mirror of
https://github.com/c-cube/sidekick.git
synced 2026-01-28 12:24:50 -05:00
Added tseitin cnf conversion
This commit is contained in:
parent
d6cfd27f32
commit
ff34f5c6f0
7 changed files with 390 additions and 1 deletions
|
|
@ -5,6 +5,8 @@ Sat
|
||||||
Solver
|
Solver
|
||||||
Solver_types
|
Solver_types
|
||||||
Theory_intf
|
Theory_intf
|
||||||
|
Tseitin
|
||||||
|
Tseitin_intf
|
||||||
|
|
||||||
#Arith
|
#Arith
|
||||||
#Cc
|
#Cc
|
||||||
|
|
|
||||||
|
|
@ -22,6 +22,9 @@ module type S = sig
|
||||||
val dummy : t
|
val dummy : t
|
||||||
(** Formula constants. A valid formula should never be physically equal to [dummy] *)
|
(** Formula constants. A valid formula should never be physically equal to [dummy] *)
|
||||||
|
|
||||||
|
val fresh : unit -> t
|
||||||
|
(** Returns a fresh litteral, distinct from any other literal (used in cnf conversion) *)
|
||||||
|
|
||||||
val neg : t -> t
|
val neg : t -> t
|
||||||
(** Formula negation *)
|
(** Formula negation *)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -45,11 +45,15 @@ module Fsat = struct
|
||||||
in
|
in
|
||||||
create, iter
|
create, iter
|
||||||
|
|
||||||
|
let fresh = create
|
||||||
|
|
||||||
let print fmt a =
|
let print fmt a =
|
||||||
Format.fprintf fmt "%s%d" (if a < 0 then "~" else "") (abs a)
|
Format.fprintf fmt "%s%d" (if a < 0 then "~" else "") (abs a)
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
module Tseitin = Tseitin.Make(Fsat)
|
||||||
|
|
||||||
module Stypes = Solver_types.Make(Fsat)
|
module Stypes = Solver_types.Make(Fsat)
|
||||||
|
|
||||||
module Exp = Explanation.Make(Stypes)
|
module Exp = Explanation.Make(Stypes)
|
||||||
|
|
|
||||||
|
|
@ -1,12 +1,16 @@
|
||||||
(* Copyright 2014 Guillaume Bury *)
|
(* Copyright 2014 Guillaume Bury *)
|
||||||
|
|
||||||
|
module Fsat : Formula_intf.S
|
||||||
|
|
||||||
|
module Tseitin : Tseitin.S with type atom = Fsat.t
|
||||||
|
|
||||||
module Make(Dummy: sig end) : sig
|
module Make(Dummy: sig end) : sig
|
||||||
(** Fonctor to make a pure SAT Solver module with built-in literals. *)
|
(** Fonctor to make a pure SAT Solver module with built-in literals. *)
|
||||||
|
|
||||||
exception Bad_atom
|
exception Bad_atom
|
||||||
(** Exception raised when a problem with atomic formula encoding is detected. *)
|
(** Exception raised when a problem with atomic formula encoding is detected. *)
|
||||||
|
|
||||||
type atom = private int
|
type atom = Fsat.t
|
||||||
(** Type for atoms, i.e boolean literals. *)
|
(** Type for atoms, i.e boolean literals. *)
|
||||||
|
|
||||||
type proof
|
type proof
|
||||||
|
|
|
||||||
329
sat/tseitin.ml
Normal file
329
sat/tseitin.ml
Normal file
|
|
@ -0,0 +1,329 @@
|
||||||
|
(**************************************************************************)
|
||||||
|
(* *)
|
||||||
|
(* Alt-Ergo Zero *)
|
||||||
|
(* *)
|
||||||
|
(* Sylvain Conchon and Alain Mebsout *)
|
||||||
|
(* Universite Paris-Sud 11 *)
|
||||||
|
(* *)
|
||||||
|
(* Copyright 2011. This file is distributed under the terms of the *)
|
||||||
|
(* Apache Software License version 2.0 *)
|
||||||
|
(* *)
|
||||||
|
(**************************************************************************)
