mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
Moved some type def outside Plugins/Theories
This commit is contained in:
parent
46b621269c
commit
eb2850caa6
6 changed files with 107 additions and 149 deletions
|
|
@ -6,7 +6,9 @@ Copyright 2014 Simon Cruanes
|
|||
|
||||
module Make
|
||||
(St : Solver_types.S)
|
||||
(Th : Plugin_intf.S with type term = St.term and type formula = St.formula and type proof = St.proof)
|
||||
(Plugin : Plugin_intf.S with type term = St.term
|
||||
and type formula = St.formula
|
||||
and type proof = St.proof)
|
||||
(Dummy: sig end)
|
||||
= struct
|
||||
|
||||
|
|
@ -25,7 +27,7 @@ module Make
|
|||
(* User levels always refer to decision_level 0 *)
|
||||
ul_elt_lvl : int; (* Number of atoms in trail at decision level 0 *)
|
||||
ul_th_lvl : int; (* Number of atoms known by the theory at decicion level 0 *)
|
||||
ul_th_env : Th.level; (* Theory state at level 0 *)
|
||||
ul_th_env : Plugin.level; (* Theory state at level 0 *)
|
||||
ul_clauses : int; (* number of clauses *)
|
||||
ul_learnt : int; (* number of learnt clauses *)
|
||||
}
|
||||
|
|
@ -48,7 +50,7 @@ module Make
|
|||
|
||||
elt_levels : int Vec.t;
|
||||
(* decision levels in [trail] *)
|
||||
th_levels : Th.level Vec.t;
|
||||
th_levels : Plugin.level Vec.t;
|
||||
(* theory states corresponding to elt_levels *)
|
||||
user_levels : user_level Vec.t;
|
||||
(* user-defined levels, for {!push} and {!pop} *)
|
||||
|
|
@ -120,14 +122,14 @@ module Make
|
|||
|
||||
elt_queue = Vec.make 601 (of_atom dummy_atom);
|
||||
elt_levels = Vec.make 601 (-1);
|
||||
th_levels = Vec.make 100 Th.dummy;
|
||||
th_levels = Vec.make 100 Plugin.dummy;
|
||||
|
||||
user_levels = Vec.make 20 {
|
||||
ul_elt_lvl = 0;
|
||||
ul_th_lvl = 0;
|
||||
ul_learnt = 0;
|
||||
ul_clauses = 0;
|
||||
ul_th_env = Th.dummy;
|
||||
ul_th_env = Plugin.dummy;
|
||||
};
|
||||
|
||||
order = Iheap.init 0;
|
||||
|
|
@ -199,7 +201,7 @@ module Make
|
|||
let l = Vec.get env.elt_levels 0 in
|
||||
l, l
|
||||
and ul_th_env =
|
||||
if Vec.is_empty env.th_levels then Th.current_level ()
|
||||
if Vec.is_empty env.th_levels then Plugin.current_level ()
|
||||
else Vec.get env.th_levels 0
|
||||
in
|
||||
(* Keep in mind what are the current assumptions. *)
|
||||
|
|
@ -230,7 +232,7 @@ module Make
|
|||
List.iter f (Hashtbl.find iter_map v.vid)
|
||||
with Not_found ->
|
||||
let l = ref [] in
|
||||
Th.iter_assignable (fun t -> l := add_term t :: !l) v.pa.lit;
|
||||
Plugin.iter_assignable (fun t -> l := add_term t :: !l) v.pa.lit;
|
||||
Hashtbl.add iter_map v.vid !l;
|
||||
List.iter f !l
|
||||
|
||||
|
|
@ -397,7 +399,7 @@ module Make
|
|||
assert (env.th_head = Vec.size env.elt_queue);
|
||||
assert (env.elt_head = Vec.size env.elt_queue);
|
||||
Vec.push env.elt_levels (Vec.size env.elt_queue);
|
||||
Vec.push env.th_levels (Th.current_level ()); (* save the current tenv *)
|
||||
Vec.push env.th_levels (Plugin.current_level ()); (* save the current tenv *)
|
||||
()
|
||||
|
||||
(* Attach/Detach a clause.
