add tseitin-free example to the readme

This commit is contained in:
Simon Cruanes 2017-01-26 15:09:31 +01:00
parent 8e7efcfd3b
commit f82e475a42

View file

@ -53,11 +53,41 @@ as shown in the following code :
```ocaml
(* Module initialization *)
module Sat = Msat.Sat.Make()
module F = Msat.Tseitin.Make(Msat.Sat.Expr)
module E = Msat.Sat.Expr (* expressions *)
(* We create here two distinct atoms *)
let a = Msat.Sat.Expr.fresh () (* A 'new_atom' is always distinct from any other atom *)
let b = Msat.Sat.Expr.make 1 (* Atoms can be created from integers *)
let a = E.fresh () (* A 'new_atom' is always distinct from any other atom *)
let b = E.make 1 (* Atoms can be created from integers *)
(* We can try and check the satisfiability of some clauses --
here, the clause [a or b].
Sat.assume adds a list of clauses to the solver. *)
let() = Sat.assume [[a; b]]
let res = Sat.solve () (* Should return (Sat.Sat _) *)
(* The Sat solver has an incremental mutable state, so we still have
the clause [a or b] in our assumptions.
We add [not a] and [not b] to the state. *)
let () = Sat.assume [[E.neg a]; [E.neg b]]
let res = Sat.solve () (* Should return (Sat.Unsat _) *)
```
#### Formulas API
Writing clauses by hand can be tedious and error-prone.
The functor `Msat.Tseitin.Make` proposes a formula AST (parametrized by
atoms) and a function to convert these formulas into clauses:
```ocaml
(* Module initialization *)
module Sat = Msat.Sat.Make()
module E = Msat.Sat.Expr (* expressions *)
module F = Msat.Tseitin.Make(E)
(* We create here two distinct atoms *)
let a = E.fresh () (* A 'new_atom' is always distinct from any other atom *)
let b = E.make 1 (* Atoms can be created from integers *)
(* Let's create some formulas *)
let p = F.make_atom a
@ -66,12 +96,12 @@ let r = F.make_and [p; q]
let s = F.make_or [F.make_not p; F.make_not q]
(* We can try and check the satisfiability of the given formulas *)
Sat.assume (F.make_cnf r)
let () = Sat.assume (F.make_cnf r)
let _ = Sat.solve () (* Should return (Sat.Sat _) *)
(* The Sat solver has an incremental mutable state, so we still have
* the formula 'r' in our assumptions *)
Sat.assume (F.make_cnf s)
let () = Sat.assume (F.make_cnf s)
let _ = Sat.solve () (* Should return (Sat.Unsat _) *)
```