|
||||
end
|
||||
in ()
|
||||
|
||||
module T_tbl = CCHashtbl.Make(T)
|
||||
type st = {
|
||||
tst: T.state;
|
||||
type t = {
|
||||
k: Data.t SI.Key.t;
|
||||
expanded: unit T_tbl.t; (* negative "distinct" that have been case-split on *)
|
||||
}
|
||||
|
||||
let create tst : st = { expanded=T_tbl.create 12; tst; }
|
||||
|
||||
let pp_c out c = Fmt.fprintf out "(@[<hv>%a@])" (Util.pp_list Lit.pp) c
|
||||
|
||||
module CC = Sidekick_smt.CC
|
||||
|
||||
let process_lit (st:st) (acts:Theory.actions) (lit:Lit.t) (lit_t:term) (subs:term Iter.t) : unit =
|
||||
let (module A) = acts in
|
||||
(* process one new assertion *)
|
||||
let process_lit (self:t) (solver:SI.t) (lit:Lit.t) (lit_t:term) (subs:term Iter.t) : unit =
|
||||
Log.debugf 5 (fun k->k "(@[th_distinct.process@ %a@])" Lit.pp lit);
|
||||
let add_axiom c = A.add_persistent_axiom c in
|
||||
let cc = A.cc in
|
||||
let add_axiom c = SI.add_persistent_axiom solver c in
|
||||
if Lit.sign lit then (
|
||||
(* assert [distinct subs], so we update the node of each [t in subs]
|
||||
with [lit] *)
|
||||
(* FIXME: detect if some subs are already equal *)
|
||||
(* assert [distinct subs], so we update the node of each [t in subs] with [lit] *)
|
||||
subs
|
||||
(fun sub ->
|
||||
let n = CC.Theory.add_term cc sub in
|
||||
CC.Theory.add_data cc n key (IM.singleton lit sub));
|
||||
) else if not @@ T_tbl.mem st.expanded lit_t then (
|
||||
let n = SI.cc_add_term solver sub in
|
||||
SI.cc_add_data solver n ~k:self.k (IM.singleton lit sub));
|
||||
) else if not @@ T_tbl.mem self.expanded lit_t then (
|
||||
(* add clause [distinct t1…tn ∨ ∨_{i,j>i} t_i=j] *)
|
||||
T_tbl.add st.expanded lit_t ();
|
||||
T_tbl.add self.expanded lit_t ();
|
||||
let l = Iter.to_list subs in
|
||||
let c =
|
||||
Iter.diagonal_l l
|
||||
|> Iter.map (fun (t,u) -> Lit.atom st.tst @@ T.mk_eq st.tst t u)
|
||||
|> Iter.map
|
||||
(fun (t,u) -> SI.mk_lit solver @@ A.mk_eq (SI.tst solver) t u)
|
||||
|> Iter.to_rev_list
|
||||
in
|
||||
let c = Lit.neg lit :: c in
|
||||
|
|
@ -132,74 +95,21 @@ module Make(A : ARG with type Lit.t = Sidekick_smt.Lit.t
|
|||
add_axiom c
|
||||
)
|
||||
|
||||
let partial_check st (acts:Theory.actions) lits : unit =
|
||||
let partial_check st (solver: SI.t) lits : unit =
|
||||
lits
|
||||
(fun lit ->
|
||||
let t = Lit.term lit in
|
||||
match T.as_distinct t with
|
||||
match A.as_distinct t with
|
||||
| None -> ()
|
||||
| Some subs -> process_lit st acts lit t subs)
|
||||
| Some subs -> process_lit st solver lit t subs)
|
||||
|
||||
let cc_th = let module T = Micro(CC) in T.th
|
||||
let create_and_setup (solver:SI.t) : t =
|
||||
let k = SI.Key.create solver (module Data) in
|
||||
let self = { expanded=T_tbl.create 8; k; } in
|
||||
SI.on_cc_merge solver ~k on_merge;
|
||||
SI.on_final_check solver (partial_check self);
|
||||
self
|
||||
|
||||
let th =
|
||||
Sidekick_smt.Theory.make
|
||||
~name:"distinct"
|
||||
~partial_check
|
||||
~final_check:(fun _ _ _ -> ())
|
||||
~cc_th:(fun _ -> [cc_th])
|
||||
~create ()
|
||||
let theory =
|
||||
A.S.mk_theory ~name:"distinct" ~create_and_setup ()
|
||||
