diff --git a/README.md b/README.md index 93ac820a..f742dfcc 100644 --- a/README.md +++ b/README.md @@ -51,27 +51,27 @@ A ready-to-use SAT solver is available in the Sat module. It can be used as shown in the following code : ```ocaml - (* Module initialization *) - module Sat = Msat.Sat.Make() - module F = Msat.Tseitin.Make(Msat.Sat.Expr) +(* Module initialization *) +module Sat = Msat.Sat.Make() +module F = Msat.Tseitin.Make(Msat.Sat.Expr) - (* We create here two distinct atoms *) - let a = Msat.Sat.Expr.fresh () (* A 'new_atom' is always distinct from any other atom *) - let b = Msat.Sat.Expr.make 1 (* Atoms can be created from integers *) +(* We create here two distinct atoms *) +let a = Msat.Sat.Expr.fresh () (* A 'new_atom' is always distinct from any other atom *) +let b = Msat.Sat.Expr.make 1 (* Atoms can be created from integers *) - (* Let's create some formulas *) - let p = F.make_atom a - let q = F.make_atom b - let r = F.make_and [p; q] - let s = F.make_or [F.make_not p; F.make_not q] +(* Let's create some formulas *) +let p = F.make_atom a +let q = F.make_atom b +let r = F.make_and [p; q] +let s = F.make_or [F.make_not p; F.make_not q] - (* We can try and check the satisfiability of the given formulas *) - Sat.assume (F.make_cnf r) - let _ = Sat.solve () (* Should return (Sat.Sat _) *) +(* We can try and check the satisfiability of the given formulas *) +Sat.assume (F.make_cnf r) +let _ = Sat.solve () (* Should return (Sat.Sat _) *) - (* The Sat solver has an incremental mutable state, so we still have - * the formula 'r' in our assumptions *) - Sat.assume (F.make_cnf s) - let _ = Sat.solve () (* Should return (Sat.Unsat _) *) +(* The Sat solver has an incremental mutable state, so we still have + * the formula 'r' in our assumptions *) +Sat.assume (F.make_cnf s) +let _ = Sat.solve () (* Should return (Sat.Unsat _) *) ```