mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
refactor: eager proofs; stronger preprocessing
proofs are now directly emitted (almost) everywhere, which simplifies a lot of things. preprocessing is more recursive (a bit too much really).
This commit is contained in:
parent
0668f28ac7
commit
e93e084eac
13 changed files with 456 additions and 478 deletions
|
|
@ -8,7 +8,7 @@ type t = unit
|
|||
type dproof = t -> unit
|
||||
|
||||
let create () : t = ()
|
||||
let enabled _ = false
|
||||
let with_proof _ _ = ()
|
||||
|
||||
let begin_subproof _ = ()
|
||||
let end_subproof _ = ()
|
||||
|
|
@ -26,5 +26,5 @@ let lemma_isa_split _ _ = ()
|
|||
let lemma_bool_tauto _ _ = ()
|
||||
let lemma_bool_c _ _ _ = ()
|
||||
let lemma_bool_equiv _ _ _ = ()
|
||||
let lemma_ite_true _ ~a:_ ~ite:_ = ()
|
||||
let lemma_ite_false _ ~a:_ ~ite:_ = ()
|
||||
let lemma_ite_true ~a:_ ~ite:_ _ = ()
|
||||
let lemma_ite_false ~a:_ ~ite:_ _ = ()
|
||||
|
|
|
|||
|
|
@ -9,14 +9,14 @@ include Sidekick_core.PROOF
|
|||
|
||||
val create : unit -> t
|
||||
|
||||
val lemma_bool_tauto : t -> Lit.t Iter.t -> unit
|
||||
val lemma_bool_c : t -> string -> term list -> unit
|
||||
val lemma_bool_equiv : t -> term -> term -> unit
|
||||
val lemma_ite_true : t -> a:term -> ite:term -> unit
|
||||
val lemma_ite_false : t -> a:term -> ite:term -> unit
|
||||
val lemma_bool_tauto : Lit.t Iter.t -> t -> unit
|
||||
val lemma_bool_c : string -> term list -> t -> unit
|
||||
val lemma_bool_equiv : term -> term -> t -> unit
|
||||
val lemma_ite_true : a:term -> ite:term -> t -> unit
|
||||
val lemma_ite_false : a:term -> ite:term -> t -> unit
|
||||
|
||||
val lemma_lra : t -> Lit.t Iter.t -> unit
|
||||
val lemma_lra : Lit.t Iter.t -> t -> unit
|
||||
|
||||
val lemma_isa_split : t -> Lit.t Iter.t -> unit
|
||||
val lemma_isa_disj : t -> Lit.t Iter.t -> unit
|
||||
val lemma_cstor_inj : t -> Lit.t Iter.t -> unit
|
||||
val lemma_isa_split : Lit.t Iter.t -> t -> unit
|
||||
val lemma_isa_disj : Lit.t Iter.t -> t -> unit
|
||||
val lemma_cstor_inj : Lit.t Iter.t -> t -> unit
|
||||
|
|
|
|||
|
|
@ -660,7 +660,7 @@ module Make (A: CC_ARG)
|
|||
let lits = explain_equal cc ~th lits b rb in
|
||||
let emit_proof p =
|
||||
let p_lits = Iter.of_list lits |> Iter.map Lit.neg in
|
||||
P.lemma_cc p p_lits in
|
||||
P.lemma_cc p_lits p in
|
||||
raise_conflict_ cc ~th:!th acts (List.rev_map Lit.neg lits) emit_proof
|
||||
);
|
||||
(* We will merge [r_from] into [r_into].
|
||||
|
|
@ -779,7 +779,7 @@ module Make (A: CC_ARG)
|
|||
let emit_proof p =
|
||||
(* make a tautology, not a true guard *)
|
||||
let p_lits = Iter.cons lit (Iter.of_list lits |> Iter.map Lit.neg) in
|
||||
P.lemma_cc p p_lits
|
||||
P.lemma_cc p_lits p
|
||||
in
|
||||
lits, emit_proof
|
||||
) in
|
||||
|
|
@ -850,7 +850,7 @@ module Make (A: CC_ARG)
|
|||
let lits = List.rev_map Lit.neg lits in
|
||||
let emit_proof p =
|
||||
let p_lits = Iter.of_list lits in
|
||||
P.lemma_cc p p_lits
|
||||
P.lemma_cc p_lits p
|
||||
in
|
||||
raise_conflict_ cc ~th:!th acts lits emit_proof
|
||||
|
||||
|
|
|
|||
|
|
@ -150,7 +150,7 @@ module type CC_PROOF = sig
|
|||
type t
|
||||
type lit
|
||||
|
||||
val lemma_cc : t -> lit Iter.t -> unit
|
||||
val lemma_cc : lit Iter.t -> t -> unit
|
||||
(** [lemma_cc proof lits] asserts that [lits] form a tautology for the theory
|
||||
of uninterpreted functions. *)
|
||||
end
|
||||
|
|
@ -169,17 +169,18 @@ module type SAT_PROOF = sig
|
|||
type dproof = t -> unit
|
||||
(** A delayed proof, used to produce proofs on demand from theories. *)
|
||||
|
||||
val enabled : t -> bool
|
||||
(** Do we emit proofs at all? *)
|
||||
val with_proof : t -> (t -> unit) -> unit
|
||||
(** If proof is enabled, call [f] on it to emit steps.
|
||||
if proof is disabled, the callback won't even be called. *)
|
||||
|
||||
val emit_input_clause : t -> lit Iter.t -> unit
|
||||
val emit_input_clause : lit Iter.t -> t -> unit
|
||||
(** Emit an input clause. *)
|
||||
|
||||
val emit_redundant_clause : t -> lit Iter.t -> unit
|
||||
val emit_redundant_clause : lit Iter.t -> t -> unit
|
||||
(** Emit a clause deduced by the SAT solver, redundant wrt axioms.
|
||||
The clause must be RUP wrt previous clauses. *)
|
||||
|
||||
val del_clause : t -> lit Iter.t -> unit
|
||||
val del_clause : lit Iter.t -> t -> unit
|
||||
(** Forget a clause. Only useful for performance considerations. *)
|
||||
(* TODO: replace with something index-based? *)
|
||||
end
|
||||
|
|
@ -215,20 +216,17 @@ module type PROOF = sig
|
|||
(** [end_subproof p] ends the current active subproof, the last result
|
||||
of which is kept. *)
|
||||
|
||||
val define_term : t -> term -> term -> unit
|
||||
val define_term : term -> term -> t -> unit
|
||||
(** [define_term p cst u] defines the new constant [cst] as being equal
|
||||
to [u]. *)
|
||||
|
||||
val lemma_true : t -> term -> unit
|
||||
val lemma_true : term -> t -> unit
|
||||
(** [lemma_true p (true)] asserts the clause [(true)] *)
|
||||
|
||||
val lemma_preprocess : t -> term -> term -> unit
|
||||
val lemma_preprocess : term -> term -> t -> unit
|
||||
(** [lemma_preprocess p t u] asserts that [t = u] is a tautology
|
||||
and that [t] has been preprocessed into [u].
|
||||
From now on, [t] and [u] will be used interchangeably. *)
|
||||
|
||||
val enabled : t -> bool
|
||||
(** Is proof production enabled? *)
|
||||
end
|
||||
|
||||
(** Literals
|
||||
|
|
@ -662,9 +660,11 @@ module type SOLVER_INTERNAL = sig
|
|||
val ty_st : t -> ty_store
|
||||
val stats : t -> Stat.t
|
||||
|
||||
val with_proof : t -> (proof -> unit) -> unit
|
||||
|
||||
(** {3 Actions for the theories} *)
|
||||
|
||||
type actions
|
||||
type theory_actions
|
||||
(** Handle that the theories can use to perform actions. *)
|
||||
|
||||
type lit = Lit.t
|
||||
|
|
@ -685,7 +685,7 @@ module type SOLVER_INTERNAL = sig
|
|||
and type proof = proof
|
||||
and type P.t = proof
|
||||
and type P.lit = lit
|
||||
and type Actions.t = actions
|
||||
and type Actions.t = theory_actions
|
||||
|
||||
val cc : t -> CC.t
|
||||
(** Congruence closure for this solver *)
|
||||
|
|
@ -702,19 +702,21 @@ module type SOLVER_INTERNAL = sig
|
|||
val clear : t -> unit
|
||||
(** Reset internal cache, etc. *)
|
||||
|
||||
type hook = t -> term -> (term * dproof) option
|
||||
val with_proof : t -> (proof -> unit) -> unit
|
||||
|
||||
type hook = t -> term -> term option
|
||||
(** Given a term, try to simplify it. Return [None] if it didn't change.
|
||||
|
||||
A simple example could be a hook that takes a term [t],
|
||||
and if [t] is [app "+" (const x) (const y)] where [x] and [y] are number,
|
||||
returns [Some (const (x+y))], and [None] otherwise. *)
|
||||
|
||||
val normalize : t -> term -> (term * dproof) option
|
||||
val normalize : t -> term -> term option
|
||||
(** Normalize a term using all the hooks. This performs
|
||||
a fixpoint, i.e. it only stops when no hook applies anywhere inside
|
||||
the term. *)
|
||||
|
||||
val normalize_t : t -> term -> term * dproof
|
||||
val normalize_t : t -> term -> term
|
||||
(** Normalize a term using all the hooks, along with a proof that the
|
||||
simplification is correct.
|
||||
returns [t, refl t] if no simplification occurred. *)
|
||||
|
|
@ -727,58 +729,99 @@ module type SOLVER_INTERNAL = sig
|
|||
|
||||
val simplifier : t -> Simplify.t
|
||||
|
||||
val simplify_t : t -> term -> (term * dproof) option
|
||||
(** Simplify input term, returns [Some (u, |- t=u)] if some
|
||||
val simplify_t : t -> term -> term option
|
||||
(** Simplify input term, returns [Some u] if some
|
||||
simplification occurred. *)
|
||||
|
||||
val simp_t : t -> term -> term * dproof
|
||||
(** [simp_t si t] returns [u, |- t=u] even if no simplification occurred
|
||||
val simp_t : t -> term -> term
|
||||
(** [simp_t si t] returns [u] even if no simplification occurred
|
||||
(in which case [t == u] syntactically).
|
||||
It emits [|- t=u].
|
||||
(see {!simplifier}) *)
|
||||
|
||||
(** {3 Preprocessors}
|
||||
These preprocessors turn mixed, raw literals (possibly simplified) into
|
||||
literals suitable for reasoning.
|
||||
Typically some clauses are also added to the solver. *)
|
||||
|
||||
module type PREPROCESS_ACTS = sig
|
||||
val mk_lit : ?sign:bool -> term -> lit
|
||||
(** creates a new literal for a boolean term. *)
|
||||
|
||||
val add_clause : lit list -> dproof -> unit
|
||||
(** pushes a new clause into the SAT solver. *)
|
||||
|
||||
val add_lit : ?default_pol:bool -> lit -> unit
|
||||
(** Ensure the literal will be decided/handled by the SAT solver. *)
|
||||
end
|
||||
|
||||
type preprocess_actions = (module PREPROCESS_ACTS)
|
||||
(** Actions available to the preprocessor *)
|
||||
|
||||
type preprocess_hook =
|
||||
t ->
|
||||
preprocess_actions ->
|
||||
term -> term option
|
||||
(** Given a term, try to preprocess it. Return [None] if it didn't change,
|
||||
or [Some (u)] if [t=u].
|
||||
Can also add clauses to define new terms.
|
||||
|
||||
Preprocessing might transform terms to make them more amenable
|
||||
to reasoning, e.g. by removing boolean formulas via Tseitin encoding,
|
||||
adding clauses that encode their meaning in the same move.