|
||||
|
|
@ -464,7 +466,7 @@ module Make
|
|||
end
|
||||
done;
|
||||
(* Recover the right theory state. *)
|
||||
Th.backtrack (Vec.get env.th_levels lvl);
|
||||
Plugin.backtrack (Vec.get env.th_levels lvl);
|
||||
(* Resize the vectors according to their new size. *)
|
||||
Vec.shrink env.elt_queue ((Vec.size env.elt_queue) - env.elt_head);
|
||||
Vec.shrink env.elt_levels ((Vec.size env.elt_levels) - lvl);
|
||||
|
|
@ -534,9 +536,9 @@ module Make
|
|||
|
||||
let th_eval a =
|
||||
if a.is_true || a.neg.is_true then None
|
||||
else match Th.eval a.lit with
|
||||
| Th.Unknown -> None
|
||||
| Th.Valued (b, lvl) ->
|
||||
else match Plugin.eval a.lit with
|
||||
| Plugin_intf.Unknown -> None
|
||||
| Plugin_intf.Valued (b, lvl) ->
|
||||
let atom = if b then a else a.neg in
|
||||
enqueue_bool atom lvl (Semantic lvl);
|
||||
Some b
|
||||
|
|
@ -812,8 +814,10 @@ module Make
|
|||
|
||||
let slice_get i =
|
||||
match Vec.get env.elt_queue i with
|
||||
| Either.Right a -> Th.Lit a.lit, a.var.v_level
|
||||
| Either.Left {l_level; term; assigned = Some v} -> Th.Assign (term, v), l_level
|
||||
| Either.Right a ->
|
||||
Plugin_intf.Lit a.lit
|
||||
| Either.Left {l_level; term; assigned = Some v} ->
|
||||
Plugin_intf.Assign (term, v, l_level)
|
||||
| Either.Left _ -> assert false
|
||||
|
||||
let slice_push l lemma =
|
||||
|
|
@ -828,21 +832,21 @@ module Make
|
|||
Iheap.grow_to_by_double env.order (St.nb_elt ());
|
||||
enqueue_bool a lvl (Semantic lvl)
|
||||
|
||||
let current_slice () = Th.({
|
||||
start = env.th_head;
|
||||
let current_slice () = {
|
||||
Plugin_intf.start = env.th_head;
|
||||
length = (Vec.size env.elt_queue) - env.th_head;
|
||||
get = slice_get;
|
||||
push = slice_push;
|
||||
propagate = slice_propagate;
|
||||
})
|
||||
}
|
||||
|
||||
let full_slice () = Th.({
|
||||
start = 0;
|
||||
let full_slice () = {
|
||||
Plugin_intf.start = 0;
|
||||
length = Vec.size env.elt_queue;
|
||||
get = slice_get;
|
||||
push = slice_push;
|
||||
propagate = (fun _ -> assert false);
|
||||
})
|
||||
}
|
||||
|
||||
let rec theory_propagate () =
|
||||
assert (env.elt_head = Vec.size env.elt_queue);
|
||||
|
|
@ -851,10 +855,10 @@ module Make
|
|||
else begin
|
||||
let slice = current_slice () in
|
||||
env.th_head <- env.elt_head;
|
||||
match Th.assume slice with
|
||||
| Th.Sat ->
|
||||
match Plugin.assume slice with
|
||||
| Plugin_intf.Sat ->
|
||||
propagate ()
|
||||
| Th.Unsat (l, p) ->
|
||||
| Plugin_intf.Unsat (l, p) ->
|
||||
let l = List.rev_map new_atom l in
|
||||
Iheap.grow_to_by_double env.order (St.nb_elt ());
|
||||
List.iter (fun a -> insert_var_order (elt_of_var a.var)) l;
|
||||
|
|
@ -965,13 +969,13 @@ module Make
|
|||
if v.v_level >= 0 then begin
|
||||
assert (v.pa.is_true || v.na.is_true);
|
||||
pick_branch_lit ()
|
||||
end else match Th.eval atom.lit with
|
||||
| Th.Unknown ->
|
||||
end else match Plugin.eval atom.lit with
|
||||
| Plugin_intf.Unknown ->
|
||||
env.decisions <- env.decisions + 1;
|
||||
new_decision_level();
|
||||
let current_level = decision_level () in
|
||||
enqueue_bool atom current_level Decision
|
||||
| Th.Valued (b, lvl) ->
|
||||
| Plugin_intf.Valued (b, lvl) ->
|
||||
let a = if b then atom else atom.neg in
|
||||
enqueue_bool a lvl (Semantic lvl)
|
||||
|
||||
|
|
@ -987,7 +991,7 @@ module Make
|
|||
if l.l_level >= 0 then
|
||||
pick_branch_lit ()
|
||||
else begin
|
||||
let value = Th.assign l.term in
|
||||
let value = Plugin.assign l.term in
|
||||
env.decisions <- env.decisions + 1;
|
||||
new_decision_level();
|
||||
let current_level = decision_level () in
|
||||
|
|
@ -1064,7 +1068,7 @@ module Make
|
|||
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
|
||||
n_of_learnts := !n_of_learnts *. env.learntsize_inc
|
||||
| Sat ->
|
||||
Th.if_sat (full_slice ());
|
||||
Plugin.if_sat (full_slice ());
|
||||
if is_unsat () then raise Unsat
|
||||
else if env.elt_head = Vec.size env.elt_queue (* sanity check *)
|
||||
&& env.elt_head = St.nb_elt () (* this is the important test to know if the search is finished *) then
|
||||
|
|
@ -1148,7 +1152,7 @@ module Make
|
|||
end
|
||||
end
|
||||
done;
|
||||
Th.backtrack th_env; (* recover the right theory env *)
|
||||
Plugin.backtrack th_env; (* recover the right theory env *)
|
||||
Vec.shrink env.elt_queue ((Vec.size env.elt_queue) - env.elt_head);
|
||||
Vec.clear env.elt_levels;
|
||||
Vec.clear env.th_levels;
|
||||
|
|
|
|||
|
|
@ -12,6 +12,39 @@
|
|||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
type eval_res =
|
||||
| Valued of bool * int
|
||||
| Unknown
|
||||
(** The type of evaluation results, either the given formula cannot be
|
||||
evaluated, or it can thanks to assignment. In that case, the level
|
||||
of the evaluation is the maximum of levels of assignemnts needed
|
||||
to evaluate the given formula. *)
|
||||
|
||||
type ('formula, 'proof) res =
|
||||
| Sat
|
||||
| Unsat of 'formula list * 'proof
|
||||
(** Type returned by the theory, either the current set of assumptions is satisfiable,
|
||||
or it is not, in which case a tautological clause (hopefully minimal) is returned.
|
||||
Formulas in the unsat clause must come from the current set of assumptions, i.e
|
||||
must have been encountered in a slice. *)
|
||||
|
||||
type ('term, 'formula) assumption =
|
||||
| Lit of 'formula
|
||||
| Assign of 'term * 'term * int (* Assign(x, alpha) *)
|
||||
(** Asusmptions made by the core SAT solver. Can be either a formula, or an assignment.
|
||||
Assignemnt are given a level. *)
|
||||
|
||||
type ('term, 'formula, 'proof) slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
get : int -> ('term, 'formula) assumption;
|
||||
push : 'formula list -> 'proof -> unit;
|
||||
propagate : 'formula -> int -> unit;
|
||||
}
|
||||
(** The type for a slice of litterals to assume/propagate in the theory.
|
||||
[get] operations should only be used for integers [ start <= i < start + length].
|
||||
[push clause proof] allows to add a tautological clause to the sat solver. *)
|
||||
|
||||
module type S = sig
|
||||
(** Signature for theories to be given to the Model Constructing Solver. *)
|
||||
|
||||
|
|
@ -24,36 +57,9 @@ module type S = sig
|
|||
type proof
|
||||
(** A custom type for the proofs of lemmas produced by the theory. *)
|
||||
|
||||
type assumption =
|
||||
| Lit of formula
|
||||
| Assign of term * term (* Assign(x, alpha) *)
|
||||
|
||||
type slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
get : int -> assumption * int;
|
||||
push : formula list -> proof -> unit;
|
||||
propagate : formula -> int -> unit;
|
||||
}
|
||||
(** The type for a slice of litterals to assume/propagate in the theory.
|
||||
[get] operations should only be used for integers [ start <= i < start + length].
|
||||
[push clause proof] allows to add a tautological clause to the sat solver. *)
|
||||
|
||||
type level
|
||||
(** The type for levels to allow backtracking. *)
|
||||
|
||||
(** Type returned by the theory, either the current set of assumptions is satisfiable,
|
||||
or it is not, in which case a tautological clause (hopefully minimal) is returned.
|
||||
Formulas in the unsat clause must come from the current set of assumptions, i.e
|
||||
must have been encountered in a slice. *)
|
||||
type res =
|
||||
| Sat
|
||||
| Unsat of formula list * proof
|
||||
|
||||
type eval_res =
|
||||
| Valued of bool * int
|
||||
| Unknown
|
||||
|
||||
val dummy : level
|
||||
(** A dummy level. *)
|
||||
|
||||
|
|
@ -61,7 +67,7 @@ module type S = sig
|
|||
(** Return the current level of the theory (either the empty/beginning state, or the
|
||||
last level returned by the [assume] function). *)
|
||||
|
||||
val assume : slice -> res
|
||||
val assume : (term, formula, proof) slice -> (formula, proof) res
|
||||
(** Assume the formulas in the slice, possibly pushing new formulas to be propagated,
|
||||
and returns the result of the new assumptions. *)
|
||||
|
||||
|
|
@ -78,7 +84,7 @@ module type S = sig
|
|||
val eval : formula -> eval_res
|
||||
(** Returns the evaluation of the formula in the current assignment *)
|
||||
|
||||
val if_sat : slice -> unit
|
||||
val if_sat : (term, formula, proof) slice -> unit
|
||||
(** Called at the end of the search in case a model has been found. If no new clause is
|
||||
pushed, then 'sat' is returned, else search is resumed. *)
|
||||
|
||||
|
|
|
|||
|
|
@ -12,6 +12,14 @@
|
|||
(* *)
|
||||
(**************************************************************************)
|
||||
|
||||
type ('formula, 'proof) res = ('formula, 'proof) Plugin_intf.res =
|
||||
| Sat
|
||||
| Unsat of 'formula list * 'proof
|
||||
(** Type returned by the theory, either the current set of assumptions is satisfiable,
|
||||
or it is not, in which case a tautological clause (hopefully minimal) is returned.
|
||||
Formulas in the unsat clause must come from the current set of assumptions, i.e
|
||||
must have been encountered in a slice. *)
|
||||
|
||||
type ('form, 'proof) slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
|
|
@ -34,14 +42,6 @@ module type S = sig
|
|||
type level
|
||||
(** The type for levels to allow backtracking. *)
|
||||
|
||||
(** Type returned by the theory, either the current set of assumptions is satisfiable,
|
||||
or it is not, in which case a tautological clause (hopefully minimal) is returned.