end
|
||||
|
||||
module Arg = struct
|
||||
open Sidekick_smt
|
||||
open Sidekick_smt.Solver_types
|
||||
|
||||
let id_distinct = ID.make "distinct"
|
||||
|
||||
let relevant _id _ _ = true
|
||||
let get_ty _ _ = Ty.prop
|
||||
let abs ~self _a = self, true
|
||||
|
||||
module T = struct
|
||||
include Term
|
||||
let mk_eq = eq
|
||||
|
||||
let as_distinct t : _ option =
|
||||
match view t with
|
||||
| App_cst ({cst_id;_}, args) when ID.equal cst_id id_distinct ->
|
||||
Some (IArray.to_seq args)
|
||||
| _ -> None
|
||||
end
|
||||
|
||||
module Lit = Sidekick_smt.Lit
|
||||
|
||||
let eval args =
|
||||
let module Value = Sidekick_smt.Value in
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[distinct.eval@ %a@])" (Fmt.seq Value.pp) (IArray.to_seq args));
|
||||
if
|
||||
Iter.diagonal (IArray.to_seq args)
|
||||
|> Iter.for_all (fun (x,y) -> not @@ Value.equal x y)
|
||||
then Value.true_
|
||||
else Value.false_
|
||||
|
||||
let c_distinct =
|
||||
{cst_id=id_distinct;
|
||||
cst_view=Cst_def {
|
||||
pp=None; abs; ty=get_ty; relevant; do_cc=true; eval; }; }
|
||||
|
||||
let distinct st a =
|
||||
if IArray.length a <= 1
|
||||
then T.true_ st
|
||||
else T.app_cst st c_distinct a
|
||||
|
||||
let distinct_l st = function
|
||||
| [] | [_] -> T.true_ st
|
||||
| xs -> distinct st (IArray.of_list xs)
|
||||
end
|
||||
|
||||
let distinct = Arg.distinct
|
||||
let distinct_l = Arg.distinct_l
|
||||
|
||||
include Make(Arg)
|
||||
|
|
|
|||
|
|
@ -5,49 +5,15 @@
|
|||
"distinct" efficiently.
|
||||
*)
|
||||
|
||||
module Term = Sidekick_smt.Term
|
||||
|
||||
module type ARG = sig
|
||||
module T : sig
|
||||
type t
|
||||
type state
|
||||
val pp : t Fmt.printer
|
||||
val equal : t -> t -> bool
|
||||
val hash : t -> int
|
||||
val as_distinct : t -> t Iter.t option
|
||||
val mk_eq : state -> t -> t -> t
|
||||
end
|
||||
module Lit : sig
|
||||
type t
|
||||
val term : t -> T.t
|
||||
val neg : t -> t
|
||||
val sign : t -> bool
|
||||
val compare : t -> t -> int
|
||||
val atom : T.state -> ?sign:bool -> T.t -> t
|
||||
val pp : t Fmt.printer
|
||||
end
|
||||
module S : Sidekick_core.SOLVER
|
||||
val as_distinct : S.A.Term.t -> S.A.Term.t Iter.t option
|
||||
val mk_eq : S.A.Term.state -> S.A.Term.t -> S.A.Term.t -> S.A.Term.t
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
type term
|
||||
type term_state
|
||||
type lit
|
||||
|
||||
type data
|
||||
val key : (term, lit, data) Sidekick_cc.Key.t
|
||||
val th : Sidekick_smt.Theory.t
|
||||
module A : ARG
|
||||
val theory : A.S.theory
|
||||
end
|
||||
|
||||
(* TODO: generalize theories *)
|
||||
module Make(A : ARG with type T.t = Sidekick_smt.Term.t
|
||||
and type T.state = Sidekick_smt.Term.state
|
||||
and type Lit.t = Sidekick_smt.Lit.t) :
|
||||
S with type term = A.T.t
|
||||
and type lit = A.Lit.t
|
||||
and type term_state = A.T.state
|
||||
|
||||
val distinct : Term.state -> Term.t IArray.t -> Term.t
|
||||
val distinct_l : Term.state -> Term.t list -> Term.t
|
||||
|
||||
(** Default instance *)
|
||||
include S with type term = Term.t and type lit = Sidekick_smt.Lit.t
|
||||