|
||||
|
||||
@param preprocess_actions actions available during preprocessing.
|
||||
*)
|
||||
|
||||
val on_preprocess : t -> preprocess_hook -> unit
|
||||
(** Add a hook that will be called when terms are preprocessed *)
|
||||
|
||||
val preprocess_acts_of_acts : t -> theory_actions -> preprocess_actions
|
||||
(** Obtain preprocessor actions, from theory actions *)
|
||||
|
||||
(** {3 hooks for the theory} *)
|
||||
|
||||
val raise_conflict : t -> actions -> lit list -> dproof -> 'a
|
||||
val raise_conflict : t -> theory_actions -> lit list -> dproof -> 'a
|
||||
(** Give a conflict clause to the solver *)
|
||||
|
||||
val push_decision : t -> actions -> lit -> unit
|
||||
val push_decision : t -> theory_actions -> lit -> unit
|
||||
(** Ask the SAT solver to decide the given literal in an extension of the
|
||||
current trail. This is useful for theory combination.
|
||||
If the SAT solver backtracks, this (potential) decision is removed
|
||||
and forgotten. *)
|
||||
|
||||
val propagate: t -> actions -> lit -> reason:(unit -> lit list * dproof) -> unit
|
||||
val propagate: t -> theory_actions -> lit -> reason:(unit -> lit list * dproof) -> unit
|
||||
(** Propagate a boolean using a unit clause.
|
||||
[expl => lit] must be a theory lemma, that is, a T-tautology *)
|
||||
|
||||
val propagate_l: t -> actions -> lit -> lit list -> dproof -> unit
|
||||
val propagate_l: t -> theory_actions -> lit -> lit list -> dproof -> unit
|
||||
(** Propagate a boolean using a unit clause.
|
||||
[expl => lit] must be a theory lemma, that is, a T-tautology *)
|
||||
|
||||
val add_clause_temp : t -> actions -> lit list -> dproof -> unit
|
||||
val add_clause_temp : t -> theory_actions -> lit list -> dproof -> unit
|
||||
(** Add local clause to the SAT solver. This clause will be
|
||||
removed when the solver backtracks. *)
|
||||
|
||||
val add_clause_permanent : t -> actions -> lit list -> dproof -> unit
|
||||
val add_clause_permanent : t -> theory_actions -> lit list -> dproof -> unit
|
||||
(** Add toplevel clause to the SAT solver. This clause will
|
||||
not be backtracked. *)
|
||||
|
||||
val mk_lit : t -> actions -> ?sign:bool -> term -> lit
|
||||
val mk_lit : t -> theory_actions -> ?sign:bool -> term -> lit
|
||||
(** Create a literal. This automatically preprocesses the term. *)
|
||||
|
||||
val preprocess_term :
|
||||
t -> add_clause:(Lit.t list -> dproof -> unit) -> term -> term * dproof
|
||||
(** Preprocess a term. *)
|
||||
val preprocess_term : t -> preprocess_actions -> term -> term
|
||||
(** Preprocess a term. The preprocessing proof is automatically emitted. *)
|
||||
|
||||
val add_lit : t -> actions -> lit -> unit
|
||||
val add_lit : t -> theory_actions -> ?default_pol:bool -> lit -> unit
|
||||
(** Add the given literal to the SAT solver, so it gets assigned
|
||||
a boolean value *)
|
||||
a boolean value.
|
||||
@param default_pol default polarity for the corresponding atom *)
|
||||
|
||||
val add_lit_t : t -> actions -> ?sign:bool -> term -> unit
|
||||
val add_lit_t : t -> theory_actions -> ?sign:bool -> term -> unit
|
||||
(** Add the given (signed) bool term to the SAT solver, so it gets assigned
|
||||
a boolean value *)
|
||||
|
||||
val cc_raise_conflict_expl : t -> actions -> CC.Expl.t -> 'a
|
||||
val cc_raise_conflict_expl : t -> theory_actions -> CC.Expl.t -> 'a
|
||||
(** Raise a conflict with the given congruence closure explanation.
|
||||
it must be a theory tautology that [expl ==> absurd].
|
||||
To be used in theories. *)
|
||||
|
|
@ -789,12 +832,12 @@ module type SOLVER_INTERNAL = sig
|
|||
val cc_are_equal : t -> term -> term -> bool
|
||||
(** Are these two terms equal in the congruence closure? *)
|
||||
|
||||
val cc_merge : t -> actions -> CC.N.t -> CC.N.t -> CC.Expl.t -> unit
|
||||
val cc_merge : t -> theory_actions -> CC.N.t -> CC.N.t -> CC.Expl.t -> unit
|
||||
(** Merge these two nodes in the congruence closure, given this explanation.
|
||||
It must be a theory tautology that [expl ==> n1 = n2].
|
||||
To be used in theories. *)
|
||||
|
||||
val cc_merge_t : t -> actions -> term -> term -> CC.Expl.t -> unit
|
||||
val cc_merge_t : t -> theory_actions -> term -> term -> CC.Expl.t -> unit
|
||||
(** Merge these two terms in the congruence closure, given this explanation.
|
||||
See {!cc_merge} *)
|
||||
|
||||
|
|
@ -806,10 +849,10 @@ module type SOLVER_INTERNAL = sig
|
|||
(** Return [true] if the term is explicitly in the congruence closure.
|
||||
To be used in theories *)
|
||||
|
||||
val on_cc_pre_merge : t -> (CC.t -> actions -> CC.N.t -> CC.N.t -> CC.Expl.t -> unit) -> unit
|
||||
val on_cc_pre_merge : t -> (CC.t -> theory_actions -> CC.N.t -> CC.N.t -> CC.Expl.t -> unit) -> unit
|
||||
(** Callback for when two classes containing data for this key are merged (called before) *)
|
||||
|
||||
val on_cc_post_merge : t -> (CC.t -> actions -> CC.N.t -> CC.N.t -> unit) -> unit
|
||||
val on_cc_post_merge : t -> (CC.t -> theory_actions -> CC.N.t -> CC.N.t -> unit) -> unit
|
||||
(** Callback for when two classes containing data for this key are merged (called after)*)
|
||||
|
||||
val on_cc_new_term : t -> (CC.t -> CC.N.t -> term -> unit) -> unit
|
||||
|
|
@ -826,7 +869,7 @@ module type SOLVER_INTERNAL = sig
|
|||
val on_cc_propagate : t -> (CC.t -> lit -> (unit -> lit list * dproof) -> unit) -> unit
|
||||
(** Callback called on every CC propagation *)
|
||||
|
||||
val on_partial_check : t -> (t -> actions -> lit Iter.t -> unit) -> unit
|
||||
val on_partial_check : t -> (t -> theory_actions -> lit Iter.t -> unit) -> unit
|
||||
(** Register callbacked to be called with the slice of literals
|
||||
newly added on the trail.
|
||||
|
||||
|
|
@ -834,7 +877,7 @@ module type SOLVER_INTERNAL = sig
|
|||
to be complete, only correct. It's given only the slice of
|
||||
the trail consisting in new literals. *)
|
||||
|
||||
val on_final_check: t -> (t -> actions -> lit Iter.t -> unit) -> unit
|
||||
val on_final_check: t -> (t -> theory_actions -> lit Iter.t -> unit) -> unit
|
||||
(** Register callback to be called during the final check.
|
||||
|
||||
Must be complete (i.e. must raise a conflict if the set of literals is
|
||||
|
|
@ -842,31 +885,6 @@ module type SOLVER_INTERNAL = sig
|
|||
is given the whole trail.
|
||||
*)
|
||||
|
||||
(** {3 Preprocessors}
|
||||
These preprocessors turn mixed, raw literals (possibly simplified) into
|
||||
literals suitable for reasoning.
|
||||
Typically some clauses are also added to the solver. *)
|
||||
|
||||
type preprocess_hook =
|
||||
t ->
|
||||
mk_lit:(term -> lit) ->
|
||||
add_clause:(lit list -> dproof -> unit) ->
|
||||
term -> (term * dproof) option
|
||||
(** Given a term, try to preprocess it. Return [None] if it didn't change,
|
||||
or [Some (u,p)] if [t=u] and [p] is a proof of [t=u].
|
||||
Can also add clauses to define new terms.
|
||||
|
||||
Preprocessing might transform terms to make them more amenable
|
||||
to reasoning, e.g. by removing boolean formulas via Tseitin encoding,
|
||||
adding clauses that encode their meaning in the same move.
|
||||
|
||||
@param mk_lit creates a new literal for a boolean term.
|
||||
@param add_clause pushes a new clause into the SAT solver.
|
||||
*)
|
||||
|
||||
val on_preprocess : t -> preprocess_hook -> unit
|
||||
(** Add a hook that will be called when terms are preprocessed *)
|
||||
|
||||
(** {3 Model production} *)
|
||||
|
||||
type model_hook =
|
||||
|
|
@ -1041,13 +1059,12 @@ module type SOLVER = sig
|
|||
|
||||
val add_theory_l : t -> theory list -> unit
|
||||
|
||||
val mk_lit_t : t -> ?sign:bool -> term -> lit * dproof
|
||||
(** [mk_lit_t _ ~sign t] returns [lit, pr]
|
||||
where [lit] is a internal representation of [± t],
|
||||
and [pr] is a proof of [|- lit = (± t)] *)
|
||||
val mk_lit_t : t -> ?sign:bool -> term -> lit
|
||||
(** [mk_lit_t _ ~sign t] returns [lit'],
|
||||
where [lit'] is [preprocess(lit)] and [lit] is
|
||||
an internal representation of [± t].
|
||||
|
||||
val mk_lit_t' : t -> ?sign:bool -> term -> lit
|
||||
(** Like {!mk_lit_t} but skips the proof *)
|
||||
The proof of [|- lit = lit'] is directly added to the solver's proof. *)
|
||||
|
||||
val add_clause : t -> lit IArray.t -> dproof -> unit
|
||||
(** [add_clause solver cs] adds a boolean clause to the solver.