|
||||||
|
|
||||||
|
module type S = Tseitin_intf.S
|
||||||
|
|
||||||
|
module Make (F : Formula_intf.S) = struct
|
||||||
|
|
||||||
|
exception Empty_Or
|
||||||
|
type combinator = And | Or | Imp | Not
|
||||||
|
|
||||||
|
type atom = F.t
|
||||||
|
type t =
|
||||||
|
| Lit of atom
|
||||||
|
| Comb of combinator * t list
|
||||||
|
|
||||||
|
let rec print fmt phi =
|
||||||
|
match phi with
|
||||||
|
| Lit a -> F.print fmt a
|
||||||
|
| Comb (Not, [f]) ->
|
||||||
|
Format.fprintf fmt "not (%a)" print f
|
||||||
|
| Comb (And, l) -> Format.fprintf fmt "(%a)" (print_list "and") l
|
||||||
|
| Comb (Or, l) -> Format.fprintf fmt "(%a)" (print_list "or") l
|
||||||
|
| Comb (Imp, [f1; f2]) ->
|
||||||
|
Format.fprintf fmt "(%a => %a)" print f1 print f2
|
||||||
|
| _ -> assert false
|
||||||
|
and print_list sep fmt = function
|
||||||
|
| [] -> ()
|
||||||
|
| [f] -> print fmt f
|
||||||
|
| f::l -> Format.fprintf fmt "%a %s %a" print f sep (print_list sep) l
|
||||||
|
|
||||||
|
let make comb l = Comb (comb, l)
|
||||||
|
|
||||||
|
let value env c =
|
||||||
|
if List.mem c env then Some true
|
||||||
|
else if List.mem (make Not [c]) env then Some false
|
||||||
|
else None
|
||||||
|
|
||||||
|
(*
|
||||||
|
let rec lift_ite env op l =
|
||||||
|
try
|
||||||
|
let left, (c, t1, t2), right = Term.first_ite l in
|
||||||
|
begin
|
||||||
|
match value env c with
|
||||||
|
| Some true ->
|
||||||
|
lift_ite (c::env) op (left@(t1::right))
|
||||||
|
| Some false ->
|
||||||
|
lift_ite ((make Not [c])::env) op (left@(t2::right))
|
||||||
|
| None ->
|
||||||
|
Comb
|
||||||
|
(And,
|
||||||
|
[Comb
|
||||||
|
(Imp, [c; lift_ite (c::env) op (left@(t1::right))]);
|
||||||
|
Comb (Imp,
|
||||||
|
[(make Not [c]);
|
||||||
|
lift_ite
|
||||||
|
((make Not [c])::env) op (left@(t2::right))])])
|
||||||
|
end
|
||||||
|
with Not_found ->
|
||||||
|
begin
|
||||||
|
let lit =
|
||||||
|
match op, l with
|
||||||
|
| Eq, [Term.T t1; Term.T t2] ->
|
||||||
|
Literal.Eq (t1, t2)
|
||||||
|
| Neq, ts ->
|
||||||
|
let ts =
|
||||||
|
List.rev_map (function Term.T x -> x | _ -> assert false) ts in
|
||||||
|
Literal.Distinct (false, ts)
|
||||||
|
| Le, [Term.T t1; Term.T t2] ->
|
||||||
|
Literal.Builtin (true, Hstring.make "<=", [t1; t2])
|
||||||
|
| Lt, [Term.T t1; Term.T t2] ->
|
||||||
|
Literal.Builtin (true, Hstring.make "<", [t1; t2])
|
||||||
|
| _ -> assert false
|
||||||
|
in
|
||||||
|
Lit (F.make lit)
|
||||||
|
end
|
||||||
|
|
||||||
|
let make_lit op l = lift_ite [] op l
|
||||||
|
*)
|
||||||
|
|
||||||
|
let make_atom p = Lit p
|
||||||
|
|
||||||
|
let make_not f = make Not [f]
|
||||||
|
let make_and l = make And l
|
||||||
|
let make_imply f1 f2 = make Imp [f1; f2]
|
||||||
|
let make_equiv f1 f2 = make And [ make_imply f1 f2; make_imply f2 f1]
|
||||||
|
let make_xor f1 f2 = make Or [ make And [ make Not [f1]; f2 ];
|
||||||
|
make And [ f1; make Not [f2] ] ]
|
||||||
|
|
||||||
|
(* simplify formula *)
|
||||||
|
let rec sform = function
|
||||||
|
| Comb (Not, [Lit a]) -> Lit (F.neg a)
|
||||||
|
| Comb (Not, [Comb (Not, [f])]) -> sform f
|
||||||
|
| Comb (Not, [Comb (Or, l)]) ->