module Make(A : ARG) : S with module A = A
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
(library
|
||||
(name Sidekick_th_distinct)
|
||||
(public_name sidekick.smt.th-distinct)
|
||||
(public_name sidekick.th-distinct)
|
||||
(libraries containers sidekick.core sidekick.util)
|
||||
(flags :standard -open Sidekick_util))
|
||||
|
||||
|
|
|
|||
|
|
@ -1,79 +1,73 @@
|
|||
|
||||
(** {1 Theory for if-then-else} *)
|
||||
|
||||
type 't ite_view =
|
||||
module Ite_view = struct
|
||||
type 't t =
|
||||
| T_ite of 't * 't * 't
|
||||
| T_bool of bool
|
||||
| T_other of 't
|
||||
|
||||
|
||||
module type S = sig
|
||||
type lit
|
||||
type term
|
||||
|
||||
val th : Sidekick_smt.Theory.t
|
||||
end
|
||||
|
||||
module type ARG = sig
|
||||
module T : sig
|
||||
type t
|
||||
type state
|
||||
val pp : t Fmt.printer
|
||||
val equal : t -> t -> bool
|
||||
val view_as_ite : t -> t ite_view
|
||||
module S : Sidekick_core.SOLVER
|
||||
type term = S.A.Term.t
|
||||
|
||||
module Set : CCSet.S with type elt = t
|
||||
end
|
||||
module Lit : sig
|
||||
type t
|
||||
val term : t -> T.t
|
||||
val atom : T.state -> ?sign:bool -> T.t -> t
|
||||
val pp : t Fmt.printer
|
||||
end
|
||||
val view_as_ite : term -> term Ite_view.t
|
||||
|
||||
module T_set : CCSet.S with type elt = term
|
||||
end
|
||||
|
||||
module Make(Arg : ARG with type T.state = Sidekick_smt.Term.state and type T.t = Sidekick_smt.Term.t)
|
||||
: S with type lit = Arg.Lit.t and type term = Arg.T.t
|
||||
= struct
|
||||
module Th = Sidekick_smt.Theory
|
||||
module N = Th.CC_eq_class
|
||||
module Expl = Th.CC_expl
|
||||
module CC = Sidekick_smt.CC
|
||||
module type S = sig
|
||||
module A : ARG
|
||||
val theory : A.S.theory
|
||||
end
|
||||
|
||||
open Arg
|
||||
type lit = Lit.t
|
||||
module Make(A : ARG)
|
||||
(* : S with module A = A *)
|
||||
= struct
|
||||
module A = A
|
||||
module Solver = A.S.Solver_internal
|
||||
module N = Solver.N
|
||||
module Expl = Solver.Expl
|
||||
module T = A.S.A.Term
|
||||
|
||||
type lit = A.S.A.Lit.t
|
||||
type term = T.t
|
||||
|
||||
type data = T.Set.t
|
||||
module Data = struct
|
||||
type t = A.T_set.t
|
||||
(* associate to each class [t] the set of [ite a b c] where [a=t] *)
|
||||
|
||||
let pp_data = Fmt.(map T.Set.to_seq @@ seq ~sep:(return ",@ ") T.pp)
|
||||
let pp = Fmt.(map A.T_set.to_seq @@ seq ~sep:(return ",@ ") T.pp)
|
||||
let merge = A.T_set.union
|
||||
end
|
||||
|
||||
let key : (_,_,data) Sidekick_cc.Key.t = Sidekick_cc.Key.create
|
||||
~pp:pp_data ~name:"ite" ~eq:T.Set.equal ~merge:T.Set.union ()
|
||||
type t = {
|
||||
k: Data.t Solver.Key.t;
|
||||
}
|
||||
|
||||
type t = T.state
|
||||
|
||||
let on_merge (_st:t) (acts:Sidekick_smt.Theory.actions) n1 n2 e_n1_n2 : unit =
|
||||
let (module A) = acts in
|
||||
let on_merge (self:t) (solver:Solver.t) n1 n2 e_n1_n2 : unit =
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[th-ite.on_merge@ :c1 %a@ :c2 %a@])" N.pp n1 N.pp n2);
|
||||
(* check if [n1] has some [ite] parents, and if [n2] is true/false *)
|
||||
let check_ n1 n2 =
|
||||
match CC.Theory.get_data A.cc n1 key, T.view_as_ite (N.term n2) with