|
||||
|
|
|
|||
|
|
@ -60,7 +60,7 @@ module type ARG = sig
|
|||
val has_ty_real : term -> bool
|
||||
(** Does this term have the type [Real] *)
|
||||
|
||||
val lemma_lra : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_lra : S.Lit.t Iter.t -> S.proof -> unit
|
||||
|
||||
module Gensym : sig
|
||||
type t
|
||||
|
|
@ -233,29 +233,18 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
);
|
||||
proxy
|
||||
|
||||
let add_clause_lra_ ~add_clause lits =
|
||||
let emit_proof p =
|
||||
A.lemma_lra p (Iter.of_list lits)
|
||||
in
|
||||
add_clause lits emit_proof
|
||||
let add_clause_lra_ (module PA:SI.PREPROCESS_ACTS) lits =
|
||||
let pr = A.lemma_lra (Iter.of_list lits) in
|
||||
PA.add_clause lits pr
|
||||
|
||||
(* preprocess linear expressions away *)
|
||||
let preproc_lra (self:state) si ~mk_lit ~add_clause
|
||||
(t:T.t) : (T.t * _) option =
|
||||
Log.debugf 50 (fun k->k "lra.preprocess %a" T.pp t);
|
||||
let preproc_lra (self:state) si (module PA:SI.PREPROCESS_ACTS)
|
||||
(t:T.t) : T.t option =
|
||||
Log.debugf 50 (fun k->k "(@[lra.preprocess@ %a@])" T.pp t);
|
||||
let tst = SI.tst si in
|
||||
|
||||
let sub_proofs_ = ref [] in
|
||||
|
||||
(* preprocess subterm *)
|
||||
let preproc_t t =
|
||||
let u, p_t_eq_u = SI.preprocess_term ~add_clause si t in
|
||||
if t != u then (
|
||||
(* add [|- t=u] to hyps *)
|
||||
sub_proofs_ := (t,u,p_t_eq_u) :: !sub_proofs_;
|
||||
);
|
||||
u
|
||||
in
|
||||
let preproc_t t = SI.preprocess_term si (module PA) t in
|
||||
|
||||
(* tell the CC this term exists *)
|
||||
let declare_term_to_cc t =
|
||||
|
|
@ -274,12 +263,12 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
T.Tbl.add self.encoded_eqs t ();
|
||||
|
||||
(* encode [t <=> (u1 /\ u2)] *)
|
||||
let lit_t = mk_lit t in
|
||||
let lit_u1 = mk_lit u1 in
|
||||
let lit_u2 = mk_lit u2 in
|
||||
add_clause_lra_ ~add_clause [SI.Lit.neg lit_t; lit_u1];
|
||||
add_clause_lra_ ~add_clause [SI.Lit.neg lit_t; lit_u2];
|
||||
add_clause_lra_ ~add_clause
|
||||
let lit_t = PA.mk_lit t in
|
||||
let lit_u1 = PA.mk_lit u1 in
|
||||
let lit_u2 = PA.mk_lit u2 in
|
||||
add_clause_lra_ (module PA) [SI.Lit.neg lit_t; lit_u1];
|
||||
add_clause_lra_ (module PA) [SI.Lit.neg lit_t; lit_u2];
|
||||
add_clause_lra_ (module PA)
|
||||
[SI.Lit.neg lit_u1; SI.Lit.neg lit_u2; lit_t];
|
||||
);
|
||||
None
|
||||
|
|
@ -309,14 +298,14 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|
||||
let new_t = A.mk_lra tst (LRA_simplex_pred (proxy, op, le_const)) in
|
||||
begin
|
||||
let lit = mk_lit new_t in
|
||||
let lit = PA.mk_lit new_t in
|
||||
let constr = SimpSolver.Constraint.mk proxy op le_const in
|
||||
SimpSolver.declare_bound self.simplex constr (Tag.Lit lit);
|
||||
end;
|
||||
|
||||
Log.debugf 10 (fun k->k "lra.preprocess:@ %a@ :into %a" T.pp t T.pp new_t);
|
||||
(* FIXME: by def proxy + LRA *)
|
||||
Some (new_t, (fun _ -> ()))
|
||||
(* FIXME: emit proof: by def proxy + LRA *)
|
||||
Some new_t
|
||||
|
||||
| Some (coeff, v), pred ->
|
||||
(* [c . v <= const] becomes a direct simplex constraint [v <= const/c] *)
|
||||
|
|
@ -335,15 +324,14 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|
||||
let new_t = A.mk_lra tst (LRA_simplex_pred (v, op, q)) in
|
||||
begin
|
||||
let lit = mk_lit new_t in
|
||||
let lit = PA.mk_lit new_t in
|
||||
let constr = SimpSolver.Constraint.mk v op q in
|
||||
SimpSolver.declare_bound self.simplex constr (Tag.Lit lit);
|
||||
end;
|
||||
|
||||
Log.debugf 10 (fun k->k "lra.preprocess@ :%a@ :into %a" T.pp t T.pp new_t);
|
||||
(* FIXME: preprocess proof *)
|
||||
let emit_proof _ = () in
|
||||
Some (new_t, emit_proof)
|
||||
Some new_t
|
||||
end
|
||||
|
||||
| LRA_op _ | LRA_mult _ ->
|
||||
|
|
@ -357,9 +345,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
declare_term_to_cc proxy;
|
||||
|
||||
(* FIXME: proof by def of proxy *)
|
||||
let emit_proof _ = () in
|
||||
|
||||
Some (proxy, emit_proof)
|
||||
Some proxy
|
||||
) else (
|
||||
(* a bit more complicated: we cannot just define [proxy := le_comb]
|
||||
because of the coefficient.
|
||||
|
|
@ -382,29 +368,30 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
declare_term_to_cc proxy;
|
||||
declare_term_to_cc proxy2;
|
||||
|
||||
add_clause [
|
||||
mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Leq, A.Q.neg le_const)))
|
||||
PA.add_clause [
|
||||
PA.mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Leq, A.Q.neg le_const)))
|
||||
] (fun _ -> ()); (* TODO: by-def proxy2 + LRA *)
|
||||
add_clause [
|
||||
mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Geq, A.Q.neg le_const)))
|
||||
PA.add_clause [
|
||||
PA.mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Geq, A.Q.neg le_const)))
|
||||
] (fun _ -> ()); (* TODO: by-def proxy2 + LRA *)
|
||||
|
||||
(* FIXME: actual proof *)
|
||||
let emit_proof _ = () in
|
||||
Some (proxy, emit_proof)
|
||||
Some proxy
|
||||
)
|
||||
|
||||
| LRA_other t when A.has_ty_real t -> None
|
||||
| LRA_const _ | LRA_simplex_pred _ | LRA_simplex_var _ | LRA_other _ -> None
|
||||
| LRA_const _ | LRA_simplex_pred _ | LRA_simplex_var _ | LRA_other _ ->
|
||||
Log.debug 0 "LRA NONE";
|
||||
None
|
||||
|
||||
let simplify (self:state) (_recurse:_) (t:T.t) : (T.t * SI.dproof) option =
|
||||
let simplify (self:state) (_recurse:_) (t:T.t) : T.t option =
|
||||
match A.view_as_lra t with
|
||||
| LRA_op _ | LRA_mult _ ->
|
||||
let le = as_linexp_id t in
|
||||
if LE.is_const le then (
|
||||
let c = LE.const le in
|
||||
(* FIXME: proof *)
|
||||
Some (A.mk_lra self.tst (LRA_const c), (fun _ -> ()))
|
||||
Some (A.mk_lra self.tst (LRA_const c))
|
||||
) else None
|
||||
| LRA_pred (pred, l1, l2) ->
|
||||
let le = LE.(as_linexp_id l1 - as_linexp_id l2) in
|
||||
|
|
@ -419,7 +406,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
| Neq -> A.Q.(c <> zero)
|
||||
in
|
||||
(* FIXME: proof *)
|
||||
Some (A.mk_bool self.tst is_true, (fun _ -> ()))
|
||||
Some (A.mk_bool self.tst is_true)
|
||||
) else None
|
||||
| _ -> None
|
||||
|
||||
|
|
@ -433,8 +420,8 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|> CCList.flat_map (Tag.to_lits si)
|
||||
|> List.rev_map SI.Lit.neg
|
||||
in
|
||||
let emit_proof p = A.lemma_lra p (Iter.of_list confl) in
|
||||
SI.raise_conflict si acts confl emit_proof
|
||||
let pr = A.lemma_lra (Iter.of_list confl) in
|
||||
SI.raise_conflict si acts confl pr
|
||||
|
||||
let on_propagate_ si acts lit ~reason =
|
||||
match lit with
|
||||
|
|
@ -443,10 +430,8 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
SI.propagate si acts lit
|
||||
~reason:(fun() ->
|
||||
let lits = CCList.flat_map (Tag.to_lits si) reason in
|
||||
let emit_proof p =
|
||||
A.lemma_lra p Iter.(cons lit (of_list lits))
|
||||
in
|
||||
CCList.flat_map (Tag.to_lits si) reason, emit_proof)
|
||||
let pr = A.lemma_lra Iter.(cons lit (of_list lits)) in
|
||||
CCList.flat_map (Tag.to_lits si) reason, pr)
|
||||
| _ -> ()
|
||||
|
||||
let check_simplex_ self si acts : SimpSolver.Subst.t =
|
||||
|
|
@ -594,7 +579,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
);
|
||||
()
|
||||
|
||||
let final_check_ (self:state) si (acts:SI.actions) (_trail:_ Iter.t) : unit =
|
||||
let final_check_ (self:state) si (acts:SI.theory_actions) (_trail:_ Iter.t) : unit =
|
||||
Log.debug 5 "(th-lra.final-check)";
|
||||
Profile.with_ "lra.final-check" @@ fun () ->
|
||||
|
||||
|
|
|
|||
|
|
@ -38,26 +38,26 @@ end = struct
|
|||
}
|
||||
type dproof = t -> unit
|
||||
|
||||
let[@inline] enabled = function
|
||||
| Dummy -> false
|
||||
| Inner _ -> true
|
||||
let[@inline] with_proof pr f = match pr with
|
||||
| Dummy -> ()
|
||||
| Inner _ -> f pr
|
||||
|
||||
let emit_lits_ buf lits =
|
||||
lits (fun i -> bpf buf "%d " i)
|
||||
|
||||
let emit_input_clause self lits =
|
||||
let emit_input_clause lits self =
|
||||
match self with
|
||||
| Dummy -> ()
|
||||
| Inner {buf} ->
|
||||
bpf buf "i "; emit_lits_ buf lits; bpf buf "0\n"
|
||||
|
||||
let emit_redundant_clause self lits =
|
||||
let emit_redundant_clause lits self =
|
||||
match self with
|
||||
| Dummy -> ()
|
||||
| Inner {buf} ->
|
||||
bpf buf "r "; emit_lits_ buf lits; bpf buf "0\n"
|
||||
|
||||
let del_clause self lits =
|
||||
let del_clause lits self =
|
||||
match self with
|
||||
| Dummy -> ()
|
||||
| Inner {buf} ->
|
||||
|
|
|
|||
|
|
@ -1402,7 +1402,7 @@ module Make(Plugin : PLUGIN)
|
|||
let atoms = List.rev_map (make_atom_ self) l in
|
||||
let removable = not keep in
|
||||
let c = Clause.make_l self.store ~removable atoms in
|
||||
if Proof.enabled self.proof then dp self.proof;
|
||||
Proof.with_proof self.proof dp;
|
||||
Log.debugf 5 (fun k->k "(@[sat.th.add-clause@ %a@])" (Clause.debug self.store) c);
|
||||
Vec.push self.clauses_to_add c
|
||||
|
||||
|
|
@ -1415,11 +1415,11 @@ module Make(Plugin : PLUGIN)
|
|||
self.next_decisions <- a :: self.next_decisions
|
||||
)
|
||||
|
||||
let acts_raise self (l:lit list) (pr:dproof) : 'a =
|
||||
let acts_raise self (l:lit list) (dp:dproof) : 'a =
|
||||
let atoms = List.rev_map (make_atom_ self) l in
|
||||
(* conflicts can be removed *)
|
||||
let c = Clause.make_l self.store ~removable:true atoms in
|
||||
if Proof.enabled self.proof then pr self.proof;
|
||||
Proof.with_proof self.proof dp;
|
||||
Log.debugf 5 (fun k->k "(@[@{<yellow>sat.th.raise-conflict@}@ %a@])"
|
||||
(Clause.debug self.store) c);
|
||||
raise_notrace (Th_conflict c)
|
||||
|
|
@ -1444,7 +1444,7 @@ module Make(Plugin : PLUGIN)
|
|||
let l = List.rev_map (fun f -> Atom.neg @@ make_atom_ self f) lits in
|
||||
check_consequence_lits_false_ self l;
|
||||
let c = Clause.make_l store ~removable:true (p :: l) in
|
||||
if Proof.enabled self.proof then dp self.proof;
|
||||
Proof.with_proof self.proof dp;
|
||||
raise_notrace (Th_conflict c)
|
||||
) else (
|
||||
insert_var_order self (Atom.var p);
|
||||
|
|
@ -1458,7 +1458,7 @@ module Make(Plugin : PLUGIN)
|
|||
(otherwise the propagated lit would have been backtracked and
|
||||
discarded already.) *)
|
||||
check_consequence_lits_false_ self l;
|
||||
if Proof.enabled self.proof then dp self.proof;