|
||||||
|
let nl = List.rev_map (fun a -> sform (Comb (Not, [a]))) l in
|
||||||
|
Comb (And, nl)
|
||||||
|
| Comb (Not, [Comb (And, l)]) ->
|
||||||
|
let nl = List.rev_map (fun a -> sform (Comb (Not, [a]))) l in
|
||||||
|
Comb (Or, nl)
|
||||||
|
| Comb (Not, [Comb (Imp, [f1; f2])]) ->
|
||||||
|
Comb (And, [sform f1; sform (Comb (Not, [f2]))])
|
||||||
|
| Comb (And, l) ->
|
||||||
|
Comb (And, List.rev_map sform l)
|
||||||
|
| Comb (Or, l) ->
|
||||||
|
Comb (Or, List.rev_map sform l)
|
||||||
|
| Comb (Imp, [f1; f2]) ->
|
||||||
|
Comb (Or, [sform (Comb (Not, [f1])); sform f2])
|
||||||
|
| Comb ((Imp | Not), _) -> assert false
|
||||||
|
| Lit _ as f -> f
|
||||||
|
|
||||||
|
|
||||||
|
let ( @@ ) l1 l2 = List.rev_append l1 l2
|
||||||
|
let ( @ ) = `Use_rev_append_instead (* prevent use of non-tailrec append *)
|
||||||
|
|
||||||
|
let make_or = function
|
||||||
|
| [] -> raise Empty_Or
|
||||||
|
| [a] -> a
|
||||||
|
| l -> Comb (Or, l)
|
||||||
|
|
||||||
|
let distrib l_and l_or =
|
||||||
|
let l =
|
||||||
|
if l_or = [] then l_and
|
||||||
|
else
|
||||||
|
List.rev_map
|
||||||
|
(fun x ->
|
||||||
|
match x with
|
||||||
|
| Lit _ -> Comb (Or, x::l_or)
|
||||||
|
| Comb (Or, l) -> Comb (Or, l @@ l_or)
|
||||||
|
| _ -> assert false
|
||||||
|
) l_and
|
||||||
|
in
|
||||||
|
Comb (And, l)
|
||||||
|
|
||||||
|
let rec flatten_or = function
|
||||||
|
| [] -> []
|
||||||
|
| Comb (Or, l)::r -> l @@ (flatten_or r)
|
||||||
|
| Lit a :: r -> (Lit a)::(flatten_or r)
|
||||||
|
| _ -> assert false
|
||||||
|
|
||||||
|
let rec flatten_and = function
|
||||||
|
| [] -> []
|
||||||
|
| Comb (And, l)::r -> l @@ (flatten_and r)
|
||||||
|
| a :: r -> a::(flatten_and r)
|
||||||
|
|
||||||
|
|
||||||
|
let rec cnf f =
|
||||||
|
match f with
|
||||||
|
| Comb (Or, l) ->
|
||||||
|
begin
|
||||||
|
let l = List.rev_map cnf l in
|
||||||
|
let l_and, l_or =
|
||||||
|
List.partition (function Comb(And,_) -> true | _ -> false) l in
|
||||||
|
match l_and with
|
||||||
|
| [ Comb(And, l_conj) ] ->
|
||||||
|
let u = flatten_or l_or in
|
||||||
|
distrib l_conj u
|
||||||
|
|
||||||
|
| Comb(And, l_conj) :: r ->
|
||||||
|
let u = flatten_or l_or in
|
||||||
|
cnf (Comb(Or, (distrib l_conj u)::r))
|
||||||
|
|
||||||
|
| _ ->
|
||||||
|
begin
|
||||||
|
match flatten_or l_or with
|
||||||
|
| [] -> assert false
|
||||||
|
| [r] -> r
|
||||||
|
| v -> Comb (Or, v)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
| Comb (And, l) ->
|
||||||
|
Comb (And, List.rev_map cnf l)
|
||||||
|
| f -> f
|
||||||
|
|
||||||
|
let rec mk_cnf = function
|
||||||
|
| Comb (And, l) ->
|
||||||
|
List.fold_left (fun acc f -> (mk_cnf f) @@ acc) [] l
|
||||||
|
|
||||||
|
| Comb (Or, [f1;f2]) ->
|
||||||
|
let ll1 = mk_cnf f1 in
|
||||||
|
let ll2 = mk_cnf f2 in
|
||||||
|
List.fold_left
|
||||||
|
(fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1
|
||||||
|
|
||||||
|
| Comb (Or, f1 :: l) ->
|
||||||
|
let ll1 = mk_cnf f1 in
|
||||||
|
let ll2 = mk_cnf (Comb (Or, l)) in
|
||||||
|
List.fold_left
|
||||||
|
(fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1
|
||||||
|
|
||||||
|
| Lit a -> [[a]]
|
||||||
|