|
||||
match Solver.cc_data solver ~k:self.k n1, A.view_as_ite (N.term n2) with
|
||||
| Some set, T_bool n2_true ->
|
||||
assert (not @@ T.Set.is_empty set);
|
||||
T.Set.iter
|
||||
(fun parent_1 -> match T.view_as_ite parent_1 with
|
||||
assert (not @@ A.T_set.is_empty set);
|
||||
A.T_set.iter
|
||||
(fun parent_1 -> match A.view_as_ite parent_1 with
|
||||
| T_ite (a1,b1,c1) ->
|
||||
let n_parent1 = CC.add_term A.cc parent_1 in
|
||||
let expl = Expl.mk_list [e_n1_n2; Expl.mk_merge n1 (CC.add_term A.cc a1)] in
|
||||
let n_parent1 = Solver.cc_add_term solver parent_1 in
|
||||
let expl =
|
||||
Expl.mk_list [
|
||||
e_n1_n2;
|
||||
Expl.mk_merge n1 (Solver.cc_add_term solver a1)] in
|
||||
if n2_true then (
|
||||
(* [a1 = n1 = n2 = true] so [if a1 b1 c1 = b1] *)
|
||||
CC.Theory.merge A.cc n_parent1 (CC.add_term A.cc b1) expl
|
||||
Solver.cc_merge solver n_parent1 (Solver.cc_add_term solver b1) expl
|
||||
) else (
|
||||
(* [a1 = n1 = n2 = false] so [if a1 b1 c1 = c1] *)
|
||||
CC.Theory.merge A.cc n_parent1 (CC.add_term A.cc c1) expl
|
||||
Solver.cc_merge solver n_parent1 (Solver.cc_add_term solver c1) expl
|
||||
)
|
||||
| _ -> assert false)
|
||||
set
|
||||
|
|
@ -83,31 +77,22 @@ module Make(Arg : ARG with type T.state = Sidekick_smt.Term.state and type T.t =
|
|||
check_ n2 n1;
|
||||
()
|
||||
|
||||
let on_new_term _ (acts:Sidekick_smt.Theory.actions) (t:T.t) =
|
||||
let (module A) = acts in
|
||||
match T.view_as_ite t with
|
||||
let on_new_term (self:t) (solver:Solver.t) _n (t:T.t) =
|
||||
match A.view_as_ite t with
|
||||
| T_ite (a,_,_) ->
|
||||
(* add [t] to parents of [a] *)
|
||||
let n_a = CC.find A.cc @@ CC.add_term A.cc a in
|
||||
CC.Theory.add_data A.cc n_a key (T.Set.singleton t)
|
||||
| _ -> ()
|
||||
let n_a = Solver.cc_find solver @@ Solver.cc_add_term solver a in
|
||||
Solver.cc_add_data solver n_a ~k:self.k (A.T_set.singleton t);
|
||||
None
|
||||
| _ -> None
|
||||
|
||||
let th =
|
||||
Sidekick_smt.Theory.make ~name:"ite" ~create:(fun st->st)
|
||||
~on_merge ~final_check:(fun _ _ _ -> ())
|
||||
~on_new_term
|
||||
()
|
||||
let create_and_setup (solver:Solver.t) : t =
|
||||
let k = Solver.Key.create solver (module Data) in
|
||||
let self = {k} in
|
||||
Solver.on_cc_merge_all solver (on_merge self);
|
||||
Solver.on_cc_new_term solver ~k (on_new_term self);
|
||||
self
|
||||
|
||||
let theory = A.S.mk_theory ~name:"ite" ~create_and_setup ()
|
||||
end
|
||||
|
||||
|
||||
include Make(struct
|
||||
module T = struct
|
||||
include Sidekick_smt.Term
|
||||
let[@inline] view_as_ite t = match view t with
|
||||
| If (a,b,c) -> T_ite (a,b,c)
|
||||
| Bool b -> T_bool b
|
||||
| _ -> T_other t
|
||||
end
|
||||
module Lit = Sidekick_smt.Lit
|
||||
end)
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
(library
|
||||
(name Sidekick_th_ite)
|
||||
(public_name sidekick.smt.th-ite)
|
||||
(libraries containers sidekick.smt)
|
||||
(public_name sidekick.th-ite)
|
||||
(libraries containers sidekick.core)
|
||||
(flags :standard -open Sidekick_util))
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue