#!/usr/bin/env python3 import sys, csv, argparse, os def read_csv(f): with open(f) as fd: content = fd.readlines() return list(csv.DictReader(content)) def analyze_file(f, potential_errors=False, plot=None, mfleury=False): """Analyze result file {f} (which should be a .csv file). Print per-solver analysis, and errors which happen quickly (true errors, not timeouts). If `plot` is provided, call `mkplot.py` to produce a nice plot of the results. If `mfleury` is true, use the alternative format provided by Mathias Fleury """ print(f"## analyze `{f}`") table = read_csv(f) print(f"read {len(table)} records") if not table: return if mfleury: time_suffix = '_overall_time' res_suffix = '_result' provers = [x.split('_result')[0] for x in table[0].keys() if "_result" in x] else: time_suffix = '.time' res_suffix = '' provers = [x for x in table[0].keys() if ".time" not in x and x != "problem" and x != "status"] print(f"provers: {provers}") sat = {} unsat = {} unknown = {} error = {} total_time = {} if potential_errors: quick_errors = [] for row in table: for prover in provers: res = row[prover + res_suffix] time = row[prover + time_suffix] time = float(time) if time != 'NULL' else 0 if res == 'unsat': unsat[prover] = 1 + unsat.get(prover, 0) total_time[prover] = time + total_time.get(prover,0) elif res == 'sat': sat[prover] = 1 + sat.get(prover, 0) total_time[prover] = time + total_time.get(prover,0) elif res == 'unknown' or res == 'timeout' or res == 'NULL': unknown[prover] = 1 + unknown.get(prover, 0) elif res == 'error': error[prover] = 1 + error.get(prover, 0) if potential_errors and time < 5: quick_errors.append((prover, row['problem'], time)) else: print(f"unknown result for {prover} on {row}: {res}") for prover in provers: n = sat.get(prover,0)+unsat.get(prover,0) print(f"{prover:{12}}: sat {sat.get(prover,0):6}" \ f" | unsat {unsat.get(prover,0):6}" \ f" | solved {n:6}" \ f" | unknown {unknown.get(prover,0):6}" \ f" | error {error.get(prover,0):6}" \ f" | total-time {total_time.get(prover,0):14.3f}s" \ f" | avg-time {0 if n==0 else total_time.get(prover,0)/n:8.3f}s") if potential_errors: for (prover,filename,time) in quick_errors: print(f"potential error: {prover} on `{filename}` after {time}") if plot: print(f"plotting into {plot}…") import tempfile, json, subprocess with tempfile.TemporaryDirectory(prefix='analyze') as tmpdir: json_files = [] # produce json files for prover in provers: filename = os.path.join(tmpdir, prover + '.json') json_files.append(filename) stats = {} for row in table: res = row[prover + res_suffix] ok = (res == 'unsat' or res=='sat') time = row[prover + time_suffix] time = float(time) if time != 'NULL' else 0 stats[row['problem']] = {'status': ok, 'rtime': time} j = { 'preamble': {'program': prover}, 'stats': stats, } with open(filename, 'w') as out: #print(json.dumps(j, indent=2)) out.write(json.dumps(j, indent=2)) subprocess.call(["mkplot.py", "--save-to="+plot, "-b", "png"] + json_files) def main(files, **kwargs) -> (): for f in files: analyze_file(f, **kwargs) if __name__ == "__main__": p = argparse.ArgumentParser('analyze result files') p.add_argument('files', nargs='+', help='files to analyze') p.add_argument('--errors', dest='potential_errors', \ action='store_true', help='detect potential errors') p.add_argument('--plot', dest='plot', help='produce a plot') p.add_argument('--mfleury', dest='mfleury', action='store_true', help="use mathias fleury's input format") args = p.parse_args() main(files=args.files, potential_errors=args.potential_errors, plot=args.plot, mfleury=args.mfleury)