| Comb (Not, [Lit a]) -> [[F.neg a]]
|
||||||
|
| _ -> assert false
|
||||||
|
|
||||||
|
|
||||||
|
let rec unfold mono f =
|
||||||
|
match f with
|
||||||
|
| Lit a -> a::mono
|
||||||
|
| Comb (Not, [Lit a]) ->
|
||||||
|
(F.neg a)::mono
|
||||||
|
| Comb (Or, l) ->
|
||||||
|
List.fold_left unfold mono l
|
||||||
|
| _ -> assert false
|
||||||
|
|
||||||
|
let rec init monos f =
|
||||||
|
match f with
|
||||||
|
| Comb (And, l) ->
|
||||||
|
List.fold_left init monos l
|
||||||
|
| f -> (unfold [] f)::monos
|
||||||
|
|
||||||
|
let make_cnf f =
|
||||||
|
let sfnc = cnf (sform f) in
|
||||||
|
init [] sfnc
|
||||||
|
|
||||||
|
let mk_proxy = F.fresh
|
||||||
|
(*
|
||||||
|
let cpt = ref 0 in
|
||||||
|
fun () ->
|
||||||
|
let t = AETerm.make
|
||||||
|
(Symbols.name (Hstring.make ("PROXY__"^(string_of_int !cpt))))
|
||||||
|
[] Ty.Tbool
|
||||||
|
in
|
||||||
|
incr cpt;
|
||||||
|
F.make (Literal.Eq (t, AETerm.true_))
|
||||||
|
*)
|
||||||
|
|
||||||
|
let acc_or = ref []
|
||||||
|
let acc_and = ref []
|
||||||
|
|
||||||
|
(* build a clause by flattening (if sub-formulas have the
|
||||||
|
same combinator) and proxy-ing sub-formulas that have the
|
||||||
|
opposite operator. *)
|
||||||
|
let rec cnf f = match f with
|
||||||
|
| Lit a -> None, [a]
|
||||||
|
| Comb (Not, [Lit a]) -> None, [F.neg a]
|
||||||
|
|
||||||
|
| Comb (And, l) ->
|
||||||
|
List.fold_left
|
||||||
|
(fun (_, acc) f ->
|
||||||
|
match cnf f with
|
||||||
|
| _, [] -> assert false
|
||||||
|
| cmb, [a] -> Some And, a :: acc
|
||||||
|
| Some And, l ->
|
||||||
|
Some And, l @@ acc
|
||||||
|
(* let proxy = mk_proxy () in *)
|
||||||
|
(* acc_and := (proxy, l) :: !acc_and; *)
|
||||||
|
(* proxy :: acc *)
|
||||||
|
| Some Or, l ->
|
||||||
|
let proxy = mk_proxy () in
|
||||||
|
acc_or := (proxy, l) :: !acc_or;
|
||||||
|
Some And, proxy :: acc
|
||||||
|
| None, l -> Some And, l @@ acc
|
||||||
|
| _ -> assert false
|
||||||
|
) (None, []) l
|
||||||
|
|
||||||
|
| Comb (Or, l) ->
|
||||||
|
List.fold_left
|
||||||
|
(fun (_, acc) f ->
|
||||||
|
match cnf f with
|
||||||
|
| _, [] -> assert false
|
||||||
|
| cmb, [a] -> Some Or, a :: acc
|
||||||
|
| Some Or, l ->
|
||||||
|
Some Or, l @@ acc
|
||||||
|
(* let proxy = mk_proxy () in *)
|
||||||
|
(* acc_or := (proxy, l) :: !acc_or; *)
|
||||||
|
(* proxy :: acc *)
|
||||||
|
| Some And, l ->
|
||||||
|
let proxy = mk_proxy () in
|
||||||
|
acc_and := (proxy, l) :: !acc_and;
|
||||||
|
Some Or, proxy :: acc
|
||||||
|
| None, l -> Some Or, l @@ acc
|
||||||
|
| _ -> assert false
|
||||||
|
) (None, []) l
|
||||||
|
|
||||||
|
| _ -> assert false
|
||||||
|
|
||||||
|
let cnf f =
|
||||||
|
let acc = match f with
|
||||||
|
| Comb (And, l) -> List.rev_map (fun f -> snd(cnf f)) l
|
||||||
|
| _ -> [snd (cnf f)]
|
||||||
|
in
|
||||||
|
let proxies = ref [] in
|
||||||
|
(* encore clauses that make proxies in !acc_and equivalent to
|
||||||
|
their clause *)
|
||||||
|
let acc =
|
||||||
|
List.fold_left
|
||||||
|
(fun acc (p,l) ->
|
||||||
|
proxies := p :: !proxies;
|
||||||
|
let np = F.neg p in
|
||||||
|
(* build clause [cl = l1 & l2 & ... & ln => p] where [l = [l1;l2;..]]
