(* MSAT is free software, using the Apache license, see file LICENSE Copyright 2014 Guillaume Bury Copyright 2014 Simon Cruanes *) module type S = Res_intf.S module Make(L : Log_intf.S)(St : Solver_types.S) = struct (* Type definitions *) type lemma = St.proof type clause = St.clause type atom = St.atom type int_cl = clause * St.atom list type node = | Assumption | Lemma of lemma | Resolution of atom * int_cl * int_cl (* lits, c1, c2 with lits the literals used to resolve c1 and c2 *) exception Insuficient_hyps exception Resolution_error of string (* Proof graph *) let hash_cl cl = Hashtbl.hash (List.map (fun a -> St.(a.aid)) cl) let equal_cl cl_c cl_d = try List.for_all2 (==) cl_c cl_d with Invalid_argument _ -> false module H = Hashtbl.Make(struct type t = St.atom list let hash = hash_cl let equal = equal_cl end) let proof : node H.t = H.create 1007;; (* Misc functions *) let equal_atoms a b = St.(a.aid) = St.(b.aid) let compare_atoms a b = Pervasives.compare St.(a.aid) St.(b.aid) let merge = List.merge compare_atoms let _c = ref 0 let fresh_pcl_name () = incr _c; "P" ^ (string_of_int !_c) (* Printing functions *) let rec print_cl fmt = function | [] -> Format.fprintf fmt "[]" | [a] -> St.print_atom fmt a | a :: ((_ :: _) as r) -> Format.fprintf fmt "%a ∨ %a" St.print_atom a print_cl r (* Compute resolution of 2 clauses *) let resolve l = let rec aux resolved acc = function | [] -> resolved, acc | [a] -> resolved, a :: acc | a :: b :: r -> if equal_atoms a b then aux resolved (a :: acc) r else if equal_atoms St.(a.neg) b then aux (St.(a.var.pa) :: resolved) acc r else aux resolved (a :: acc) (b :: r) in let resolved, new_clause = aux [] [] l in resolved, List.rev new_clause (* List.sort_uniq is only since 4.02.0 *) let sort_uniq compare l = let rec aux = function | x :: ((y :: _) as r) -> if compare x y = 0 then aux r else x :: aux r | l -> l in aux (List.sort compare l) let to_list c = let v = St.(c.atoms) in let l = ref [] in for i = 0 to Vec.size v - 1 do l := (Vec.get v i) :: !l done; let res = sort_uniq compare_atoms !l in let l, _ = resolve res in if l <> [] then L.debug 3 "Input clause is a tautology"; res (* Adding hyptoheses *) let has_been_proved c = H.mem proof (to_list c) let is_proved (c, cl) = if H.mem proof cl then true else if not St.(c.learnt) then begin H.add proof cl Assumption; true end else match St.(c.cpremise) with | St.Lemma p -> H.add proof cl (Lemma p); true | St.History _ -> false let is_proven c = is_proved (c, to_list c) let add_res (c, cl_c) (d, cl_d) = L.debug 7 " Resolving clauses :"; L.debug 7 " %a" St.pp_clause c; L.debug 7 " %a" St.pp_clause d; assert (is_proved (c, cl_c)); assert (is_proved (d, cl_d)); let l = merge cl_c cl_d in let resolved, new_clause = resolve l in match resolved with | [] -> raise (Resolution_error "No literal to resolve over") | [a] -> H.add proof new_clause (Resolution (a, (c, cl_c), (d, cl_d))); let new_c = St.make_clause (fresh_pcl_name ()) new_clause (List.length new_clause) true St.(History [c; d]) in L.debug 5 "New clause : %a" St.pp_clause new_c; new_c, new_clause | _ -> raise (Resolution_error "Resolved to a tautology") let rec diff_learnt acc l l' = match l, l' with | [], _ -> l' @ acc | a :: r, b :: r' -> if equal_atoms a b then diff_learnt acc r r' else diff_learnt (b :: acc) l r' | _ -> raise (Resolution_error "Impossible to derive correct clause") let clause_unit a = match St.(a.var.level, a.var.reason) with | 0, St.Bcp Some c -> c, to_list c | _ -> raise (Resolution_error "Could not find a reason needed to resolve") let need_clause (c, cl) = if is_proved (c, cl) then [] else match St.