(* This file is free software. See file "license" for more details. *) (** {1 Main Solver} *) [@@@warning "-32"] open Solver_types let get_time : unit -> float = Sys.time (** {2 The Main Solver} *) module Sat_solver = Msat.Make_cdcl_t(Theory_combine) let[@inline] clause_of_mclause (c:Sat_solver.clause): Lit.t IArray.t = Sat_solver.Clause.atoms c |> Array.map Sat_solver.Atom.formula |> IArray.of_array_unsafe module Atom = Sat_solver.Atom module Proof = Sat_solver.Proof (* main solver state *) type t = { solver: Sat_solver.t; stat: Stat.t; config: Config.t } let[@inline] solver self = self.solver let[@inline] th_combine (self:t) : Theory_combine.t = Sat_solver.theory self.solver let[@inline] add_theory self th = Theory_combine.add_theory (th_combine self) th let[@inline] cc self = Theory_combine.cc (th_combine self) let stats self = self.stat let[@inline] tst self = Theory_combine.tst (th_combine self) let[@inline] mk_atom_lit self lit : Atom.t = Sat_solver.make_atom self.solver lit let[@inline] mk_atom_t self ?sign t : Atom.t = let lit = Lit.atom ?sign t in mk_atom_lit self lit let create ?size ?(config=Config.empty) ?store_proof ~theories () : t = let th_combine = Theory_combine.create() in let self = { solver=Sat_solver.create ?store_proof ?size th_combine; stat=Stat.create (); config; } in (* now add the theories *) Theory_combine.add_theory_l th_combine theories; (* assert [true] and [not false] *) let tst = tst self in Sat_solver.assume self.solver [ [Lit.atom @@ Term.true_ tst]; [Lit.atom ~sign:false @@ Term.false_ tst]; ] Proof_default; self (** {2 Sat Solver} *) let print_progress (st:t) : unit = Printf.printf "\r[%.2f] expanded %d | clauses %d | lemmas %d%!" (get_time()) st.stat.Stat.num_cst_expanded st.stat.Stat.num_clause_push st.stat.Stat.num_clause_tautology let flush_progress (): unit = Printf.printf "\r%-80d\r%!" 0 (** {2 Toplevel Goals} List of toplevel goals to satisfy. Mainly used for checking purpose *) module Top_goals: sig val push : term -> unit val to_seq : term Sequence.t val check: unit -> unit end = struct (* list of terms to fully evaluate *) let toplevel_goals_ : term list ref = ref [] (* add [t] to the set of terms that must be evaluated *) let push (t:term): unit = toplevel_goals_ := t :: !toplevel_goals_; () let to_seq k = List.iter k !toplevel_goals_ (* FIXME (* check that this term fully evaluates to [true] *) let is_true_ (t:term): bool = match CC.normal_form t with | None -> false | Some (NF_bool b) -> b | Some (NF_cstor _) -> assert false (* not a bool *) let check () = if not (List.for_all is_true_ !toplevel_goals_) then ( if Config.progress then flush_progress(); Log.debugf 1 (fun k-> let pp_lit out t = let nf = CC.normal_form t in Format.fprintf out "(@[term: %a@ nf: %a@])" Term.pp t (Fmt.opt pp_term_nf) nf in k "(@[Top_goals.check@ (@[%a@])@])" (Util.pp_list pp_lit) !toplevel_goals_); assert false; ) *) let check () : unit = () end (** {2 Conversion} *) (* list of constants we are interested in *) let model_support_ : Cst.t list ref = ref [] let model_env_ : Ast.env ref = ref Ast.env_empty let add_cst_support_ (c:cst): unit = CCList.Ref.push model_support_ c let add_ty_support_ (_ty:Ty.t): unit = () (** {2 Result} *) type unknown = | U_timeout | U_max_depth | U_incomplete let pp_unknown out = function | U_timeout -> Fmt.string out "timeout" | U_max_depth -> Fmt.string out "max depth reached" | U_incomplete -> Fmt.string out "incomplete fragment" type model = Model.t let pp_model = Model.pp type res = | Sat of model | Unsat of Proof.t option | Unknown of unknown (** {2 Main} *) (* convert