|
||||
Proof.with_proof self.proof dp;
|
||||
Clause.make_l store ~removable:true (p :: l)
|
||||
) in
|
||||
let level = decision_level self in
|
||||
|
|
@ -1481,7 +1481,7 @@ module Make(Plugin : PLUGIN)
|
|||
let a = make_atom_ self f in
|
||||
eval_atom_ self a
|
||||
|
||||
let[@inline] acts_mk_lit self ?default_pol f : unit =
|
||||
let[@inline] acts_add_lit self ?default_pol f : unit =
|
||||
ignore (make_atom_ ?default_pol self f : atom)
|
||||
|
||||
let[@inline] current_slice st : _ Solver_intf.acts =
|
||||
|
|
@ -1491,7 +1491,7 @@ module Make(Plugin : PLUGIN)
|
|||
type nonrec lit = lit
|
||||
let iter_assumptions=acts_iter st ~full:false st.th_head
|
||||
let eval_lit= acts_eval_lit st
|
||||
let mk_lit=acts_mk_lit st
|
||||
let add_lit=acts_add_lit st
|
||||
let add_clause = acts_add_clause st
|
||||
let propagate = acts_propagate st
|
||||
let raise_conflict c pr=acts_raise st c pr
|
||||
|
|
@ -1507,7 +1507,7 @@ module Make(Plugin : PLUGIN)
|
|||
type nonrec lit = lit
|
||||
let iter_assumptions=acts_iter st ~full:true st.th_head
|
||||
let eval_lit= acts_eval_lit st
|
||||
let mk_lit=acts_mk_lit st
|
||||
let add_lit=acts_add_lit st
|
||||
let add_clause = acts_add_clause st
|
||||
let propagate = acts_propagate st
|
||||
let raise_conflict c pr=acts_raise st c pr
|
||||
|
|
@ -1830,9 +1830,8 @@ module Make(Plugin : PLUGIN)
|
|||
(fun l ->
|
||||
let atoms = Util.array_of_list_map (make_atom_ self) l in
|
||||
let c = Clause.make_a self.store ~removable:false atoms in
|
||||
if Proof.enabled self.proof then (
|
||||
Proof.emit_input_clause self.proof (Iter.of_list l)
|
||||
);
|
||||
Proof.with_proof self.proof
|
||||
(Proof.emit_input_clause (Iter.of_list l));
|
||||
Log.debugf 10 (fun k -> k "(@[sat.assume-clause@ @[<hov 2>%a@]@])"
|
||||
(Clause.debug self.store) c);
|
||||
Vec.push self.clauses_to_add c)
|
||||
|
|
@ -1843,6 +1842,7 @@ module Make(Plugin : PLUGIN)
|
|||
let[@inline] proof st = st.proof
|
||||
|
||||
let[@inline] add_lit self ?default_pol lit =
|
||||
Log.debugf 0 (fun k->k"add lit %a" Lit.pp lit); (* XXX *)
|
||||
ignore (make_atom_ self lit ?default_pol : atom)
|
||||
let[@inline] set_default_pol (self:t) (lit:lit) (pol:bool) : unit =
|
||||
let a = make_atom_ self lit ~default_pol:pol in
|
||||
|
|
@ -1906,7 +1906,7 @@ module Make(Plugin : PLUGIN)
|
|||
let add_clause_atoms_ self (c:atom array) dp : unit =
|
||||
try
|
||||
let c = Clause.make_a self.store ~removable:false c in
|
||||
if Proof.enabled self.proof then dp self.proof;
|
||||
Proof.with_proof self.proof dp;
|
||||
add_clause_ self c
|
||||
with
|
||||
| E_unsat (US_false c) ->
|
||||
|
|
@ -1921,12 +1921,12 @@ module Make(Plugin : PLUGIN)
|
|||
add_clause_atoms_ self c dp
|
||||
|
||||
let add_input_clause self (c:lit list) =
|
||||
let emit_proof p = Proof.emit_input_clause p (Iter.of_list c) in
|
||||
add_clause self c emit_proof
|
||||
let dp = Proof.emit_input_clause (Iter.of_list c) in
|
||||
add_clause self c dp
|
||||
|
||||
let add_input_clause_a self c =
|
||||
let emit_proof p = Proof.emit_input_clause p (Iter.of_array c) in
|
||||
add_clause_a self c emit_proof
|
||||
let dp = Proof.emit_input_clause (Iter.of_array c) in
|
||||
add_clause_a self c dp
|
||||
|
||||
let solve ?(assumptions=[]) (self:t) : res =
|
||||
cancel_until self 0;
|
||||
|
|
|
|||
|
|
@ -93,8 +93,8 @@ module type ACTS = sig
|
|||
val eval_lit: lit -> lbool
|
||||
(** Obtain current value of the given literal *)
|
||||
|
||||
val mk_lit: ?default_pol:bool -> lit -> unit
|
||||
(** Map the given lit to a literal, which will be decided by the
|
||||
val add_lit: ?default_pol:bool -> lit -> unit
|
||||
(** Map the given lit to an internal atom, which will be decided by the
|
||||
SAT solver. *)
|
||||
|
||||
val add_clause: ?keep:bool -> lit list -> dproof -> unit
|
||||
|
|
|
|||
|
|
@ -103,27 +103,28 @@ module Make(A : ARG)
|
|||
next: th_states;
|
||||
} -> th_states
|
||||
|
||||
type actions = sat_acts
|
||||
type theory_actions = sat_acts
|
||||
|
||||
module Simplify = struct
|
||||
type t = {
|
||||
tst: term_store;
|
||||
ty_st: ty_store;
|
||||
proof: proof;
|
||||
mutable hooks: hook list;
|
||||
cache: Term.t Term.Tbl.t;
|
||||
}
|
||||
and hook = t -> term -> (term * dproof) option
|
||||
and hook = t -> term -> term option
|
||||
|
||||
let create tst ty_st ~proof : t =
|
||||
{tst; ty_st; proof; hooks=[]; cache=Term.Tbl.create 32;}
|
||||
|
||||
let create tst ty_st : t =
|
||||
{tst; ty_st; hooks=[]; cache=Term.Tbl.create 32;}
|
||||
let[@inline] tst self = self.tst
|
||||
let[@inline] ty_st self = self.ty_st
|
||||
let[@inline] with_proof self f = P.with_proof self.proof f
|
||||
let add_hook self f = self.hooks <- f :: self.hooks
|
||||
let clear self = Term.Tbl.clear self.cache
|
||||
|
||||
let normalize (self:t) (t:Term.t) : (Term.t * dproof) option =
|
||||
let sub_proofs_: dproof list ref = ref [] in
|
||||
|
||||
let normalize (self:t) (t:Term.t) : Term.t option =
|
||||
(* compute and cache normal form of [t] *)
|
||||
let rec aux t : Term.t =
|
||||
match Term.Tbl.find self.cache t with
|
||||
|
|
@ -140,33 +141,31 @@ module Make(A : ARG)
|
|||
| h :: hooks_tl ->
|
||||
match h self t with
|
||||
| None -> aux_rec t hooks_tl
|
||||
| Some (u, _) when Term.equal t u -> aux_rec t hooks_tl
|
||||
| Some (u, pr_t_u) ->
|
||||
sub_proofs_ := pr_t_u :: !sub_proofs_;
|
||||
aux u
|
||||
| Some u when Term.equal t u -> aux_rec t hooks_tl
|
||||
| Some u -> aux u (* fixpoint *)
|
||||
in
|
||||
let u = aux t in
|
||||
if Term.equal t u then None
|
||||
else (
|
||||
(* proof: [sub_proofs |- t=u] by CC + subproof *)
|
||||
let emit_proof p =
|
||||
if not (T.Term.equal t u) then (
|
||||
P.begin_subproof p;
|
||||
List.iter (fun dp -> dp p) !sub_proofs_;
|
||||
P.lemma_preprocess p t u;
|
||||
P.end_subproof p;
|
||||
)
|
||||
in
|
||||
Some (u, emit_proof)
|
||||
P.with_proof self.proof (P.lemma_preprocess t u);
|
||||
Some u
|
||||
)
|
||||
|
||||
let normalize_t self t =
|
||||
match normalize self t with
|
||||
| Some (u,pr) -> u, pr
|
||||
| None -> t, (fun _ -> ())
|
||||
| Some u -> u
|
||||
| None -> t
|
||||
end
|
||||
type simplify_hook = Simplify.hook
|
||||
|
||||
module type PREPROCESS_ACTS = sig
|
||||
val mk_lit : ?sign:bool -> term -> lit
|
||||
val add_clause : lit list -> dproof -> unit
|
||||
val add_lit : ?default_pol:bool -> lit -> unit
|
||||
end
|
||||
type preprocess_actions = (module PREPROCESS_ACTS)
|
||||
|
||||
type t = {
|
||||
tst: Term.store; (** state for managing terms *)
|
||||
ty_st: Ty.store;
|
||||
|
|
@ -181,19 +180,18 @@ module Make(A : ARG)
|
|||
simp: Simplify.t;
|
||||
mutable preprocess: preprocess_hook list;
|
||||
mutable mk_model: model_hook list;
|
||||
preprocess_cache: (Term.t * dproof list) Term.Tbl.t;
|
||||
preprocess_cache: Term.t Term.Tbl.t;
|
||||
mutable t_defs : (term*term) list; (* term definitions *)
|
||||
mutable th_states : th_states; (** Set of theories *)
|
||||
mutable on_partial_check: (t -> actions -> lit Iter.t -> unit) list;
|
||||
mutable on_final_check: (t -> actions -> lit Iter.t -> unit) list;
|
||||
mutable on_partial_check: (t -> theory_actions -> lit Iter.t -> unit) list;
|
||||
mutable on_final_check: (t -> theory_actions -> lit Iter.t -> unit) list;
|
||||
mutable level: int;
|
||||
}
|
||||
|
||||
and preprocess_hook =
|
||||
t ->
|
||||
mk_lit:(term -> lit) ->
|
||||
add_clause:(lit list -> dproof -> unit) ->
|
||||
term -> (term * dproof) option
|
||||
preprocess_actions ->
|
||||
term -> term option
|
||||
|
||||
and model_hook =
|
||||
recurse:(t -> CC.N.t -> term) ->
|
||||
|
|
@ -208,6 +206,7 @@ module Make(A : ARG)
|
|||
let[@inline] cc (t:t) = Lazy.force t.cc
|
||||
let[@inline] tst t = t.tst
|
||||
let[@inline] ty_st t = t.ty_st
|
||||
let[@inline] with_proof self f = Proof.with_proof self.proof f
|
||||
let stats t = t.stat
|
||||
|
||||
let define_const (self:t) ~const ~rhs : unit =
|
||||
|
|
@ -215,24 +214,24 @@ module Make(A : ARG)
|
|||
|
||||
let simplifier self = self.simp
|
||||
let simplify_t self (t:Term.t) : _ option = Simplify.normalize self.simp t
|
||||
let simp_t self (t:Term.t) : Term.t * dproof = Simplify.normalize_t self.simp t
|
||||
let simp_t self (t:Term.t) : Term.t = Simplify.normalize_t self.simp t
|
||||
|
||||
let add_simplifier (self:t) f : unit = Simplify.add_hook self.simp f
|
||||
|
||||
let on_preprocess self f = self.preprocess <- f :: self.preprocess
|
||||
let on_model_gen self f = self.mk_model <- f :: self.mk_model
|
||||
|
||||
let push_decision (_self:t) (acts:actions) (lit:lit) : unit =
|
||||
let push_decision (_self:t) (acts:theory_actions) (lit:lit) : unit =
|
||||
let (module A) = acts in
|
||||
let sign = Lit.sign lit in
|
||||
A.add_decision_lit (Lit.abs lit) sign
|
||||
|
||||
let[@inline] raise_conflict self (acts:actions) c proof : 'a =
|
||||
let[@inline] raise_conflict self (acts:theory_actions) c proof : 'a =
|
||||
let (module A) = acts in
|
||||
Stat.incr self.count_conflict;
|
||||
A.raise_conflict c proof
|
||||
|
||||
let[@inline] propagate self (acts:actions) p ~reason : unit =
|
||||
let[@inline] propagate self (acts:theory_actions) p ~reason : unit =
|
||||
let (module A) = acts in
|
||||
Stat.incr self.count_propagate;
|
||||
A.propagate p (Sidekick_sat.Consequence reason)
|
||||
|
|
@ -240,139 +239,176 @@ module Make(A : ARG)
|
|||
let[@inline] propagate_l self acts p cs proof : unit =
|
||||
propagate self acts p ~reason:(fun()->cs,proof)
|
||||
|
||||
let add_sat_clause_ self (acts:actions) ~keep lits (proof:dproof) : unit =
|
||||
let add_sat_clause_ self (acts:theory_actions) ~keep lits (proof:dproof) : unit =
|
||||
let (module A) = acts in
|
||||
Stat.incr self.count_axiom;
|
||||
A.add_clause ~keep lits proof
|
||||
|
||||
let preprocess_term_ (self:t) ~add_clause (t:term) : term * dproof =
|
||||
let mk_lit t = Lit.atom self.tst t in (* no further simplification *)
|
||||
let add_sat_lit self ?default_pol (acts:theory_actions) (lit:Lit.t) : unit =
|
||||
let (module A) = acts in
|
||||
A.add_lit ?default_pol lit
|
||||
|
||||
(* actual preprocessing logic, acting on terms.
