Module Sidekick_zarith.Rational

include Sidekick_arith.NUM with type t = Q.t
type t = Q.t
val zero : t
val one : t
val minus_one : t
val abs : t -> t
val sign : t -> int
val of_int : int -> t
include Sidekick_sigs.EQ with type t := t
val equal : t -> t -> bool
include Sidekick_sigs.ORD with type t := t
val compare : t -> t -> int
include Sidekick_sigs.HASH with type t := t
val hash : t -> int
include Sidekick_sigs.PRINT with type t := t
val (+) : t -> t -> t
val (-) : t -> t -> t
val (*) : t -> t -> t
val (~-) : t -> t
val neg : t -> t
val min : t -> t -> t
val max : t -> t -> t
val (=) : t -> t -> bool
val (<>) : t -> t -> bool
val (>) : t -> t -> bool
val (>=) : t -> t -> bool
val (<) : t -> t -> bool
val (<=) : t -> t -> bool
type bigint = Z.t
val (/) : t -> t -> t
val num : t -> bigint
val denum : t -> bigint
val infinity : t

+infinity

val minus_infinity : t
val of_bigint : bigint -> t
val is_real : t -> bool

A proper real, not nan/infinity

val is_int : t -> bool

Is this a proper integer?

val as_int : t -> bigint option

Convert to an integer if it's one, return None otherwise

val floor : t -> bigint

Integer equal or below

val ceil : t -> bigint

Integer equal or above

val pp_approx : int -> Stdlib.Format.formatter -> t -> unit

Pretty print rational with given amount of precision (for example as a floating point number)