|
||||
Formulas in the unsat clause must come from the current set of assumptions, i.e
|
||||
must have been encountered in a slice. *)
|
||||
type res =
|
||||
| Sat of level
|
||||
| Unsat of formula list * proof
|
||||
|
||||
val dummy : level
|
||||
(** A dummy level. *)
|
||||
|
||||
|
|
@ -49,7 +49,7 @@ module type S = sig
|
|||
(** Return the current level of the theory (either the empty/beginning state, or the
|
||||
last level returned by the [assume] function). *)
|
||||
|
||||
val assume : (formula, proof) slice -> res
|
||||
val assume : (formula, proof) slice -> (formula, proof) res
|
||||
(** Assume the formulas in the slice, possibly pushing new formulas to be propagated,
|
||||
and returns the result of the new assumptions. *)
|
||||
|
||||
|
|
|
|||
|
|
@ -16,31 +16,11 @@ module Tsmt = struct
|
|||
type formula = Fsmt.t
|
||||
type proof = unit
|
||||
|
||||
type assumption =
|
||||
| Lit of formula
|
||||
| Assign of term * term
|
||||
|
||||
type slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
get : int -> assumption * int;
|
||||
push : formula list -> proof -> unit;
|
||||
propagate : formula -> int -> unit;
|
||||
}
|
||||
|
||||
type level = {
|
||||
cc : CC.t;
|
||||
assign : (term * int) M.t;
|
||||
}
|
||||
|
||||
type res =
|
||||
| Sat
|
||||
| Unsat of formula list * proof
|
||||
|
||||
type eval_res =
|
||||
| Valued of bool * int
|
||||
| Unknown
|
||||
|
||||
(* Functions *)
|
||||
let dummy = { cc = CC.empty; assign = M.empty; }
|
||||
|
||||
|
|
@ -60,12 +40,13 @@ module Tsmt = struct
|
|||
(Fsmt.mk_eq a b) :: (List.rev_map Fsmt.neg (aux [] l))
|
||||
|
||||
let assume s =
|
||||
let open Plugin_intf in
|
||||
try
|
||||
for i = s.start to s.start + s.length - 1 do
|
||||
match s.get i with
|
||||
| (Assign (x, v)), lvl ->
|
||||
| Assign (x, v, lvl) ->
|
||||
env := { !env with assign = M.add x (v, lvl) !env.assign }
|
||||
| Lit f, _ ->
|
||||
| Lit f ->
|
||||
Log.debugf 10 "Propagating in th :@ @[%a@]" (fun k->k Fsmt.print f);
|
||||
match f with
|
||||
| Fsmt.Prop _ -> ()
|
||||
|
|
@ -91,19 +72,23 @@ module Tsmt = struct
|
|||
let max (a: int) (b: int) = if a < b then b else a
|
||||
|
||||
let eval = function
|
||||
| Fsmt.Prop _ -> Unknown
|
||||
| Fsmt.Prop _ -> Plugin_intf.Unknown
|
||||
| Fsmt.Equal (a, b) ->
|
||||
begin try
|
||||
let a', lvl_a = M.find a !env.assign in
|
||||
let b', lvl_b = M.find b !env.assign in
|
||||
Valued (Fsmt.Term.equal a' b', max lvl_a lvl_b)
|
||||
with Not_found -> Unknown end
|
||||
Plugin_intf.Valued (Fsmt.Term.equal a' b', max lvl_a lvl_b)
|
||||
with Not_found ->
|
||||
Plugin_intf.Unknown
|
||||
end
|
||||
| Fsmt.Distinct (a, b) ->
|
||||
begin try
|
||||
let a', lvl_a = M.find a !env.assign in
|
||||
let b', lvl_b = M.find b !env.assign in
|
||||
Valued (not (Fsmt.Term.equal a' b'), max lvl_a lvl_b)
|
||||
with Not_found -> Unknown end
|
||||
Plugin_intf.Valued (not (Fsmt.Term.equal a' b'), max lvl_a lvl_b)
|
||||
with Not_found ->
|
||||
Plugin_intf.Unknown
|
||||
end
|
||||
|
||||
let if_sat _ = ()
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ Copyright 2014 Simon Cruanes
|
|||
*)
|
||||
|
||||
module Fsmt = Expr
|
||||
module ThI = Theory_intf
|
||||
|
||||
module Tsmt = struct
|
||||
|
||||
|
|
@ -15,10 +14,6 @@ module Tsmt = struct
|
|||
type proof = unit
|
||||
type level = CC.t
|
||||
|
||||
type res =
|
||||
| Sat of level
|
||||
| Unsat of formula list * proof
|
||||
|
||||