|
||||
this calls all the preprocessing hooks on subterms, ensuring
|
||||
a fixpoint. *)
|
||||
let preprocess_term_ (self:t) (module A:PREPROCESS_ACTS) (t:term) : term =
|
||||
let mk_lit_nopreproc t = Lit.atom self.tst t in (* no further simplification *)
|
||||
|
||||
(* compute and cache normal form [u] of [t].
|
||||
Also cache a list of proofs [ps] such
|
||||
that [ps |- t=u] by CC. *)
|
||||
let rec aux t : term * dproof list =
|
||||
match Term.Tbl.find self.preprocess_cache t with
|
||||
| u, ps ->
|
||||
u, ps
|
||||
| exception Not_found ->
|
||||
let sub_p: _ list ref = ref [] in
|
||||
|
||||
Also cache a list of proofs [ps] such that [ps |- t=u] by CC.
|
||||
It is important that we cache the proofs here, because
|
||||
next time we preprocess [t], we will have to re-emit the same
|
||||
proofs, even though we will not do any actual preprocessing work.
|
||||
*)
|
||||
let rec aux t : term =
|
||||
match Term.Tbl.find self.preprocess_cache t with
|
||||
| u -> u
|
||||
| exception Not_found ->
|
||||
(* try rewrite at root *)
|
||||
let t1 = aux_rec ~sub_p t self.preprocess in
|
||||
let t1 = aux_rec t self.preprocess in
|
||||
|
||||
(* map subterms *)
|
||||
let t2 =
|
||||
Term.map_shallow self.tst
|
||||
(fun t_sub ->
|
||||
let u_sub, ps_t = aux t_sub in
|
||||
if not (Term.equal t_sub u_sub) then (
|
||||
sub_p := List.rev_append ps_t !sub_p;
|
||||
);
|
||||
u_sub)
|
||||
t1
|
||||
in
|
||||
let t2 = Term.map_shallow self.tst aux t1 in
|
||||
|
||||
let u =
|
||||
if not (Term.equal t t2) then (
|
||||
(* fixpoint *)
|
||||
let v, ps_t2_v = aux t2 in
|
||||
if not (Term.equal t2 v) then (
|
||||
sub_p := List.rev_append ps_t2_v !sub_p
|
||||
);
|
||||
v
|
||||
aux t2 (* fixpoint *)
|
||||
) else (
|
||||
t2
|
||||
)
|
||||
in
|
||||
|
||||
(* signal boolean subterms, so as to decide them
|
||||
in the SAT solver *)
|
||||
if Ty.is_bool (Term.ty u) then (
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[solver.map-bool-subterm-to-lit@ :subterm %a@])" Term.pp u);
|
||||
|
||||
(* make a literal (already preprocessed) *)
|
||||
let lit = mk_lit_nopreproc u in
|
||||
(* ensure that SAT solver has a boolean atom for [u] *)
|
||||
A.add_lit lit;
|
||||
|
||||
(* also map [sub] to this atom in the congruence closure, for propagation *)
|
||||
let cc = cc self in
|
||||
CC.set_as_lit cc (CC.add_term cc u) lit;
|
||||
);
|
||||
|
||||
if t != u then (
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[smt-solver.preprocess.term@ :from %a@ :to %a@])"
|
||||
Term.pp t Term.pp u);
|
||||
);
|
||||
|
||||
Term.Tbl.add self.preprocess_cache t (u,!sub_p);
|
||||
u, !sub_p
|
||||
Term.Tbl.add self.preprocess_cache t u;
|
||||
u
|
||||
|
||||
(* try each function in [hooks] successively *)
|
||||
and aux_rec ~sub_p t hooks : term =
|
||||
and aux_rec t hooks : term =
|
||||
match hooks with
|
||||
| [] -> t
|
||||
| h :: hooks_tl ->
|
||||
match h self ~mk_lit ~add_clause t with
|
||||
| None -> aux_rec ~sub_p t hooks_tl
|
||||
| Some (u, ps_t_u) ->
|
||||
sub_p := ps_t_u :: !sub_p;
|
||||
let v, ps_u_v = aux u in
|
||||
if t != v then (
|
||||
sub_p := List.rev_append ps_u_v !sub_p;
|
||||
);
|
||||
v
|
||||
match h self (module A) t with
|
||||
| None -> aux_rec t hooks_tl
|
||||
| Some u -> aux u
|
||||
in
|
||||
|
||||
let t1, p_t_t1 = simp_t self t in
|
||||
P.begin_subproof self.proof;
|
||||
|
||||
let u, ps_t1_u = aux t1 in
|
||||
(* simplify the term *)
|
||||
let t1 = simp_t self t in
|
||||
|
||||
let emit_proof_t_eq_u =
|
||||
if t != u then (
|
||||
let hyps =
|
||||
if t == t1 then ps_t1_u
|
||||
else p_t_t1 :: ps_t1_u in
|
||||
let emit_proof p =
|
||||
P.begin_subproof p;
|
||||
List.iter (fun dp -> dp p) hyps;
|
||||
P.lemma_preprocess p t u;
|
||||
P.end_subproof p;
|
||||
in
|
||||
emit_proof
|
||||
) else (fun _->())
|
||||
in
|
||||
|
||||
u, emit_proof_t_eq_u
|
||||
|
||||
(* return preprocessed lit + proof they are equal *)
|
||||
let preprocess_lit_ (self:t) ~add_clause (lit:lit) : lit * dproof =
|
||||
let t, p = Lit.term lit |> preprocess_term_ self ~add_clause in
|
||||
let lit' = Lit.atom self.tst ~sign:(Lit.sign lit) t in
|
||||
|
||||
if not (Lit.equal lit lit') then (
|
||||
Log.debugf 10
|
||||
(fun k->k "(@[smt-solver.preprocess.lit@ :lit %a@ :into %a@])"
|
||||
Lit.pp lit Lit.pp lit');
|
||||
(* preprocess *)
|
||||
let u = aux t1 in
|
||||
(* emit [|- t=u] *)
|
||||
if not (Term.equal t u) then (
|
||||
P.with_proof self.proof (P.lemma_preprocess t u);
|
||||
);
|
||||
|
||||
lit', p
|
||||
P.end_subproof self.proof;
|
||||
u
|
||||
|
||||
(* return preprocessed lit + proof they are equal *)
|
||||
let preprocess_lit_ (self:t) (module A0:PREPROCESS_ACTS) (lit:lit) : lit =
|
||||
|
||||
(* create literal and preprocess it with [pacts], which uses [A0]
|
||||
for the base operations, and preprocesses new literals and clauses
|
||||
recursively. *)
|
||||
let rec mk_lit ?sign t =
|
||||
Log.debug 0 "A.MK_LIT";
|
||||
let u = preprocess_term_ self (Lazy.force pacts) t in
|
||||
if not (Term.equal t u) then (
|
||||
Log.debugf 10
|
||||
(fun k->k "(@[smt-solver.preprocess.t@ :t %a@ :into %a@])"
|
||||
Term.pp t Term.pp u);
|
||||
);
|
||||
Lit.atom self.tst ?sign u
|
||||
|
||||
and preprocess_lit (lit:lit) : lit =
|
||||
let t = Lit.term lit in
|
||||
let sign = Lit.sign lit in
|
||||
mk_lit ~sign t
|
||||
|
||||
(* wrap [A0] so that all operations go throught preprocessing *)
|
||||
and pacts = lazy (
|
||||
(module struct
|
||||
let add_lit ?default_pol lit =
|
||||
let lit = preprocess_lit lit in
|
||||
A0.add_lit lit
|
||||
let add_clause c pr =
|
||||
Stat.incr self.count_preprocess_clause;
|
||||
let c = CCList.map preprocess_lit c in
|
||||
A0.add_clause c pr
|
||||
let mk_lit = mk_lit
|
||||
end : PREPROCESS_ACTS)
|
||||
) in
|
||||
|
||||
preprocess_lit lit
|
||||
|
||||
(* add a clause using [acts] *)
|
||||
let add_clause_ self acts lits (proof:dproof) : unit =
|
||||
Stat.incr self.count_preprocess_clause;
|
||||
add_sat_clause_ self acts ~keep:true lits proof
|
||||
|
||||
(* FIXME: should we store the proof somewhere? *)
|
||||
let mk_lit self acts ?sign t : Lit.t =
|
||||
let add_clause = add_clause_ self acts in
|
||||
let lit, _p =
|
||||
preprocess_lit_ self ~add_clause @@ Lit.atom self.tst ?sign t
|
||||
in
|
||||
lit
|
||||
|
||||
let[@inline] preprocess_term self ~add_clause (t:term) : term * dproof =
|
||||
preprocess_term_ self ~add_clause t
|
||||
|
||||
let[@inline] add_clause_temp self acts lits (proof:dproof) : unit =
|
||||
add_sat_clause_ self acts ~keep:false lits proof
|
||||
|
||||
let[@inline] add_clause_permanent self acts lits (proof:dproof) : unit =
|
||||
add_sat_clause_ self acts ~keep:true lits proof
|
||||
|
||||
let[@inline] add_lit _self (acts:actions) lit : unit =
|
||||
let[@inline] add_lit _self (acts:theory_actions) ?default_pol lit : unit =
|
||||
let (module A) = acts in
|
||||
A.mk_lit lit
|
||||
A.add_lit ?default_pol lit
|
||||
|
||||
let preprocess_acts_of_acts (self:t) (acts:theory_actions) : preprocess_actions =
|
||||
(module struct
|
||||
let mk_lit ?sign t = Lit.atom self.tst ?sign t
|
||||
let add_clause = add_clause_ self acts
|
||||
let add_lit = add_lit self acts
|
||||
end)
|
||||
|
||||
let preprocess_clause_ (self:t) (acts:theory_actions) (c:lit list) : lit list =
|
||||
let pacts = preprocess_acts_of_acts self acts in
|
||||
let c = CCList.map (preprocess_lit_ self pacts) c in
|
||||
c
|
||||
|
||||
(* make literal and preprocess it *)
|
||||
let[@inline] mk_plit (self:t) (pacts:preprocess_actions) ?sign (t:term) : lit =
|
||||
let lit = Lit.atom self.tst ?sign t in
|
||||
preprocess_lit_ self pacts lit
|
||||
|
||||
let[@inline] preprocess_term self (pacts:preprocess_actions) (t:term) : term =
|
||||
preprocess_term_ self pacts t
|
||||
|
||||
let[@inline] add_clause_temp self acts c (proof:dproof) : unit =
|
||||
let c = preprocess_clause_ self acts c in
|
||||
add_sat_clause_ self acts ~keep:false c proof
|
||||
|
||||
let[@inline] add_clause_permanent self acts c (proof:dproof) : unit =
|
||||
let c = preprocess_clause_ self acts c in
|
||||
add_sat_clause_ self acts ~keep:true c proof
|
||||
|
||||
let[@inline] mk_lit (self:t) (acts:theory_actions) ?sign t : lit =
|
||||
let pacts = preprocess_acts_of_acts self acts in
|
||||
mk_plit self pacts ?sign t
|
||||
|
||||
let add_lit_t self acts ?sign t =
|
||||
let lit = mk_lit self acts ?sign t in
|
||||
let pacts = preprocess_acts_of_acts self acts in
