(* pure SAT solver *) module E = CCResult module SS = Sidekick_sat module Lit = struct type t = int let norm_sign t = if t>0 then t, true else -t, false let abs = abs let sign t = t>0 let equal = CCInt.equal let hash = CCHash.int let neg x = -x let pp = Fmt.int end (* TODO: on the fly compression *) module Proof : sig include Sidekick_sat.PROOF with type lit = Lit.t type in_memory val dummy : t val create_in_memory : unit -> t * in_memory val to_string : in_memory -> string val to_chan : out_channel -> in_memory -> unit val create_to_file : string -> t val close : t -> unit type event = Sidekick_bin_lib.Drup_parser.event = | Input of int list | Add of int list | Delete of int list val iter_events : in_memory -> event Iter.t end = struct let bpf = Printf.bprintf let fpf = Printf.fprintf type lit = Lit.t type in_memory = Buffer.t type t = | Dummy | Inner of in_memory | Out of { oc: out_channel; close: (unit -> unit); } type proof_step = unit type proof_rule = t -> proof_step module Step_vec = Vec_unit let[@inline] enabled pr = match pr with | Dummy -> false | Inner _ | Out _ -> true let[@inline] emit_lits_buf_ buf lits = lits (fun i -> bpf buf "%d " i) let[@inline] emit_lits_out_ oc lits = lits (fun i -> fpf oc "%d " i) let emit_input_clause lits self = match self with | Dummy -> () | Inner buf -> bpf buf "i "; emit_lits_buf_ buf lits; bpf buf "0\n" | Out {oc;_} -> fpf oc "i "; emit_lits_out_ oc lits; fpf oc "0\n" let emit_redundant_clause lits ~hyps:_ self = match self with | Dummy -> () | Inner buf -> bpf buf "r "; emit_lits_buf_ buf lits; bpf buf "0\n" | Out {oc;_} -> fpf oc "r "; emit_lits_out_ oc lits; fpf oc "0\n" let del_clause () lits self = match self with | Dummy -> () | Inner buf -> bpf buf "d "; emit_lits_buf_ buf lits; bpf buf "0\n" | Out {oc; _}-> fpf oc "d "; emit_lits_out_ oc lits; fpf oc "0\n" let emit_unsat _ _ = () let emit_unsat_core _ _ = () (* lifetime *) let dummy : t = Dummy let create_in_memory () : t * in_memory = let buf = Buffer.create 1_024 in Inner buf, buf let create_to_file file = let oc, close = match Filename.extension file with | ".gz" -> let cmd = Printf.sprintf "gzip -c - > \"%s\"" (String.escaped file) in Log.debugf 1 (fun k->k"proof file: command is %s" cmd); let oc = Unix.open_process_out cmd in oc, (fun () -> ignore (Unix.close_process_out oc: Unix.process_status)) | ".drup" -> let oc = open_out_bin file in oc, (fun () -> close_out_noerr oc) | s -> Error.errorf "unknown file extension '%s'" s in Out {oc; close} let close = function | Dummy | Inner _ -> () | Out {close; oc} -> flush oc; close() let to_string = Buffer.contents let to_chan = Buffer.output_buffer module DP = Sidekick_bin_lib.Drup_parser type event = DP.event = | Input of int list | Add of int list | Delete of int list (* parse the proof back *) let iter_events (self:in_memory) : DP.event Iter.t = let dp = DP.create_string (to_string self) in DP.iter dp end module Arg = struct module Lit = Lit type lit = Lit.t module Proof = Proof type proof = Proof.t type proof_step = Proof.proof_step end module SAT = Sidekick_sat.Make_pure_sat(Arg) module Dimacs = struct open Sidekick_base module BL = Sidekick_bin_lib module T = Term let parse_file (solver:SAT.t) (file:string) : (unit, string) result = try CCIO.with_in file (fun ic -> let p = BL.Dimacs_parser.create ic in BL.Dimacs_parser.iter p (fun c -> SAT.add_input_clause solver c); Ok ()) with e -> E.of_exn_trace e end let check_proof (proof:Proof.in_memory) : bool = Profile.with_ "pure-sat.check-proof" @@ fun () -> let module SDRUP = Sidekick_drup.Make() in let store = SDRUP.Clause.create() in let checker = SDRUP.Checker.create store in let ok = ref true in let tr_clause c = let c = List.rev_map SDRUP.Atom.of_int_dimacs c in SDRUP.Clause.of_list store c in Proof.iter_events proof (function | Proof.Input c -> let c = tr_clause c in SDRUP.Checker.add_clause checker c | Proof.Add c -> let c = tr_clause c in if not (SDRUP.Checker.is_valid_drup checker c) then ( ok := false; ); SDRUP.Checker.add_clause checker c; | Proof.Delete c -> let c = tr_clause c in SDRUP.Checker.del_clause checker c; ); !ok let solve ?(check=false) ?in_memory_proof (solver:SAT.t) : (unit, string) result = let res = Profile.with_ "solve" (fun () -> SAT.solve solver) in let t2 = Sys.time () in Printf.printf "\r"; flush stdout; begin match res with | SAT.Sat _ -> let t3 = Sys.time () -. t2 in Format.printf "Sat (%.3f/%.3f)@." t2 t3; | SAT.Unsat _ -> if check then ( match in_memory_proof with | None -> Error.errorf "Cannot validate proof, no in-memory proof provided" | Some proof -> let ok = check_proof proof in if not ok then ( Error.errorf "Proof validation failed" ); ); let t3 = Sys.time () -. t2 in Format.printf "Unsat (%.3f/%.3f)@." t2 t3; end; Ok ()