\documentclass[portrait,a0,final]{a0poster} \usepackage[utf8]{inputenc} \usepackage[OT1]{fontenc} \usepackage[french]{babel} \usepackage{enumitem} \usepackage{verbatim} \usepackage{amsfonts, amsmath, amssymb, amsthm, dsfont} \usepackage{listings} \lstset{language=[Objective]Caml} \usepackage{bussproofs} \newcommand\typ[2]{\Gamma\vdash#1:#2} \input{template_deducteam.tex} \def\aez{\textsf{Alt-Ergo~Zero}} \def\altergo{\textsf{Alt-Ergo}} \def\ens{\textsf{ENS Paris-Saclay}} \def\inria{\textsf{Inria}} \def\lsv{\textsf{LSV}} \def\msat{\textsf{mSAT}} \def\opam{\textsf{opam}} \begin{document} \sffamily % Font Family \postertitle {\msat{}:~An~OCaml~SAT~Solver} {Guillaume \textsc{Bury}} {DEDUC$\vdash$EAM (INRIA) - LSV / CNRS\\ \Large \textcolor{black}{\texttt{guillaume.bury@inria.fr}}} \begin{center} \begin{multicols}{2} \tblock{Introduction} % TODO { \vspace{0.5cm} % Pour pas se faire manger par le titre \msat{} is a SAT solving library written in OCaml. It allows to solve the satisfiability of propositional problems in clausal normal form, and produce either a propositional model, or a resolution proof of the problem's unsatisfiability. } \tblock{Conflict Driven Clause learning} { \begin{description} \item[Propagation] If there exists a clause $C = C' \lor a$, where $C'$ is false in the partial model, then add $a \mapsto \top$ to the partial model, and record $C$ as the reason for $a$. \item[Decision] Take an atom $a$ which is not yet in the partial model, and add $a \mapsto \top$ to the model. \item[Conflict] A conflict is a clause $C$ that is false in the current partial model. \item[Analyze] Perform resolution between the analyzed clause and the reason behind the propagation of its most recently assigned litteral, until the analyzed clause is suitable for backumping \item[Backjump] A clause is suitable for backjumping if its most recently assigned litteral $a$ is a decision. We can then backtrack to before the decision, and add the analyzed clause to the solver, which will then enable to propagate $a \mapsto \bot$. \item[SMT] Formulas using first-order theories can be handled using a theory. Each formula propagated or decided is sent to the theory, which then has the duty to check whether the conjunction of all formulas seen so far is satisfiable, if not, it should return a theory tautology (as a clause), that is not satisfied in the current partial model. \end{description} } \tblock{Implementation} { \begin{itemize}[label=$\blacktriangleright$] \item Imperative design \begin{itemize}[label=\checkmark] \item 2-watch litteral \item Generative functors \item Backtrackable theories (less demanding than immutable theories) \end{itemize} \item Features \begin{itemize}[label=\checkmark] \item Functorized design \item Local assumptions \item Model output \item Proof output (Coq, dot) \end{itemize} \end{itemize} } \tblock{Related work} { \begin{itemize}[label=$\bullet$] \item regstab: binary only \item Minisat, sattools, ocaml-sat-solvers: bindings to C sat solvers (cannot make a SMT) \item Alt-ego, Alt-ergo-zero: Full SMT (no functorized design, cannot change the theory) \item ocamlyices, yices2: SMT bindings (not full ocaml) \end{itemize} } \columnbreak \tblock{Problem example} { \vspace{.5cm} \[ \begin{matrix} H1: & a = b & \quad & H2: & b = c \lor b = d \\ H3: & a <> d & \quad & H4: & a <> c \\ \end{matrix} \] \includegraphics[height=33cm]{proof} } \tblock{Proof generation} { \begin{itemize}[label=\checkmark] \item Each clause records it "history", that is the clauses used during analyzing \item Minimal impact on proof search (already done to compute unsat-core) \item Sufficient to rebuild the whole resolution tree \item Enables various proof output: \begin{itemize}[label=$\bullet$] \item Dot/Graphviz (see example) \item Coq formal proof \end{itemize} \end{itemize} } \cblock{Proof interface} { \lstinputlisting{proof_intf.ml} } \end{multicols} \Large \msat{} is available on \opam{} and on github: \texttt{https://github.com/Gbury/mSAT} \end{center} \end{document}