|
||||||
|
also add clauses [p => l1], [p => l2], etc. *)
|
||||||
|
let cl, acc =
|
||||||
|
List.fold_left
|
||||||
|
(fun (cl,acc) a -> (F.neg a :: cl), [np; a] :: acc)
|
||||||
|
([p],acc) l in
|
||||||
|
cl :: acc
|
||||||
|
) acc !acc_and
|
||||||
|
in
|
||||||
|
(* encore clauses that make proxies in !acc_or equivalent to
|
||||||
|
their clause *)
|
||||||
|
let acc =
|
||||||
|
List.fold_left
|
||||||
|
(fun acc (p,l) ->
|
||||||
|
proxies := p :: !proxies;
|
||||||
|
(* add clause [p => l1 | l2 | ... | ln], and add clauses
|
||||||
|
[l1 => p], [l2 => p], etc. *)
|
||||||
|
let acc = List.fold_left (fun acc a -> [p; F.neg a]::acc)
|
||||||
|
acc l in
|
||||||
|
(F.neg p :: l) :: acc
|
||||||
|
) acc !acc_or
|
||||||
|
in
|
||||||
|
acc
|
||||||
|
|
||||||
|
let make_cnf f =
|
||||||
|
acc_or := [];
|
||||||
|
acc_and := [];
|
||||||
|
cnf (sform f)
|
||||||
|
|
||||||
|
(* Naive CNF XXX remove???
|
||||||
|
let make_cnf f = mk_cnf (sform f)
|
||||||
|
*)
|
||||||
|
end
|
||||||
9
sat/tseitin.mli
Normal file
9
sat/tseitin.mli
Normal file
|
|
@ -0,0 +1,9 @@
|
||||||
|
(*
|
||||||
|
MSAT is free software, using the Apache license, see file LICENSE
|
||||||
|
Copyright 2014 Guillaume Bury
|
||||||
|
Copyright 2014 Simon Cruanes
|
||||||
|
*)
|
||||||
|
|
||||||
|
module type S = Tseitin_intf.S
|
||||||
|
|
||||||
|
module Make : functor (F : Formula_intf.S) -> S with type atom = F.t
|
||||||
38
sat/tseitin_intf.ml
Normal file
38
sat/tseitin_intf.ml
Normal file
|
|
@ -0,0 +1,38 @@
|
||||||
|
(**************************************************************************)
|
||||||
|
(* *)
|
||||||
|
(* Alt-Ergo Zero *)
|
||||||
|
(* *)
|
||||||
|
(* Sylvain Conchon and Alain Mebsout *)
|
||||||
|
(* Universite Paris-Sud 11 *)
|
||||||
|
(* *)
|
||||||
|
(* Copyright 2011. This file is distributed under the terms of the *)
|
||||||
|
(* Apache Software License version 2.0 *)
|
||||||
|
(* *)
|
||||||
|
(**************************************************************************)
|
||||||
|
|
||||||
|
module type S = sig
|
||||||
|
|
||||||
|
(** The type of ground formulas *)
|
||||||
|
type t
|
||||||
|
type atom
|
||||||
|
|
||||||
|
val make_atom : atom -> t
|
||||||
|
(** [make_pred p] builds the atomic formula [p = true].
|
||||||
|
@param sign the polarity of the atomic formula *)
|
||||||
|
|
||||||
|
val make_not : t -> t
|
||||||
|
val make_and : t list -> t
|
||||||
|
val make_or : t list -> t
|
||||||
|
val make_imply : t -> t -> t
|
||||||
|
val make_equiv : t -> t -> t
|
||||||
|
val make_xor : t -> t -> t
|
||||||
|
|
||||||
|
val make_cnf : t -> atom list list
|
||||||
|
(** [make_cnf f] returns a conjunctive normal form of [f] under the form: a
|
||||||
|
list (which is a conjunction) of lists (which are disjunctions) of
|
||||||
|
literals. *)
|
||||||
|
|
||||||
|
val print : Format.formatter -> t -> unit
|
||||||
|
(** [print fmt f] prints the formula on the formatter [fmt].*)
|
||||||
|
|
||||||
|
end
|
||||||
Loading…
Add table
Reference in a new issue