(* Reference: http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *) open Sidekick_core open Sidekick_cc module Intf = Intf include Intf module SI = SMT.Solver_internal module Tag = struct type t = Lit of Lit.t | CC_eq of E_node.t * E_node.t | By_def let pp out = function | Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l | CC_eq (n1, n2) -> Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" E_node.pp n1 E_node.pp n2 | By_def -> Fmt.string out "by-def" let to_lits si = function | Lit l -> [ l ] | CC_eq (n1, n2) -> let r = CC.explain_eq (SI.cc si) n1 n2 in (* FIXME assert (not (SI.CC.Resolved_expl.is_semantic r)); *) r.lits | By_def -> [] end module SimpVar : Linear_expr.VAR with type t = Term.t and type lit = Tag.t = struct type t = Term.t let pp = Term.pp let compare = Term.compare type lit = Tag.t let pp_lit = Tag.pp let not_lit = function | Tag.Lit l -> Some (Tag.Lit (Lit.neg l)) | _ -> None end module Make (A : ARG) = (* : S with module A = A *) struct module LE_ = Linear_expr.Make (A.Q) (SimpVar) module LE = LE_.Expr module SimpSolver = Sidekick_simplex.Make (struct module Z = A.Z module Q = A.Q module Var = SimpVar let mk_lit _ _ _ = assert false end) module Subst = SimpSolver.Subst module Comb_map = CCMap.Make (LE_.Comb) (* turn the term into a linear expression. Apply [f] on leaves. *) let rec as_linexp (t : Term.t) : LE.t = let open LE.Infix in match A.view_as_lra t with | LRA_other _ -> LE.monomial1 t | LRA_pred _ -> Error.errorf "type error: in linexp, LRA predicate %a" Term.pp t | LRA_op (op, t1, t2) -> let t1 = as_linexp t1 in let t2 = as_linexp t2 in (match op with | Plus -> t1 + t2 | Minus -> t1 - t2) | LRA_mult (n, x) -> let t = as_linexp x in LE.(n * t) | LRA_const q -> LE.of_const q (* monoid to track linear expressions in congruence classes, to clash on merge *) module Monoid_exprs = struct let name = "lra.const" type state = unit let create _ = () type single = { le: LE.t; n: E_node.t } type t = single list let pp_single out { le = _; n } = E_node.pp out n let pp out self = match self with | [] -> () | [ x ] -> pp_single out x | _ -> Fmt.fprintf out "(@[exprs@ %a@])" (Util.pp_list pp_single) self let of_term _cc () n t = match A.view_as_lra t with | LRA_const _ | LRA_op _ | LRA_mult _ -> let le = as_linexp t in Some [ { n; le } ], [] | LRA_other _ | LRA_pred _ -> None, [] exception Confl of Expl.t (* merge lists. If two linear expressions equal up to a constant are merged, conflict. *) let merge _cc () n1 l1 n2 l2 expl_12 : _ result = try let i = Iter.(product (of_list l1) (of_list l2)) in i (fun (s1, s2) -> let le = LE.(s1.le - s2.le) in if LE.is_const le && not (LE.is_zero le) then ( (* conflict: [le+c = le + d] is impossible *) let expl = let open Expl in mk_list [ mk_merge s1.n n1; mk_merge s2.n n2; expl_12 ] in raise (Confl expl) )); Ok (List.rev_append l1 l2, []) with Confl expl -> Error (CC.Handler_action.Conflict expl) end module ST_exprs = Sidekick_cc.Plugin.Make (Monoid_exprs) type state = { tst: Term.store; proof: Proof.Tracer.t; gensym: Gensym.t; in_model: unit Term.Tbl.t; (* terms to add to model *) encoded_eqs: unit Term.Tbl.t; (** [a=b] gets clause [a = b <=> (a >= b /\ a <= b)] *) encoded_lits: Term.t Term.Tbl.t; (** [t => lit for t], using gensym *) simp_preds: (Term.t * S_op.t * A.Q.t) Term.Tbl.t; (** term -> its simplex meaning *) simp_defined: (Term.t * LE.t) Term.Tbl.t; (** (rational) terms that are equal to a linexp *) st_exprs: ST_exprs.t; mutable encoded_le: Term.t Comb_map.t; (** [le] -> var encoding [le] *) simplex: SimpSolver.t; mutable last_res: SimpSolver.result option; n_propagate: int Stat.counter; n_conflict: int Stat.counter; } let create (si : SI.t) : state = let stat = SI.stats si in let proof = (SI.tracer si :> Proof.Tracer.t) in let tst = SI.tst si in { tst; proof; in_model = Term.Tbl.create 8; st_exprs = ST_exprs.create_and_setup (SI.cc si); gensym = Gensym.create tst; simp_preds = Term.Tbl.create 32; simp_defined = Term.Tbl.create 16; encoded_eqs = Term.Tbl.create 8; encoded_lits = Term.Tbl.create 8; encoded_le = Comb_map.empty; simplex = SimpSolver.create ~stat (); last_res = None; n_propagate = Stat.mk_int stat "th.lra.propagate"; n_conflict = Stat.mk_int stat "th.lra.conflicts"; } let[@inline] reset_res_ (self : state) : unit = self.last_res <- None let[@inline] n_levels self : int = ST_exprs.n_levels self.st_exprs let push_level self = ST_exprs.push_level self.st_exprs; SimpSolver.push_level self.simplex; () let pop_levels self n = reset_res_ self; ST_exprs.pop_levels self.st_exprs n; SimpSolver.pop_levels self.simplex n; () let fresh_term self ~pre ty = Gensym.fresh_term self.gensym ~pre ty let fresh_lit (self : state) ~mk_lit ~pre : Lit.t = let t = fresh_term ~pre self (Term.bool self.tst) in mk_lit t let pp_pred_def out (p, l1, l2) : unit = Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" Predicate.pp p LE.pp l1 LE.pp l2 let[@inline] t_const self n : Term.t = A.mk_lra self.tst (LRA_const n) let[@inline] t_zero self : Term.t = t_const self A.Q.zero let[@inline] is_const_ t = match A.view_as_lra t with | LRA_const _ -> true | _ -> false let[@inline] as_const_ t = match A.view_as_lra t with | LRA_const n -> Some n | _ -> None let[@inline] is_zero t = match A.view_as_lra t with | LRA_const n -> A.Q.(n = zero) | _ -> false let t_of_comb (self : state) (comb : LE_.Comb.t) ~(init : Term.t) : Term.t = let[@inline] ( + ) a b = A.mk_lra self.tst (LRA_op (Plus, a, b)) in let[@inline] ( * ) a b = A.mk_lra self.tst (LRA_mult (a, b)) in let cur = ref init in LE_.Comb.iter (fun t c -> let tc = if A.Q.(c = of_int 1) then t else c * t in cur := if is_zero !cur then tc else !cur + tc) comb; !cur (* encode back into a term *) let t_of_linexp (self : state) (le : LE.t) : Term.t = let comb = LE.comb le in let const = LE.const le in t_of_comb self comb ~init:(A.mk_lra self.tst (LRA_const const)) (* return a variable that is equal to [le_comb] in the simplex. *) let var_encoding_comb ~pre self (le_comb : LE_.Comb.t) : Term.t = assert (not (LE_.Comb.is_empty le_comb)); match LE_.Comb.as_singleton le_comb with | Some (c, x) when A.Q.(c = one) -> x (* trivial linexp *) | _ -> (match Comb_map.find le_comb self.encoded_le with | x -> x (* already encoded that *) | exception Not_found -> (* new variable to represent [le_comb] *) let proxy = fresh_term self ~pre (A.ty_real self.tst) in (* TODO: define proxy *) self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le; Log.debugf 50 (fun k -> k "(@[lra.encode-linexp@ `@[%a@]`@ :into-var %a@])" LE_.Comb.pp le_comb Term.pp proxy); LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb; SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb); proxy) let add_clause_lra_ ?using (module PA : SI.PREPROCESS_ACTS) lits = let pr = Proof.Tracer.add_step PA.proof_tracer @@ fun () -> Proof_rules.lemma_lra lits in let pr = match using with | None -> pr | Some using -> Proof.Tracer.add_step PA.proof_tracer @@ fun () -> Proof.Core_rules.lemma_rw_clause pr ~res:lits ~using in PA.add_clause lits pr let s_op_of_pred pred : S_op.t = match pred with | Eq | Neq -> assert false (* unreachable *) | Leq -> S_op.Leq | Lt -> S_op.Lt | Geq -> S_op.Geq | Gt -> S_op.Gt (* turn a linear expression into a single constant and a coeff. This might define a side variable in the simplex. *) let le_comb_to_singleton_ (self : state) (le_comb : LE_.Comb.t) : Term.t * A.Q.t = match LE_.Comb.as_singleton le_comb with | Some (coeff, v) -> v, coeff | None -> (* non trivial linexp, give it a fresh name in the simplex *) (match Comb_map.get le_comb self.encoded_le with | Some x -> x, A.Q.one (* already encoded that *) | None -> let proxy = fresh_term self ~pre:"_le_comb" (A.ty_real self.tst) in self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le; LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb; SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb); Log.debugf 50 (fun k -> k "(@[lra.encode-linexp.to-term@ `@[%a@]`@ :new-t %a@])" LE_.Comb.pp le_comb Term.pp proxy); proxy, A.Q.one) (* preprocess linear expressions away *) let preproc_lra (self : state) _preproc ~is_sub:_ ~recurse (module PA : SI.PREPROCESS_ACTS) (t : Term.t) : Term.t option = Log.debugf 50 (fun k -> k "(@[lra.preprocess@ %a@])" Term.pp t); let tst = self.tst in (* tell the CC this term exists *) let declare_term_to_cc ~sub:_ t = Log.debugf 50 (fun k -> k "(@[lra.declare-term-to-cc@ %a@])" Term.pp t); ignore (CC.add_term (SMT.Preprocess.cc _preproc) t : E_node.t) in match A.view_as_lra t with | LRA_pred (((Eq | Neq) as pred), t1, t2) when is_const_ t1 && is_const_ t2 -> (* comparison of constants: can decide right now *) (match A.view_as_lra t1, A.view_as_lra t2 with | LRA_const n1, LRA_const n2 -> let is_eq = pred = Eq in let t_is_true = is_eq = A.Q.equal n1 n2 in let lit = PA.mk_lit ~sign:t_is_true t in add_clause_lra_ (module PA) [ lit ]; None | _ -> assert false) | LRA_pred ((Eq | Neq), t1, t2) -> (* Equality: just punt to [(t1 = t2) <=> (t1 <= t2 /\ t1 >= t2)]. We use [t1=t2] rather than [box (t1=t2)] because the congruence closure must still have access to the equality. *) let _, t = Term.abs self.tst t in if not (Term.Tbl.mem self.encoded_eqs t) then ( let u1 = recurse @@ A.mk_lra tst (LRA_pred (Leq, t1, t2)) in let u2 = recurse @@ A.mk_lra tst (LRA_pred (Geq, t1, t2)) in Term.Tbl.add self.encoded_eqs t (); (* encode [t <=> (u1 /\ u2)] *) let lit_t = PA.mk_lit t in let lit_u1 = PA.mk_lit u1 in let lit_u2 = PA.mk_lit u2 in add_clause_lra_ (module PA) [ Lit.neg lit_t; lit_u1 ]; add_clause_lra_ (module PA) [ Lit.neg lit_t; lit_u2 ]; add_clause_lra_ (module PA) [ Lit.neg lit_u1; Lit.neg lit_u2; lit_t ] ); None | LRA_pred _ when Term.Tbl.mem self.encoded_lits t -> (* already encoded *) let u = Term.Tbl.find self.encoded_lits t in Some u | LRA_pred (pred, t1, t2) -> let box_t = Box.box self.tst t in let l1 = as_linexp t1 in let l2 = as_linexp t2 in let le = LE.(l1 - l2) |> LE.map ~f:recurse in let le_comb, le_const = LE.comb le, LE.const le in let le_const = A.Q.neg le_const in let op = s_op_of_pred pred in (* now we have [le_comb op le_const] *) (* obtain a single variable for the linear combination *) let v, c_v = le_comb_to_singleton_ self le_comb in declare_term_to_cc ~sub:false v; LE_.Comb.iter (fun v _ -> declare_term_to_cc ~sub:true v) le_comb; (* turn into simplex constraint. For example, [c . v <= const] becomes a direct simplex constraint [v <= const/c] (beware the sign) *) (* make sure to swap sides if multiplying with a negative coeff *) let q = A.Q.(le_const / c_v) in let op = if A.Q.