(c.cpremise) with | St.History l -> l | St.Lemma _ -> assert false let rec add_clause c cl l = (* We assume that all clauses in l are already proved ! *) match l with | a :: r -> L.debug 5 "Resolving (with history) %a" St.pp_clause c; let temp_c, temp_cl = List.fold_left add_res a r in L.debug 10 " Switching to unit resolutions"; let new_c, new_cl = (ref temp_c, ref temp_cl) in while not (equal_cl cl !new_cl) do let unit_to_use = diff_learnt [] cl !new_cl in let unit_r = List.map (fun a -> clause_unit a) unit_to_use in do_clause (List.map fst unit_r); let temp_c, temp_cl = List.fold_left add_res (!new_c, !new_cl) unit_r in new_c := temp_c; new_cl := temp_cl; done | _ -> assert false and do_clause = function | [] -> () | c :: r -> let cl = to_list c in match need_clause (c, cl) with | [] -> do_clause r | history -> let history_cl = List.rev_map (fun c -> c, to_list c) history in let to_prove = List.filter (fun (c, cl) -> not (is_proved (c, cl))) history_cl in let to_prove = (List.rev_map fst to_prove) in begin match to_prove with | [] -> add_clause c cl history_cl; do_clause r | _ -> do_clause (to_prove @ (c :: r)) end let prove c = L.debug 3 "Proving : %a" St.pp_clause c; do_clause [c]; L.debug 3 "Proved : %a" St.pp_clause c let rec prove_unsat_cl (c, cl) = match cl with | [] -> true | a :: r -> L.debug 2 "Eliminating %a in %a" St.pp_atom a St.pp_clause c; let d = match St.(a.var.level, a.var.reason) with | 0, St.Bcp Some d -> d | _ -> raise Exit in prove d; let cl_d = to_list d in prove_unsat_cl (add_res (c, cl) (d, cl_d)) let prove_unsat_cl c = try prove_unsat_cl c with Exit -> false let learn v = Vec.iter (fun c -> L.debug 15 "history : %a" St.pp_clause c) v; Vec.iter prove v let assert_can_prove_unsat c = L.debug 1 "=================== Proof ====================="; prove c; if not (prove_unsat_cl (c, to_list c)) then raise Insuficient_hyps (* Interface exposed *) type proof_node = { conclusion : clause; step : step; } and proof = clause * atom list and step = | Hypothesis | Lemma of lemma | Resolution of proof * proof * atom let expand (c, cl) = L.debug 8 "Returning proof for : %a" St.pp_clause c; let st = match H.find proof cl with | Assumption -> Hypothesis | Lemma l -> Lemma l | Resolution (a, cl_c, cl_d) -> Resolution (cl_c, cl_d, a) in { conclusion = c; step = st } let prove_unsat c = assert_can_prove_unsat c; (St.empty_clause, []) (* Compute unsat-core *) let compare_cl c d = let rec aux = function | [], [] -> 0 | a :: r, a' :: r' -> begin match compare_atoms a a' with | 0 -> aux (r, r') | x -> x end | _ :: _ , [] -> -1 | [], _ :: _ -> 1 in aux (to_list c, to_list d) let unsat_core proof = let rec aux acc proof = let p = expand proof in match p.step with | Hypothesis | Lemma _ -> p.conclusion :: acc | Resolution (proof1, proof2, _) -> aux (aux acc proof1) proof2 in sort_uniq compare_cl (aux [] proof) (* Dot proof printing *) module Dot = struct let _i = ref 0 let new_id () = incr _i; "id_" ^ (string_of_int !_i) let ids : (clause, (bool * string)) Hashtbl.t = Hashtbl.create 1007;; let c_id c = try snd (Hashtbl.find ids c) with Not_found -> let id = new_id () in Hashtbl.add ids c (false, id); id let clear_ids () = Hashtbl.iter (fun c (_, id) -> Hashtbl.replace ids c (false, id)) ids let is_drawn c = ignore (c_id c); fst (Hashtbl.find ids c) let has_drawn c = if not (is_drawn c) then let b, id = Hashtbl.find ids c in Hashtbl.replace ids c (true, id) else () (* We use a custom function instead of the functions in Solver_type, so that atoms are sorted before printing. *) let print_clause fmt c = print_cl fmt (to_list c) let print_dot_rule opt f arg fmt cl = Format.fprintf fmt "%s [shape=plaintext, label=<