unsat-core *) let clauses_of_unsat_core (core:Sat_solver.clause list): Lit.t IArray.t Sequence.t = Sequence.of_list core |> Sequence.map clause_of_mclause (* print all terms reachable from watched literals *) let pp_term_graph _out (_:t) = () let pp_stats out (s:t) : unit = Format.fprintf out "(@[stats@ \ :num_expanded %d@ \ :num_uty_expanded %d@ \ :num_clause_push %d@ \ :num_clause_tautology %d@ \ :num_propagations %d@ \ :num_unif %d@ \ @])" s.stat.Stat.num_cst_expanded s.stat.Stat.num_uty_expanded s.stat.Stat.num_clause_push s.stat.Stat.num_clause_tautology s.stat.Stat.num_propagations s.stat.Stat.num_unif let do_on_exit ~on_exit = List.iter (fun f->f()) on_exit; () let assume (self:t) (c:Lit.t IArray.t) : unit = let sat = solver self in let c = IArray.to_array_map (Sat_solver.make_atom sat) c in Sat_solver.add_clause_a sat c Proof_default (* TODO: remove? use a special constant + micro theory instead? *) let[@inline] assume_distinct self l ~neq lit : unit = CC.assert_distinct (cc self) l lit ~neq let check_model (_s:t) : unit = Log.debug 1 "(smt.solver.check-model)"; (* TODO Sat_solver.check_model s.solver *) () (* TODO: main loop with iterative deepening of the unrolling limit (not the value depth limit) *) let solve ?(on_exit=[]) ?(check=true) ~assumptions (self:t) : res = let r = Sat_solver.solve ~assumptions (solver self) in match r with | Sat_solver.Sat st -> Log.debugf 1 (fun k->k "SAT"); let lits f = st.iter_trail f (fun _ -> ()) in let m = Theory_combine.mk_model (th_combine self) lits in do_on_exit ~on_exit; Sat m (* let env = Ast.env_empty in let m = Model.make ~env in … Unknown U_incomplete (* TODO *) *) | Sat_solver.Unsat us -> let pr = try let pr = us.get_proof () in if check then Sat_solver.Proof.check pr; Some pr with Msat.Solver_intf.No_proof -> None in do_on_exit ~on_exit; Unsat pr (* FIXME: (* TODO: max_depth should actually correspond to the maximum depth of un-expanded terms (expand in body of t --> depth = depth(t)+1), so it corresponds to unfolding call graph to some depth *) let solve ?(on_exit=[]) ?(check=true) () = let n_iter = ref 0 in let rec check_cc (): res = assert (Backtrack.at_level_0 ()); if !n_iter > Config.max_depth then Unknown U_max_depth (* exceeded limit *) else begin match CC.check () with | CC.Unsat _ -> Unsat (* TODO proof *) | CC.Sat lemmas -> add_cc_lemmas lemmas; check_solver() end and check_solver (): res = (* assume all literals [expanded t] are false *) let assumptions = Terms_to_expand.to_seq |> Sequence.map (fun {Terms_to_expand.lit; _} -> Lit.neg lit) |> Sequence.to_rev_list in incr n_iter; Log.debugf 2 (fun k->k "(@[<1>@{solve@}@ @[:with-assumptions@ (@[%a@])@ n_iter: %d]@])" (Util.pp_list Lit.pp) assumptions !n_iter); begin match M.solve ~assumptions() with | M.Sat _ -> Log.debugf 1 (fun k->k "@{** found SAT@}"); do_on_exit ~on_exit; let m = Model_build.make () in if check then Model_build.check m; Sat m | M.Unsat us -> let p = us.SI.get_proof () in Log.debugf 4 (fun k->k "proof: @[%a@]@." pp_proof p); let core = p |> M.unsat_core in (* check if unsat because of assumptions *) expand_next core end (* pick a term to expand, or UNSAT *) and expand_next (core:unsat_core) = begin match find_to_expand core with | None -> Unsat (* TODO proof *) | Some to_expand -> let t = to_expand.Terms_to_expand.term in Log.debugf 2 (fun k->k "(@[<1>@{expand_next@}@ :term %a@])" Term.pp t); CC.expand_term t; Terms_to_expand.remove t; Clause.push_new (Clause.make [to_expand.Terms_to_expand.lit]); Backtrack.backtrack_to_level_0 (); check_cc () (* recurse *) end in check_cc() *)