|
||||
let lit = mk_plit self pacts ?sign t in
|
||||
add_lit self acts lit
|
||||
|
||||
let on_final_check self f = self.on_final_check <- f :: self.on_final_check
|
||||
|
|
@ -420,7 +456,7 @@ module Make(A : ARG)
|
|||
exception E_loop_exit
|
||||
|
||||
(* handle a literal assumed by the SAT solver *)
|
||||
let assert_lits_ ~final (self:t) (acts:actions) (lits:Lit.t Iter.t) : unit =
|
||||
let assert_lits_ ~final (self:t) (acts:theory_actions) (lits:Lit.t Iter.t) : unit =
|
||||
Log.debugf 2
|
||||
(fun k->k "(@[<hv1>@{<green>smt-solver.assume_lits@}%s[lvl=%d]@ %a@])"
|
||||
(if final then "[final]" else "") self.level (Util.pp_iter ~sep:"; " Lit.pp) lits);
|
||||
|
|
@ -448,7 +484,7 @@ module Make(A : ARG)
|
|||
);
|
||||
()
|
||||
|
||||
let[@inline] iter_atoms_ (acts:actions) : _ Iter.t =
|
||||
let[@inline] iter_atoms_ (acts:theory_actions) : _ Iter.t =
|
||||
fun f ->
|
||||
let (module A) = acts in
|
||||
A.iter_assumptions f
|
||||
|
|
@ -481,7 +517,7 @@ module Make(A : ARG)
|
|||
proof;
|
||||
th_states=Ths_nil;
|
||||
stat;
|
||||
simp=Simplify.create tst ty_st;
|
||||
simp=Simplify.create tst ty_st ~proof;
|
||||
on_progress=(fun () -> ());
|
||||
preprocess=[];
|
||||
mk_model=[];
|
||||
|
|
@ -507,6 +543,7 @@ module Make(A : ARG)
|
|||
si: Solver_internal.t;
|
||||
solver: Sat_solver.t;
|
||||
stat: Stat.t;
|
||||
proof: P.t;
|
||||
count_clause: int Stat.counter;
|
||||
count_solve: int Stat.counter;
|
||||
(* config: Config.t *)
|
||||
|
|
@ -554,7 +591,7 @@ module Make(A : ARG)
|
|||
Log.debug 5 "smt-solver.create";
|
||||
let si = Solver_internal.create ~stat ~proof tst ty_st () in
|
||||
let self = {
|
||||
si;
|
||||
si; proof;
|
||||
solver=Sat_solver.create ~proof ?size si;
|
||||
stat;
|
||||
count_clause=Stat.mk_int stat "solver.add-clause";
|
||||
|
|
@ -567,7 +604,7 @@ module Make(A : ARG)
|
|||
let t_true = Term.bool tst true in
|
||||
Sat_solver.add_clause self.solver
|
||||
[Lit.atom tst t_true]
|
||||
(fun p -> P.lemma_true p t_true)
|
||||
(P.lemma_true t_true)
|
||||
end;
|
||||
self
|
||||
|
||||
|
|
@ -577,65 +614,25 @@ module Make(A : ARG)
|
|||
let[@inline] tst self = Solver_internal.tst self.si
|
||||
let[@inline] ty_st self = Solver_internal.ty_st self.si
|
||||
|
||||
(* map boolean subterms to literals *)
|
||||
let add_bool_subterms_ (self:t) (t:Term.t) : unit =
|
||||
Term.iter_dag t
|
||||
|> Iter.filter (fun t -> Ty.is_bool @@ Term.ty t)
|
||||
|> Iter.filter
|
||||
(fun t -> match A.cc_view t with
|
||||
| Sidekick_core.CC_view.Not _ -> false (* will process the subterm just later *)
|
||||
| _ -> true)
|
||||
|> Iter.filter (fun t -> A.is_valid_literal t)
|
||||
|> Iter.iter
|
||||
(fun sub ->
|
||||
Log.debugf 5 (fun k->k "(@[solver.map-bool-subterm-to-lit@ :subterm %a@])" Term.pp sub);
|
||||
(* ensure that SAT solver has a boolean atom for [sub] *)
|
||||
let lit = Lit.atom self.si.tst sub in
|
||||
Sat_solver.add_lit self.solver lit;
|
||||
(* also map [sub] to this atom in the congruence closure, for propagation *)
|
||||
let cc = cc self in
|
||||
CC.set_as_lit cc (CC.add_term cc sub) lit;
|
||||
())
|
||||
let preprocess_acts_of_solver_
|
||||
(self:t) : (module Solver_internal.PREPROCESS_ACTS) =
|
||||
(module struct
|
||||
let mk_lit ?sign t = Lit.atom ?sign self.si.tst t
|
||||
let add_lit ?default_pol lit =
|
||||
Sat_solver.add_lit self.solver ?default_pol lit
|
||||
let add_clause c pr =
|
||||
Sat_solver.add_clause self.solver c pr
|
||||
end)
|
||||
|
||||
(* preprocess literals, making them ready for being added to the solver *)
|
||||
let rec preprocess_lit_ self lit : Lit.t * dproof =
|
||||
let lit, proof =
|
||||
Solver_internal.preprocess_lit_
|
||||
~add_clause:(fun lits proof ->
|
||||
(* recursively add these sub-literals, so they're also properly processed *)
|
||||
Stat.incr self.si.count_preprocess_clause;
|
||||
let pr_l = ref [] in
|
||||
let lits =
|
||||
CCList.map
|
||||
(fun lit ->
|
||||
let a, pr = preprocess_lit_ self lit in
|
||||
(* FIXME if not (P.is_trivial_refl pr) then ( *)
|
||||
pr_l := pr :: !pr_l;
|
||||
(* ); *)
|
||||
a)
|
||||
lits
|
||||
in
|
||||
let emit_proof p = List.iter (fun dp -> dp p) !pr_l; in
|
||||
Sat_solver.add_clause self.solver lits emit_proof)
|
||||
self.si lit
|
||||
in
|
||||
Sat_solver.add_lit self.solver lit;
|
||||
lit, proof
|
||||
(* preprocess literal *)
|
||||
let preprocess_lit_ (self:t) (lit:lit) : lit =
|
||||
let pacts = preprocess_acts_of_solver_ self in
|
||||
Solver_internal.preprocess_lit_ self.si pacts lit
|
||||
|
||||
(* FIXME: should we just add the proof instead? *)
|
||||
let[@inline] preprocess_lit' self lit : Lit.t =
|
||||
fst (preprocess_lit_ self lit)
|
||||
|
||||
(* FIXME: should we just assert the proof instead? or do we wait because
|
||||
we're most likely in a subproof? *)
|
||||
let rec mk_lit_t (self:t) ?sign (t:term) : lit * dproof =
|
||||
let lit = Lit.atom ?sign self.si.tst t in
|
||||
let lit, proof = preprocess_lit_ self lit in
|
||||
Sat_solver.add_lit self.solver lit;
|
||||
add_bool_subterms_ self (Lit.term lit);
|
||||
lit, proof
|
||||
|
||||
let[@inline] mk_lit_t' self ?sign lit = mk_lit_t self ?sign lit |> fst
|
||||
(* make a literal from a term, ensuring it is properly preprocessed *)
|
||||
let mk_lit_t (self:t) ?sign (t:term) : lit =
|
||||
let pacts = preprocess_acts_of_solver_ self in
|
||||
Solver_internal.mk_plit self.si pacts ?sign t
|
||||
|
||||
(** {2 Result} *)
|
||||
|
||||
|
|
@ -699,12 +696,11 @@ module Make(A : ARG)
|
|||
|
||||
let assert_terms self c =
|
||||
let c = CCList.map (fun t -> Lit.atom (tst self) t) c in
|
||||
let emit_proof p =
|
||||
P.emit_input_clause p (Iter.of_list c)
|
||||
in
|
||||
(* FIXME: just emit proofs on the fly? *)
|
||||
let c = CCList.map (preprocess_lit' self) c in
|
||||
add_clause_l self c emit_proof
|
||||
let c = CCList.map (preprocess_lit_ self) c in
|
||||
(* TODO: if c != c0 then P.emit_redundant_clause c
|
||||
because we jsut preprocessed it away? *)
|
||||
let dp = P.emit_input_clause (Iter.of_list c) in
|
||||
add_clause_l self c dp
|
||||
|
||||
let assert_term self t = assert_terms self [t]
|
||||
|
||||
|
|
|
|||
|
|
@ -233,7 +233,7 @@ let process_stmt
|
|||
(* FIXME: how to map [l] to [assumptions] in proof? *)
|
||||
let assumptions =
|
||||
List.map
|
||||
(fun (sign,t) -> Solver.mk_lit_t' solver ~sign t)
|
||||
(fun (sign,t) -> Solver.mk_lit_t solver ~sign t)
|
||||
l
|
||||
in
|
||||
solve
|
||||
|
|
@ -253,33 +253,24 @@ let process_stmt
|
|||
if pp_cnf then (
|
||||
Format.printf "(@[<hv1>assert@ %a@])@." Term.pp t
|
||||
);
|
||||
let lit = Solver.mk_lit_t' solver t in
|
||||
let lit = Solver.mk_lit_t solver t in
|
||||
Solver.add_clause solver (IArray.singleton lit)
|
||||
(fun p -> Solver.P.emit_input_clause p (Iter.singleton lit));
|
||||
(Solver.P.emit_input_clause (Iter.singleton lit));
|
||||
E.return()
|
||||
|
||||
| Statement.Stmt_assert_clause c_ts ->
|
||||
if pp_cnf then (
|
||||
Format.printf "(@[<hv1>assert-clause@ %a@])@." (Util.pp_list Term.pp) c_ts
|
||||
);
|
||||
let pr_l = ref [] in
|
||||
let c =
|
||||
List.map
|
||||
(fun t ->
|
||||
let lit, pr = Solver.mk_lit_t solver t in
|
||||
pr_l := pr :: !pr_l;
|
||||
lit)
|
||||
c_ts in
|
||||
|
||||
let c = CCList.map (fun t -> Solver.mk_lit_t solver t) c_ts in
|
||||
|
||||
(* proof of assert-input + preprocessing *)
|
||||
let emit_proof p =
|
||||
let module P = Solver.P in
|
||||
P.begin_subproof p;
|
||||
let tst = Solver.tst solver in
|
||||
P.emit_input_clause p (Iter.of_list c_ts |> Iter.map (Lit.atom tst));
|
||||
List.iter (fun dp -> dp p) !pr_l;
|
||||
P.emit_redundant_clause p (Iter.of_list c);
|
||||
P.end_subproof p;
|
||||
P.emit_input_clause (Iter.of_list c_ts |> Iter.map (Lit.atom tst)) p;
|
||||
P.emit_redundant_clause (Iter.of_list c) p;
|
||||
in
|
||||
|
||||
Solver.add_clause solver (IArray.of_list c) emit_proof;
|
||||
|
|
|
|||
|
|
@ -36,20 +36,20 @@ module type ARG = sig
|
|||
Only enable if some theories are susceptible to
|
||||
create boolean formulas during the proof search. *)
|
||||
|
||||
val lemma_bool_tauto : S.P.t -> S.Lit.t Iter.t -> unit
|
||||
val lemma_bool_tauto : S.Lit.t Iter.t -> S.P.t -> unit
|
||||
(** Boolean tautology lemma (clause) *)
|
||||
|
||||
val lemma_bool_c : S.P.t -> string -> term list -> unit
|
||||
val lemma_bool_c : string -> term list -> S.P.t -> unit
|
||||
(** Basic boolean logic lemma for a clause [|- c].