(c_v < zero) then S_op.neg_sign op else op in let lit = PA.mk_lit ~sign:true box_t in let constr = SimpSolver.Constraint.mk v op q in SimpSolver.declare_bound self.simplex constr (Tag.Lit lit); Term.Tbl.add self.simp_preds box_t (v, op, q); Term.Tbl.add self.encoded_lits box_t box_t; Log.debugf 50 (fun k -> k "(@[lra.preprocess.pred@ :t %a@ :to-constr %a@])" Term.pp t SimpSolver.Constraint.pp constr); Some box_t | LRA_op _ | LRA_mult _ -> (* define term *) (match Term.Tbl.find_opt self.simp_defined t with | Some (t, _le) -> Some t | None -> let box_t = Box.box self.tst t in (* we define these terms so their value in the model make sense *) let le = as_linexp t |> LE.map ~f:recurse in Term.Tbl.add self.simp_defined t (box_t, le); Some box_t) | LRA_const _n -> None | LRA_other _ -> None let find_foreign (acts : SMT.Find_foreign.actions) ~is_sub (t : Term.t) : unit = if A.has_ty_real t && is_sub then ( let (module FA : SMT.Find_foreign.ACTIONS) = acts in FA.declare_need_th_combination t ) let simplify (self : state) (_recurse : _) (t : Term.t) : (Term.t * Proof.Step.id Iter.t) option = let proof_eq t u = Proof.Tracer.add_step self.proof @@ fun () -> Proof_rules.lemma_lra [ Lit.atom self.tst (Term.eq self.tst t u) ] in let proof_bool t ~sign:b = let lit = Lit.atom ~sign:b self.tst t in Proof.Tracer.add_step self.proof @@ fun () -> Proof_rules.lemma_lra [ lit ] in match A.view_as_lra t with | LRA_op _ | LRA_mult _ -> let le = as_linexp t in if LE.is_const le then ( let c = LE.const le in let u = A.mk_lra self.tst (LRA_const c) in let pr = proof_eq t u in Some (u, Iter.return pr) ) else ( let u = t_of_linexp self le in if t != u then ( let pr = proof_eq t u in Some (u, Iter.return pr) ) else None ) | LRA_pred ((Eq | Neq), _, _) -> (* never change equalities, it can affect theory combination *) None | LRA_pred (pred, l1, l2) -> let le = LE.(as_linexp l1 - as_linexp l2) in if LE.is_const le then ( let c = LE.const le in let is_true = match pred with | Leq -> A.Q.(c <= zero) | Geq -> A.Q.(c >= zero) | Lt -> A.Q.(c < zero) | Gt -> A.Q.(c > zero) | Eq -> A.Q.(c = zero) | Neq -> A.Q.(c <> zero) in let u = Term.bool_val self.tst is_true in let pr = proof_bool t ~sign:is_true in Some (u, Iter.return pr) ) else ( (* le <= const *) let u = A.mk_lra self.tst (LRA_pred ( pred, t_of_comb self (LE.comb le) ~init:(t_zero self), t_const self (A.Q.neg @@ LE.const le) )) in if t != u then ( let pr = proof_eq t u in Some (u, Iter.return pr) ) else None ) | _ -> None (* raise conflict from certificate *) let fail_with_cert (self : state) si acts cert : 'a = Profile.with1 "lra.simplex.check-cert" SimpSolver._check_cert cert; let confl = SimpSolver.Unsat_cert.lits cert |> CCList.flat_map (Tag.to_lits si) |> List.rev_map Lit.neg in let pr () = Proof_rules.lemma_lra confl in Stat.incr self.n_conflict; SI.raise_conflict si acts confl pr let on_propagate_ self si acts lit ~reason = match lit with | Tag.Lit lit -> (* TODO: more detailed proof certificate *) Stat.incr self.n_propagate; SI.propagate si acts lit ~reason:(fun () -> let lits = CCList.flat_map (Tag.to_lits si) reason in let pr () = Proof_rules.lemma_lra (lit :: lits) in CCList.flat_map (Tag.to_lits si) reason, pr) | _ -> () (** Check satisfiability of simplex, and sets [self.last_res] *) let check_simplex_ self si acts : SimpSolver.Subst.t = Log.debugf 5 (fun k -> k "(@[lra.check-simplex@ :n-vars %d :n-rows %d@])" (SimpSolver.n_vars self.simplex) (SimpSolver.n_rows self.simplex)); let res = Profile.with_ "lra.simplex.solve" @@ fun () -> SimpSolver.check self.simplex ~on_propagate:(on_propagate_ self si acts) in Log.debug 5 "(lra.check-simplex.done)"; self.last_res <- Some res; match res with | SimpSolver.Sat m -> m | SimpSolver.Unsat cert -> Log.debugf 10 (fun k -> k "(@[lra.check.unsat@ :cert %a@])" SimpSolver.Unsat_cert.pp cert); fail_with_cert self si acts cert (* TODO: trivial propagations *) let add_local_eq_t (self : state) si acts t1 t2 ~tag : unit = Log.debugf 20 (fun k -> k "(@[lra.add-local-eq@ %a@ %a@])" Term.pp t1 Term.pp t2); reset_res_ self; let t1, t2 = if Term.compare t1 t2 > 0 then t2, t1 else t1, t2 in let le = LE.