let dummy = CC.empty
|
||||
|
||||
let env = ref dummy
|
||||
|
|
@ -37,15 +32,16 @@ module Tsmt = struct
|
|||
(Fsmt.mk_eq a b) :: (List.rev_map Fsmt.neg (aux [] l))
|
||||
|
||||
let assume s =
|
||||
let open Theory_intf in
|
||||
try
|
||||
for i = s.ThI.start to s.ThI.start + s.ThI.length - 1 do
|
||||
Log.debugf 10 "Propagating in th :@ @[%a@]" (fun k->k Fsmt.print (s.ThI.get i));
|
||||
match s.ThI.get i with
|
||||
for i = s.start to s.start + s.length - 1 do
|
||||
Log.debugf 10 "Propagating in th :@ @[%a@]" (fun k->k Fsmt.print (s.get i));
|
||||
match s.get i with
|
||||
| Fsmt.Prop _ -> ()
|
||||
| Fsmt.Equal (i, j) -> env := CC.add_eq !env i j
|
||||
| Fsmt.Distinct (i, j) -> env := CC.add_neq !env i j
|
||||
done;
|
||||
Sat (current_level ())
|
||||
Sat
|
||||
with CC.Unsat x ->
|
||||
Log.debug 8 "Making explanation clause...";
|
||||
Unsat (to_clause x, ())
|
||||
|
|
|
|||
|
|
@ -11,7 +11,6 @@
|
|||
(**************************************************************************)
|
||||
|
||||
module type S = Solver_intf.S
|
||||
module ThI = Theory_intf
|
||||
|
||||
module DummyTheory(F : Formula_intf.S) = struct
|
||||
(* We don't have anything to do since the SAT Solver already
|
||||
|
|
@ -21,20 +20,9 @@ module DummyTheory(F : Formula_intf.S) = struct
|
|||
type proof = F.proof
|
||||
type level = unit
|
||||
|
||||
type slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
get : int -> formula;
|
||||
push : formula list -> proof -> unit;
|
||||
}
|
||||
|
||||
type res =
|
||||
| Sat of level
|
||||
| Unsat of formula list * proof
|
||||
|
||||
let dummy = ()
|
||||
let current_level () = ()
|
||||
let assume _ = Sat ()
|
||||
let assume _ = Theory_intf.Sat
|
||||
let backtrack _ = ()
|
||||
end
|
||||
|
||||
|
|
@ -44,46 +32,25 @@ module Plugin(E : Formula_intf.S)
|
|||
type term = E.t
|
||||
type formula = E.t
|
||||
type proof = Th.proof
|
||||
|
||||
type assumption =
|
||||
| Lit of formula
|
||||
| Assign of term * term
|
||||
|
||||
type slice = {
|
||||
start : int;
|
||||
length : int;
|
||||
get : int -> assumption * int;
|
||||
push : formula list -> proof -> unit;
|
||||
propagate : formula -> int -> unit;
|
||||
}
|
||||
|
||||
type level = Th.level
|
||||
|
||||
type res =
|
||||
| Sat
|
||||
| Unsat of formula list * proof
|
||||
|
||||
type eval_res =
|
||||
| Valued of bool * int
|
||||
| Unknown
|
||||
|
||||
let dummy = Th.dummy
|
||||
|
||||
let current_level = Th.current_level
|
||||
|
||||
let assume_get s i = match s.get i with
|
||||
| Lit f, _ -> f | _ -> assert false
|
||||
let assume_get s i =
|
||||
match s.Plugin_intf.get i with
|
||||
| Plugin_intf.Lit f -> f
|
||||
| _ -> assert false
|
||||
|
||||
let assume s =
|
||||
match Th.assume {
|
||||
ThI.
|
||||
start = s.start;
|
||||
length = s.length;
|
||||
get = assume_get s;
|
||||
push = s.push;
|
||||
} with
|
||||
| Th.Sat _ -> Sat
|
||||
| Th.Unsat (l, p) -> Unsat (l, p)
|
||||
let slice = {
|
||||
Theory_intf.start = s.Plugin_intf.start;
|
||||
length = s.Plugin_intf.length;
|
||||
get = assume_get s;
|
||||
push = s.Plugin_intf.push;
|
||||
} in
|
||||
Th.assume slice
|
||||
|
||||
let backtrack = Th.backtrack
|
||||
|
||||
|
|
@ -91,7 +58,7 @@ module Plugin(E : Formula_intf.S)
|
|||
|
||||
let iter_assignable _ _ = ()
|
||||
|
||||
let eval _ = Unknown
|
||||
let eval _ = Plugin_intf.Unknown
|
||||
|
||||
let if_sat _ = ()
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue