(**************************************************************************) (* *) (* Cubicle *) (* Combining model checking algorithms and SMT solvers *) (* *) (* Sylvain Conchon and Alain Mebsout *) (* Universite Paris-Sud 11 *) (* *) (* Copyright 2011. This file is distributed under the terms of the *) (* Apache Software License version 2.0 *) (* *) (**************************************************************************) open Printf module type S = Solver_types_intf.S module Make (F : Formula_intf.S)(Th : Theory_intf.S) = struct type formula = F.t type proof = Th.proof type var = { vid : int; pa : atom; na : atom; mutable weight : float; mutable seen : bool; mutable level : int; mutable reason: reason; mutable vpremise : premise} and atom = { var : var; lit : formula; neg : atom; mutable watched : clause Vec.t; mutable is_true : bool; aid : int } and clause = { name : string; tag : int option; atoms : atom Vec.t ; mutable activity : float; mutable removed : bool; learnt : bool; cpremise : premise } and reason = clause option and premise = | History of clause list | Lemma of proof let dummy_lit = F.dummy let rec dummy_var = { vid = -101; pa = dummy_atom; na = dummy_atom; level = -1; reason = None; weight = -1.; seen = false; vpremise = History [] } and dummy_atom = { var = dummy_var; lit = dummy_lit; watched = Obj.magic 0; (* should be [Vec.make_empty dummy_clause] but we have to break the cycle *) neg = dummy_atom; is_true = false; aid = -102 } let dummy_clause = { name = ""; tag = None; atoms = Vec.make_empty dummy_atom; activity = -1.; removed = false; learnt = false; cpremise = History [] } let () = dummy_atom.watched <- Vec.make_empty dummy_clause module MA = Map.Make(F) let normal_form = F.norm let ma = ref MA.empty let vars = Vec.make 107 dummy_var let nb_vars () = Vec.size vars let get_var i = Vec.get vars i let iter_vars f = Vec.iter f vars let cpt_mk_var = ref 0 let make_var = fun lit -> let lit, negated = normal_form lit in try MA.find lit !ma, negated with Not_found -> let cpt_fois_2 = !cpt_mk_var lsl 1 in let rec var = { vid = !cpt_mk_var; pa = pa; na = na; level = -1; reason = None; weight = 0.; seen = false; vpremise = History []; } and pa = { var = var; lit = lit; watched = Vec.make 10 dummy_clause; neg = na; is_true = false; aid = cpt_fois_2 (* aid = vid*2 *) } and na = { var = var; lit = F.neg lit; watched = Vec.make 10 dummy_clause; neg = pa; is_true = false; aid = cpt_fois_2 + 1 (* aid = vid*2+1 *) } in ma := MA.add lit var !ma; incr cpt_mk_var; Vec.push vars var; assert (Vec.get vars var.vid == var && !cpt_mk_var = Vec.size vars); var, negated let add_atom lit = let var, negated = make_var lit in if negated then var.na else var.pa let make_clause ?tag name ali sz_ali is_learnt premise = let atoms = Vec.from_list ali sz_ali dummy_atom in { name = name; tag = tag; atoms = atoms; removed = false; learnt = is_learnt; activity = 0.; cpremise = premise} let empty_clause = make_clause "Empty" [] 0 false (History []) let fresh_lname = let cpt = ref 0 in fun () -> incr cpt; "L" ^ (string_of_int !cpt) let fresh_dname = let cpt = ref 0 in fun () -> incr cpt; "D" ^ (string_of_int !cpt) let fresh_name = let cpt = ref 0 in fun () -> incr cpt; "C" ^ (string_of_int !cpt) let clear () = cpt_mk_var := 0; ma := MA.empty (* Pretty printing for atoms and clauses *) let print_atom fmt a = F.print fmt a.lit let print_atoms fmt v = print_atom fmt (Vec.get v 0); if (Vec.size v) > 1 then begin for i = 1 to (Vec.size v) - 1 do Format.fprintf fmt " ∨ %a" print_atom (Vec.get v i) done end let print_clause fmt c = Format.fprintf fmt "%s : %a" c.name print_atoms c.atoms (* Complete debug printing *) let sign a = if a==a.var.pa then "" else "-" let level a = match a.var.level, a.var.reason with | n, _ when n < 0 -> assert false | 0, Some c -> sprintf "->0/%s" c.name | 0, None -> "@0" | n, Some c -> sprintf "->%d/%s" n c.name | n, None -> sprintf "@@%d" n let value a = if a.is_true then sprintf "[T%s]" (level a) else if a.neg.is_true then sprintf "[F%s]" (level a) else "" let pp_premise b = function | History v -> List.iter (fun {name=name} -> bprintf b "%s," name) v | Lemma _ -> bprintf b "th_lemma" let pp_atom b a = bprintf b "%s%d%s [lit:%s] vpremise={{%a}}" (sign a) (a.var.vid+1) (value a) (Log.on_fmt F.print a.lit) pp_premise a.var.vpremise let pp_atoms_vec b vec = for i = 0 to Vec.size vec - 1 do bprintf b "%a ; " pp_atom (Vec.get vec i) done let pp_clause b {name=name; atoms=arr; cpremise=cp; learnt=learnt} = bprintf b "%s%s{ %a} cpremise={{%a}}" name (if learnt then "!" else ":") pp_atoms_vec arr pp_premise cp end