(as_linexp t1 - as_linexp t2) in let le_comb, le_const = LE.comb le, LE.const le in let le_const = A.Q.neg le_const in if LE_.Comb.is_empty le_comb then ( if A.Q.(le_const <> zero) then ( (* [c=0] when [c] is not 0 *) let lit = Lit.atom ~sign:false self.tst @@ Term.eq self.tst t1 t2 in let pr () = Proof_rules.lemma_lra [ lit ] in SI.add_clause_permanent si acts [ lit ] pr ) ) else ( let v = var_encoding_comb ~pre:"le_local_eq" self le_comb in try let c1 = SimpSolver.Constraint.geq v le_const in SimpSolver.add_constraint self.simplex c1 tag ~on_propagate:(on_propagate_ self si acts); let c2 = SimpSolver.Constraint.leq v le_const in SimpSolver.add_constraint self.simplex c2 tag ~on_propagate:(on_propagate_ self si acts) with SimpSolver.E_unsat cert -> fail_with_cert self si acts cert ) let add_local_eq (self : state) si acts n1 n2 : unit = let t1 = E_node.term n1 in let t2 = E_node.term n2 in add_local_eq_t self si acts t1 t2 ~tag:(Tag.CC_eq (n1, n2)) (* evaluate a term directly, as a variable *) let eval_in_subst_ subst t = match A.view_as_lra t with | LRA_const n -> n | _ -> Subst.eval subst t |> Option.value ~default:A.Q.zero (* evaluate a linear expression *) let eval_le_in_subst_ subst (le : LE.t) = LE.eval (eval_in_subst_ subst) le (* FIXME: rework into model creation let do_th_combination (self : state) _si _acts : _ Iter.t = Log.debug 1 "(lra.do-th-combinations)"; let model = match self.last_res with | Some (SimpSolver.Sat m) -> m | _ -> assert false in let vals = Subst.to_iter model |> Term.Tbl.of_iter in (* also include terms that occur under function symbols, if they're not in the model already *) Term.Tbl.iter (fun t () -> if not (Term.Tbl.mem vals t) then ( let v = eval_in_subst_ model t in Term.Tbl.add vals t v )) self.needs_th_combination; (* also consider subterms that are linear expressions, and evaluate them using the value of each variable in that linear expression. For example a term [a + 2b] is evaluated as [eval(a) + 2 × eval(b)]. *) Term.Tbl.iter (fun t le -> if not (Term.Tbl.mem vals t) then ( let v = eval_le_in_subst_ model le in Term.Tbl.add vals t v )) self.simp_defined; (* return whole model *) Term.Tbl.to_iter vals |> Iter.map (fun (t, v) -> t, t_const self v) *) let add_trail_lit_ ~changed self si acts (lit : Lit.t) : unit = let sign = Lit.sign lit in let lit_t = Lit.term lit in match Term.Tbl.get self.simp_preds lit_t, A.view_as_lra lit_t with | Some (v, op, q), _ -> Log.debugf 50 (fun k -> k "(@[lra.partial-check.add@ :lit %a@ :lit-t %a@])" Lit.pp lit Term.pp lit_t); (* need to account for the literal's sign *) let op = if sign then op else S_op.not_ op in (* assert new constraint to Simplex *) let constr = SimpSolver.Constraint.mk v op q in Log.debugf 10 (fun k -> k "(@[lra.partial-check.assert@ %a@])" SimpSolver.Constraint.pp constr); changed := true; (try SimpSolver.add_var self.simplex v; SimpSolver.add_constraint self.simplex constr (Tag.Lit lit) ~on_propagate:(on_propagate_ self si acts) with SimpSolver.E_unsat cert -> Log.debugf 