|
||||
[proof_bool_c b name cs] is the rule designated by [name]. *)
|
||||
|
||||
val lemma_bool_equiv : S.P.t -> term -> term -> unit
|
||||
val lemma_bool_equiv : term -> term -> S.P.t -> unit
|
||||
(** Boolean tautology lemma (equivalence) *)
|
||||
|
||||
val lemma_ite_true : S.P.t -> a:term -> ite:term -> unit
|
||||
val lemma_ite_true : a:term -> ite:term -> S.P.t -> unit
|
||||
(** lemma [a => ite a b c = b] *)
|
||||
|
||||
val lemma_ite_false : S.P.t -> a:term -> ite:term -> unit
|
||||
val lemma_ite_false : a:term -> ite:term -> S.P.t -> unit
|
||||
(** lemma [¬a => ite a b c = c] *)
|
||||
|
||||
(** Fresh symbol generator.
|
||||
|
|
@ -102,7 +102,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
type state = {
|
||||
tst: T.store;
|
||||
ty_st: Ty.store;
|
||||
cnf: (Lit.t * SI.dproof) T.Tbl.t; (* tseitin CNF *)
|
||||
cnf: Lit.t T.Tbl.t; (* tseitin CNF *)
|
||||
gensym: A.Gensym.t;
|
||||
}
|
||||
|
||||
|
|
@ -118,14 +118,16 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
let is_true t = match T.as_bool t with Some true -> true | _ -> false
|
||||
let is_false t = match T.as_bool t with Some false -> true | _ -> false
|
||||
|
||||
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : (T.t * SI.dproof) option =
|
||||
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : T.t option =
|
||||
let tst = self.tst in
|
||||
let ret u =
|
||||
let emit_proof p =
|
||||
A.lemma_bool_equiv p t u;
|
||||
A.S.P.lemma_preprocess p t u;
|
||||
in
|
||||
Some (u, emit_proof)
|
||||
if not (T.equal t u) then (
|
||||
SI.Simplify.with_proof simp (fun p ->
|
||||
A.lemma_bool_equiv t u p;
|
||||
A.S.P.lemma_preprocess t u p;
|
||||
);
|
||||
);
|
||||
Some u
|
||||
in
|
||||
match A.view_as_bool t with
|
||||
| B_bool _ -> None
|
||||
|
|
@ -148,14 +150,14 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
| B_ite (a,b,c) ->
|
||||
(* directly simplify [a] so that maybe we never will simplify one
|
||||
of the branches *)
|
||||
let a, pr_a = SI.Simplify.normalize_t simp a in
|
||||
let a = SI.Simplify.normalize_t simp a in
|
||||
begin match A.view_as_bool a with
|
||||
| B_bool true ->
|
||||
let emit_proof p = pr_a p; A.lemma_ite_true p ~a ~ite:t in
|
||||
Some (b, emit_proof)
|
||||
SI.Simplify.with_proof simp (A.lemma_ite_true ~a ~ite:t);
|
||||
Some b
|
||||
| B_bool false ->
|
||||
let emit_proof p = pr_a p; A.lemma_ite_false p ~a ~ite:t in
|
||||
Some (c, emit_proof)
|
||||
SI.Simplify.with_proof simp (A.lemma_ite_false ~a ~ite:t);
|
||||
Some c
|
||||
| _ ->
|
||||
None
|
||||
end
|
||||
|
|
@ -186,136 +188,124 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
proxy, mk_lit proxy
|
||||
|
||||
(* preprocess "ite" away *)
|
||||
let preproc_ite self si ~mk_lit ~add_clause (t:T.t) : (T.t * SI.dproof) option =
|
||||
let preproc_ite self si (module PA:SI.PREPROCESS_ACTS) (t:T.t) : T.t option =
|
||||
match A.view_as_bool t with
|
||||
| B_ite (a,b,c) ->
|
||||
let a, pr_a = SI.simp_t si a in
|
||||
let a = SI.simp_t si a in
|
||||
begin match A.view_as_bool a with
|
||||
| B_bool true ->
|
||||
(* [a=true |- ite a b c=b], [|- a=true] ==> [|- t=b] *)
|
||||
let emit_proof p = pr_a p; A.lemma_ite_true p ~a ~ite:t in
|
||||
Some (b, emit_proof)
|
||||
SI.with_proof si (A.lemma_ite_true ~a ~ite:t);
|
||||
Some b
|
||||
| B_bool false ->
|
||||
(* [a=false |- ite a b c=c], [|- a=false] ==> [|- t=c] *)
|
||||
let emit_proof p = pr_a p; A.lemma_ite_false p ~a ~ite:t in
|
||||
Some (c, emit_proof)
|
||||
SI.with_proof si (A.lemma_ite_false ~a ~ite:t);
|
||||
Some c
|
||||
| _ ->
|
||||
let t_ite = fresh_term self ~for_t:t ~pre:"ite" (T.ty b) in
|
||||
SI.define_const si ~const:t_ite ~rhs:t;
|
||||
let lit_a = mk_lit a in
|
||||
add_clause [Lit.neg lit_a; mk_lit (eq self.tst t_ite b)]
|
||||
(fun p -> A.lemma_ite_true p ~a ~ite:t);
|
||||
add_clause [lit_a; mk_lit (eq self.tst t_ite c)]
|
||||
SI.with_proof si (SI.P.define_term t_ite t);
|
||||
let lit_a = PA.mk_lit a in
|
||||
PA.add_clause [Lit.neg lit_a; PA.mk_lit (eq self.tst t_ite b)]
|
||||
(fun p -> A.lemma_ite_true ~a ~ite:t p);
|
||||
PA.add_clause [lit_a; PA.mk_lit (eq self.tst t_ite c)]
|
||||
(fun p -> A.lemma_ite_false p ~a ~ite:t);
|
||||
Some (t_ite, fun p -> SI.P.define_term p t_ite t)
|
||||
Some t_ite
|
||||
end
|
||||
| _ -> None
|
||||
|
||||
(* TODO: polarity? *)
|
||||
let cnf (self:state) (si:SI.t) ~mk_lit ~add_clause (t:T.t) : (T.t * SI.dproof) option =
|
||||
let rec get_lit_and_proof_ (t:T.t) : Lit.t * _ =
|
||||
let cnf (self:state) (si:SI.t) (module PA:SI.PREPROCESS_ACTS) (t:T.t) : T.t option =
|
||||
let rec get_lit (t:T.t) : Lit.t =
|
||||
let t_abs, t_sign = T.abs self.tst t in
|
||||
let lit_abs, pr =
|
||||
let lit_abs =
|
||||
match T.Tbl.find self.cnf t_abs with
|
||||
| lit_pr -> lit_pr (* cached *)
|
||||
| lit -> lit (* cached *)
|
||||
| exception Not_found ->
|
||||
(* compute and cache *)
|
||||
let lit, pr = get_lit_uncached si t_abs in
|
||||
let lit = get_lit_uncached si t_abs in
|
||||
if not (T.equal (Lit.term lit) t_abs) then (
|
||||
T.Tbl.add self.cnf t_abs (lit, pr);
|
||||
T.Tbl.add self.cnf t_abs lit;
|
||||
Log.debugf 20
|
||||
(fun k->k "(@[sidekick.bool.add-lit@ :lit %a@ :for-t %a@])"
|
||||
Lit.pp lit T.pp t_abs);
|
||||
);
|
||||
lit, pr
|
||||
lit
|
||||
in
|
||||
|
||||
let lit = if t_sign then lit_abs else Lit.neg lit_abs in
|
||||
lit, pr
|
||||
lit
|
||||
|
||||
and equiv_ si ~get_lit ~is_xor ~for_t t_a t_b : Lit.t * SI.dproof =
|
||||
and equiv_ si ~get_lit ~is_xor ~for_t t_a t_b : Lit.t =
|
||||
let a = get_lit t_a in
|
||||
let b = get_lit t_b in
|
||||
let a = if is_xor then Lit.neg a else a in (* [a xor b] is [(¬a) = b] *)
|
||||
let t_proxy, proxy = fresh_lit ~for_t ~mk_lit ~pre:"equiv_" self in
|
||||
let t_proxy, proxy = fresh_lit ~for_t ~mk_lit:PA.mk_lit ~pre:"equiv_" self in
|
||||
|
||||
SI.define_const si ~const:t_proxy ~rhs:for_t;
|
||||
SI.with_proof si (SI.P.define_term t_proxy for_t);
|
||||
|
||||
let add_clause c pr =
|
||||
add_clause c pr
|
||||
PA.add_clause c pr
|
||||
in
|
||||
|
||||
(* proxy => a<=> b,
|
||||
¬proxy => a xor b *)
|
||||
add_clause [Lit.neg proxy; Lit.neg a; b]
|
||||
(fun p ->
|
||||
if is_xor then A.lemma_bool_c p "xor-e+" [t_proxy]
|
||||
else A.lemma_bool_c p "eq-e" [t_proxy; t_a]);
|
||||
(if is_xor then A.lemma_bool_c "xor-e+" [t_proxy]
|
||||
else A.lemma_bool_c "eq-e" [t_proxy; t_a]);
|
||||
add_clause [Lit.neg proxy; Lit.neg b; a]
|
||||
(fun p ->
|
||||
if is_xor then A.lemma_bool_c p "xor-e-" [t_proxy]
|
||||
else A.lemma_bool_c p "eq-e" [t_proxy; t_b]);
|
||||
(if is_xor then A.lemma_bool_c "xor-e-" [t_proxy]
|
||||
else A.lemma_bool_c "eq-e" [t_proxy; t_b]);
|
||||
add_clause [proxy; a; b]
|
||||
(fun p -> if is_xor then A.lemma_bool_c p "xor-i" [t_proxy; t_a]
|
||||
else A.lemma_bool_c p "eq-i+" [t_proxy]);
|
||||
(if is_xor then A.lemma_bool_c "xor-i" [t_proxy; t_a]
|
||||
else A.lemma_bool_c "eq-i+" [t_proxy]);
|
||||
add_clause [proxy; Lit.neg a; Lit.neg b]
|
||||
(fun p ->
|
||||
if is_xor then A.lemma_bool_c p "xor-i" [t_proxy; t_b]
|
||||
else A.lemma_bool_c p "eq-i-" [t_proxy]);
|
||||
proxy, (fun p->SI.P.define_term p t_proxy for_t)
|
||||
(if is_xor then A.lemma_bool_c "xor-i" [t_proxy; t_b]
|
||||
else A.lemma_bool_c "eq-i-" [t_proxy]);
|
||||
proxy
|
||||
|
||||
(* make a literal for [t], with a proof of [|- abs(t) = abs(lit)] *)
|
||||
and get_lit_uncached si t : Lit.t * SI.dproof =
|
||||
let sub_p = ref [] in
|
||||
|
||||
let get_lit t =
|
||||
let lit, pr = get_lit_and_proof_ t in
|
||||
if Lit.term lit != t then (
|
||||
sub_p := pr :: !sub_p;
|
||||
);
|
||||
lit
|
||||