10 (fun k -> k "(@[lra.partial-check.unsat@ :cert %a@])" SimpSolver.Unsat_cert.pp cert); fail_with_cert self si acts cert) | None, LRA_pred (Eq, t1, t2) when sign -> add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit) | None, LRA_pred (Neq, t1, t2) when not sign -> add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit) | None, _ -> () (* partial checks is where we add literals from the trail to the simplex. *) let partial_check_ self si acts trail : unit = Profile.with_ "lra.partial-check" @@ fun () -> reset_res_ self; let changed = ref false in Iter.iter (add_trail_lit_ self si acts ~changed) trail; (* incremental check *) if !changed then ignore (check_simplex_ self si acts : SimpSolver.Subst.t); () let final_check_ (self : state) si (acts : SI.theory_actions) (trail : _ Iter.t) : unit = Log.debug 5 "(th-lra.final-check)"; Profile.with_ "lra.final-check" @@ fun () -> reset_res_ self; let changed = ref false in Iter.iter (add_trail_lit_ ~changed self si acts) trail; ST_exprs.iter_all self.st_exprs (fun (_, l) -> Iter.diagonal_l l (fun (s1, s2) -> add_local_eq self si acts s1.n s2.n)); (* TODO: jiggle model to reduce the number of variables that have the same value *) let model = check_simplex_ self si acts in Log.debugf 20 (fun k -> k "(@[lra.model@ %a@])" SimpSolver.Subst.pp model); Log.debug 5 "(lra: solver returns SAT)"; () (* help generating model *) let model_ask_ (self : state) _si _model (t : Term.t) : _ option = let res = match self.last_res with | Some (SimpSolver.Sat m) -> Log.debugf 50 (fun k -> k "(@[lra.model-ask@ %a@])" Term.pp t); (match A.view_as_lra t with | LRA_const n -> Some n (* always eval constants to themselves *) | _ -> SimpSolver.V_map.get t m) |> Option.map (fun t -> t_const self t, []) | _ -> None in match res with | Some _ -> res | None when A.has_ty_real t -> (* last resort: return 0 *) (* NOTE: this should go away maybe? no term should escape the LRA model… *) Log.debugf 0 (fun k -> k "MODEL TY REAL DEFAULT %a" Term.pp t); let zero = A.mk_lra self.tst (LRA_const A.Q.zero) in Some (zero, []) | None -> None (* help generating model *) let model_complete_ (self : state) _si ~add : unit = Log.debugf 30 (fun k -> k "(lra.model-complete)"); match self.last_res with | Some (SimpSolver.Sat m) when Term.Tbl.length self.in_model > 0 -> Log.debugf 50 (fun k -> k "(@[lra.in_model@ %a@])" (Util.pp_iter Term.pp) (Term.Tbl.keys self.in_model)); let add_t t () = match SimpSolver.V_map.get t m with | None -> () | Some u -> add t (t_const self u) in Term.Tbl.iter add_t self.in_model | _ -> () let k_state = SMT.Registry.create_key () let create_and_setup ~id:_ si = Log.debug 2 "(th-lra.setup)"; let st = create si in SMT.Registry.set (SI.registry si) k_state st; SI.add_simplifier si (simplify st); SI.on_preprocess si (preproc_lra st); SI.on_find_foreign si find_foreign; SI.on_final_check si (final_check_ st); (* SI.on_partial_check si (partial_check_ st); *) SI.on_model si ~ask:(model_ask_ st) ~complete:(model_complete_ st); SI.on_cc_pre_merge si (fun (_cc, n1, n2, expl) -> match as_const_ (E_node.term n1), as_const_ (E_node.term n2) with | Some q1, Some q2 when A.Q.(q1 <> q2) -> (* classes with incompatible constants *) Log.debugf 30 (fun k -> k "(@[lra.merge-incompatible-consts@ %a@ %a@])" E_node.pp n1 E_node.pp n2); Error (CC.Handler_action.Conflict expl) | _ -> Ok []); st let theory = SMT.Solver.mk_theory ~name:"th-lra" ~create_and_setup ~push_level ~pop_levels () end let theory (module A : ARG) : SMT.theory = let module M = Make (A) in M.theory