in
|
||||
|
||||
and get_lit_uncached si t : Lit.t =
|
||||
match A.view_as_bool t with
|
||||
| B_bool b -> mk_lit (T.bool self.tst b), (fun _->())
|
||||
| B_opaque_bool t -> mk_lit t, (fun _->())
|
||||
| B_bool b -> PA.mk_lit (T.bool self.tst b)
|
||||
| B_opaque_bool t -> PA.mk_lit t
|
||||
| B_not u ->
|
||||
let lit, pr = get_lit_and_proof_ u in
|
||||
Lit.neg lit, pr
|
||||
let lit = get_lit u in
|
||||
Lit.neg lit
|
||||
|
||||
| B_and l ->
|
||||
let t_subs = Iter.to_list l in
|
||||
let subs = List.map get_lit t_subs in
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit ~pre:"and_" self in
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit:PA.mk_lit ~pre:"and_" self in
|
||||
SI.define_const si ~const:t_proxy ~rhs:t;
|
||||
SI.with_proof si (SI.P.define_term t_proxy t);
|
||||
(* add clauses *)
|
||||
List.iter2
|
||||
(fun t_u u ->
|
||||
add_clause
|
||||
PA.add_clause
|
||||
[Lit.neg proxy; u]
|
||||
(fun p -> A.lemma_bool_c p "and-e" [t_proxy; t_u]))
|
||||
(A.lemma_bool_c "and-e" [t_proxy; t_u]))
|
||||
t_subs subs;
|
||||
add_clause (proxy :: List.map Lit.neg subs)
|
||||
(fun p -> A.lemma_bool_c p "and-i" [t_proxy]);
|
||||
let emit_proof p =
|
||||
SI.P.define_term p t_proxy t;
|
||||
in
|
||||
proxy, emit_proof
|
||||
PA.add_clause (proxy :: List.map Lit.neg subs)
|
||||
(A.lemma_bool_c "and-i" [t_proxy]);
|
||||
proxy
|
||||
|
||||
| B_or l ->
|
||||
let t_subs = Iter.to_list l in
|
||||
let subs = List.map get_lit t_subs in
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit ~pre:"or_" self in
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit:PA.mk_lit ~pre:"or_" self in
|
||||
SI.define_const si ~const:t_proxy ~rhs:t;
|
||||
SI.with_proof si (SI.P.define_term t_proxy t);
|
||||
(* add clauses *)
|
||||
List.iter2
|
||||
(fun t_u u ->
|
||||
add_clause [Lit.neg u; proxy]
|
||||
(fun p -> A.lemma_bool_c p "or-i" [t_proxy; t_u]))
|
||||
PA.add_clause [Lit.neg u; proxy]
|
||||
(A.lemma_bool_c "or-i" [t_proxy; t_u]))
|
||||
t_subs subs;
|
||||
add_clause (Lit.neg proxy :: subs)
|
||||
(fun p -> A.lemma_bool_c p "or-e" [t_proxy]);
|
||||
let emit_proof p = SI.P.define_term p t_proxy t in
|
||||
proxy, emit_proof
|
||||
PA.add_clause (Lit.neg proxy :: subs)
|
||||
(A.lemma_bool_c "or-e" [t_proxy]);
|
||||
proxy
|
||||
|
||||
| B_imply (t_args, t_u) ->
|
||||
(* transform into [¬args \/ u] on the fly *)
|
||||
|
|
@ -325,35 +315,35 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
let subs = u :: args in
|
||||
|
||||
(* now the or-encoding *)
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit ~pre:"implies_" self in
|
||||
let t_proxy, proxy = fresh_lit ~for_t:t ~mk_lit:PA.mk_lit ~pre:"implies_" self in
|
||||
SI.define_const si ~const:t_proxy ~rhs:t;
|
||||
SI.with_proof si (SI.P.define_term t_proxy t);
|
||||
|
||||
(* add clauses *)
|
||||
List.iter2
|
||||
(fun t_u u ->
|
||||
add_clause [Lit.neg u; proxy]
|
||||
(fun p -> A.lemma_bool_c p "imp-i" [t_proxy; t_u]))
|
||||
PA.add_clause [Lit.neg u; proxy]
|
||||
(A.lemma_bool_c "imp-i" [t_proxy; t_u]))
|
||||
(t_u::t_args) subs;
|
||||
add_clause (Lit.neg proxy :: subs)
|
||||
(fun p -> A.lemma_bool_c p "imp-e" [t_proxy]);
|
||||
let emit_proof p = SI.P.define_term p t_proxy t in
|
||||
proxy, emit_proof
|
||||
PA.add_clause (Lit.neg proxy :: subs)
|
||||
(A.lemma_bool_c "imp-e" [t_proxy]);
|
||||
proxy
|
||||
|
||||
| B_ite _ | B_eq _ | B_neq _ -> mk_lit t, (fun _ ->())
|
||||
| B_ite _ | B_eq _ | B_neq _ -> PA.mk_lit t
|
||||
| B_equiv (a,b) -> equiv_ si ~get_lit ~for_t:t ~is_xor:false a b
|
||||
| B_xor (a,b) -> equiv_ si ~get_lit ~for_t:t ~is_xor:true a b
|
||||
| B_atom u -> mk_lit u, (fun _->())
|
||||
| B_atom u -> PA.mk_lit u
|
||||
in
|
||||
|
||||
let lit, pr = get_lit_and_proof_ t in
|
||||
let lit = get_lit t in
|
||||
let u = Lit.term lit in
|
||||
(* put sign back as a "not" *)
|
||||
let u = if Lit.sign lit then u else A.mk_bool self.tst (B_not u) in
|
||||
if T.equal u t then None else Some (u, pr)
|
||||
if T.equal u t then None else Some u
|
||||
|
||||
(* check if new terms were added to the congruence closure, that can be turned
|
||||
into clauses *)
|
||||
let check_new_terms (self:state) si (acts:SI.actions) (_trail:_ Iter.t) : unit =
|
||||
let check_new_terms (self:state) si (acts:SI.theory_actions) (_trail:_ Iter.t) : unit =
|
||||
let cc_ = SI.cc si in
|
||||
let all_terms =
|
||||
let open SI in
|
||||
|
|
@ -362,15 +352,14 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|> Iter.map CC.N.term
|
||||
in
|
||||
let cnf_of t =
|
||||
cnf self si t
|
||||
~mk_lit:(SI.mk_lit si acts) ~add_clause:(SI.add_clause_permanent si acts)
|
||||
let pacts = SI.preprocess_acts_of_acts si acts in
|
||||
cnf self si pacts t
|
||||
in
|
||||
begin
|
||||
all_terms
|
||||
(fun t -> match cnf_of t with
|
||||
| None -> ()
|
||||
| Some (u, _pr_t_u) ->
|
||||
(* FIXME: what to do with pr_t_u? emit it? *)
|
||||
| Some u ->
|
||||
Log.debugf 5
|
||||
(fun k->k "(@[th-bool-static.final-check.cnf@ %a@ :yields %a@])"
|
||||
T.pp t T.pp u);
|
||||
|
|
|
|||
|
|
@ -74,9 +74,9 @@ module type ARG = sig
|
|||
val ty_is_finite : S.T.Ty.t -> bool
|
||||
val ty_set_is_finite : S.T.Ty.t -> bool -> unit
|
||||
|
||||
val lemma_isa_split : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_isa_disj : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_cstor_inj : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_isa_split : S.Lit.t Iter.t -> S.proof -> unit
|
||||
val lemma_isa_disj : S.Lit.t Iter.t -> S.proof -> unit
|
||||
val lemma_cstor_inj : S.Lit.t Iter.t -> S.proof -> unit
|
||||
end
|
||||
|
||||
(** Helper to compute the cardinality of types *)
|
||||
|
|
@ -496,7 +496,7 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
end;
|
||||
g
|
||||
|
||||
let check (self:t) (solver:SI.t) (acts:SI.actions) : unit =
|
||||
let check (self:t) (solver:SI.t) (acts:SI.theory_actions) : unit =
|
||||
let cc = SI.cc solver in
|
||||
(* create graph *)
|
||||
let g = mk_graph self cc in
|
||||
|
|
@ -574,19 +574,19 @@ module Make(A : ARG) : S with module A = A = struct
|
|||
|> Iter.to_rev_list
|
||||
in
|
||||
SI.add_clause_permanent solver acts c
|
||||
(fun p -> A.lemma_isa_split p (Iter.of_list c));
|
||||
(A.lemma_isa_split (Iter.of_list c));
|
||||
Iter.diagonal_l c
|
||||
(fun (c1,c2) ->
|
||||
let emit_proof p =
|
||||
A.lemma_isa_disj p (Iter.of_list [SI.Lit.neg c1; SI.Lit.neg c2]) in
|
||||
let pr =
|
||||
A.lemma_isa_disj (Iter.of_list [SI.Lit.neg c1; SI.Lit.neg c2]) in
|
||||
SI.add_clause_permanent solver acts
|
||||
[SI.Lit.neg c1; SI.Lit.neg c2] emit_proof);
|
||||
[SI.Lit.neg c1; SI.Lit.neg c2] pr);
|
||||
)
|
||||
|
||||
(* on final check, check acyclicity,
|
||||
then make sure we have done case split on all terms that
|
||||
need it. *)
|
||||
let on_final_check (self:t) (solver:SI.t) (acts:SI.actions) trail =
|
||||
let on_final_check (self:t) (solver:SI.t) (acts:SI.theory_actions) trail =
|
||||
Profile.with_ "data.final-check" @@ fun () ->
|
||||
check_is_a self solver acts trail;
|
||||
|
||||
|
|
|
|||
|
|
@ -74,9 +74,9 @@ module type ARG = sig
|
|||
|
||||
(* TODO: should we store this ourself? would be simpler… *)
|
||||
|
||||
val lemma_isa_split : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_isa_disj : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_cstor_inj : S.proof -> S.Lit.t Iter.t -> unit
|
||||
val lemma_isa_split : S.Lit.t Iter.t -> S.proof -> unit
|
||||
val lemma_isa_disj : S.Lit.t Iter.t -> S.proof -> unit
|
||||
val lemma_cstor_inj : S.Lit.t Iter.t -> S.proof -> unit
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue