(** Core AST *) module Const = Const module H = CCHash type view = | E_type of int | E_var of var | E_bound_var of bvar | E_const of Const.t * t (* ty *) | E_app of t * t | E_lam of string * t * t | E_pi of string * t * t and var = { v_name: string; v_ty: t } and bvar = { bv_idx: int; bv_ty: t } and t = { view: view; (* computed on demand *) mutable ty: t option; mutable id: int; (* contains: [highest DB var | 1:has free vars | 5:ctx uid] *) mutable flags: int; } type term = t (* 5 bits in [t.id] are used to store which store it belongs to, so we have a chance of detecting when the user passes a term to the wrong store *) let store_id_bits = 5 (* mask to access the store id *) let store_id_mask = (1 lsl store_id_bits) - 1 let[@inline] view (e : t) : view = e.view let[@inline] equal (e1 : t) e2 : bool = e1 == e2 let[@inline] hash (e : t) = H.int e.id let[@inline] compare (e1 : t) e2 : int = CCInt.compare e1.id e2.id let[@inline] db_depth e = e.flags lsr (1 + store_id_bits) let[@inline] has_fvars e = (e.flags lsr store_id_bits) land 1 == 1 let[@inline] store_uid e : int = e.flags land store_id_mask let[@inline] is_closed e : bool = db_depth e == 0 let pp_debug_ = ref (fun _ _ -> assert false) let[@inline] ty_exn e : t = match e.ty with | Some x -> x | None -> assert false module Var = struct type t = var let compare a b : int = if equal a.v_ty b.v_ty then String.compare a.v_name b.v_name else compare a.v_ty b.v_ty let[@inline] name v = v.v_name let[@inline] ty self = self.v_ty let[@inline] equal v1 v2 = v1.v_name = v2.v_name && equal v1.v_ty v2.v_ty let[@inline] hash v1 = H.combine3 5 (H.string v1.v_name) (hash v1.v_ty) let[@inline] pp out v1 = Fmt.string out v1.v_name let make v_name v_ty : t = { v_name; v_ty } let makef fmt ty = Fmt.kasprintf (fun s -> make s ty) fmt let pp_with_ty out v = Fmt.fprintf out "(@[%s :@ %a@])" v.v_name !pp_debug_ v.v_ty module AsKey = struct type nonrec t = t let equal = equal let compare = compare let hash = hash end module Map = CCMap.Make (AsKey) module Set = CCSet.Make (AsKey) module Tbl = CCHashtbl.Make (AsKey) end module BVar = struct type t = bvar let equal (v1 : t) v2 = v1.bv_idx = v2.bv_idx && equal v1.bv_ty v2.bv_ty let hash v = H.combine2 (H.int v.bv_idx) (hash v.bv_ty) let pp out v = Fmt.fprintf out "bv[%d]" v.bv_idx let[@inline] ty self = self.bv_ty let make i ty : t = { bv_idx = i; bv_ty = ty } end (* open an application *) let unfold_app (e : t) : t * t list = let[@unroll 1] rec aux acc e = match e.view with | E_app (f, a) -> aux (a :: acc) f | _ -> e, acc in aux [] e (* debug printer *) let expr_pp_with_ ~pp_ids ~max_depth out (e : t) : unit = let rec loop k ~depth names out e = let pp' = loop' k ~depth:(depth + 1) names in (match e.view with | E_type 0 -> Fmt.string out "type" | E_type i -> Fmt.fprintf out "type_%d" i | E_var v -> Fmt.string out v.v_name (* | E_var v -> Fmt.fprintf out "(@[%s : %a@])" v.v_name pp v.v_ty *) | E_bound_var v -> let idx = v.bv_idx in (match CCList.nth_opt names idx with | Some n when n <> "" -> Fmt.string out n | _ -> if idx < k then Fmt.fprintf out "x_%d" (k - idx - 1) else Fmt.fprintf out "%%db_%d" (idx - k)) | E_const (c, _) -> Const.pp out c | (E_app _ | E_lam _) when depth > max_depth -> Fmt.fprintf out "@<1>…/%d" e.id | E_app _ -> let f, args = unfold_app e in Fmt.fprintf out "%a@ %a" pp' f (Util.pp_list pp') args | E_lam ("", _ty, bod) -> Fmt.fprintf out "(@[\\x_%d:@[%a@].@ %a@])" k pp' _ty (loop (k + 1) ~depth:(depth + 1) ("" :: names)) bod | E_lam (n, _ty, bod) -> Fmt.fprintf out "(@[\\%s:@[%a@].@ %a@])" n pp' _ty (loop (k + 1) ~depth:(depth + 1) (n :: names)) bod | E_pi (_, ty, bod) when is_closed bod -> (* actually just an arrow *) Fmt.fprintf out "(@[%a@ -> %a@])" (loop k ~depth:(depth + 1) names) ty (loop (k + 1) ~depth:(depth + 1) ("" :: names)) bod | E_pi ("", _ty, bod) -> Fmt.fprintf out "(@[Pi x_%d:@[%a@].@ %a@])" k pp' _ty (loop (k + 1) ~depth:(depth + 1) ("" :: names)) bod | E_pi (n, _ty, bod) -> Fmt.fprintf out "(@[Pi %s:@[%a@].@ %a@])" n pp' _ty (loop (k + 1) ~depth:(depth + 1) (n :: names)) bod); if pp_ids then Fmt.fprintf out "/%d" e.id and loop' k ~depth names out e = match e.view with | E_type _ | E_var _ | E_bound_var _ | E_const _ -> loop k ~depth names out e (* atomic expr *) | E_app _ | E_lam _ | E_pi _ -> Fmt.fprintf out "(%a)" (loop k ~depth names) e in Fmt.fprintf out "@[%a@]" (loop 0 ~depth:0 []) e let pp_debug = expr_pp_with_ ~pp_ids:false ~max_depth:max_int let pp_debug_with_ids = expr_pp_with_ ~pp_ids:true ~max_depth:max_int let () = pp_debug_ := pp_debug module AsKey = struct type nonrec t = t let equal = equal let compare = compare let hash = hash end module Map = CCMap.Make (AsKey) module Set = CCSet.Make (AsKey) module Tbl = CCHashtbl.Make (AsKey) module Hcons = Hashcons.Make (struct type nonrec t = t let equal a b = match a.view, b.view with | E_type i, E_type j -> i = j | E_const (c1, ty1), E_const (c2, ty2) -> Const.equal c1 c2 && equal ty1 ty2 | E_var v1, E_var v2 -> Var.equal v1 v2 | E_bound_var v1, E_bound_var v2 -> BVar.equal v1 v2 | E_app (f1, a1), E_app (f2, a2) -> equal f1 f2 && equal a1 a2 | E_lam (_, ty1, bod1), E_lam (_, ty2, bod2) -> equal ty1 ty2 && equal bod1 bod2 | ( ( E_type _ | E_const _ | E_var _ | E_bound_var _ | E_app _ | E_lam _ | E_pi _ ), _ ) -> false let hash e : int = match e.view with | E_type i -> H.combine2 10 (H.int i) | E_const (c, ty) -> H.combine3 20 (Const.hash c) (hash ty) | E_var v -> H.combine2 30 (Var.hash v) | E_bound_var v -> H.combine2 40 (BVar.hash v) | E_app (f, a) -> H.combine3 50 (hash f) (hash a) | E_lam (_, ty, bod) -> H.combine3 60 (hash ty) (hash bod) | E_pi (_, ty, bod) -> H.combine3 70 (hash ty) (hash bod) let set_id t id = assert (t.id == -1); t.id <- id end) module Store = struct type t = { (* unique ID for this store *) s_uid: int; s_exprs: Hcons.t } (* TODO: use atomic? CCAtomic? *) let n = ref 0 let create () : t = let s_uid = !n in incr n; { s_uid; s_exprs = Hcons.create ~size:256 () } (* check that [e] belongs in this store *) let[@inline] check_e_uid (self : t) (e : term) = assert (self.s_uid == store_uid e) end type store = Store.t let iter_shallow ~f (e : t) : unit = match e.view with | E_type _ -> () | _ -> (match e.ty with | None -> (* should be computed at build time *) assert false | Some ty -> f false ty); (match e.view with | E_const _ -> () | E_type _ -> assert false | E_var v -> f false v.v_ty | E_bound_var v -> f false v.bv_ty | E_app (hd, a) -> f false hd; f false a | E_lam (_, tyv, bod) | E_pi (_, tyv, bod) -> f false tyv; f true bod) let map_shallow_ ~make ~f (e : t) : t = match view e with | E_type _ | E_const _ -> e | E_var v -> let v_ty = f false v.v_ty in if v_ty == v.v_ty then e else make (E_var { v with v_ty }) | E_bound_var v -> let ty' = f false v.bv_ty in if v.bv_ty == ty' then e else make (E_bound_var { v with bv_ty = ty' }) | E_app (hd, a) -> let hd' = f false hd in let a' = f false a in if a == a' && hd == hd' then e else make (E_app (f false hd, f false a)) | E_lam (n, tyv, bod) -> let tyv' = f false tyv in let bod' = f true bod in if tyv == tyv' && bod == bod' then e else make (E_lam (n, tyv', bod')) | E_pi (n, tyv, bod) -> let tyv' = f false tyv in let bod' = f true bod in if tyv == tyv' && bod == bod' then e else make (E_pi (n, tyv', bod')) (* TODO (* map immediate subterms *) let map_shallow ctx ~f (e : t) : t = match view e with | E_kind | E_type | E_const (_, []) | E_box _ -> e | _ -> let ty' = lazy (match e.e_ty with | (lazy None) -> None | (lazy (Some ty)) -> Some (f false ty)) in (match view e with | E_var v -> let v_ty = f false v.v_ty in if v_ty == v.v_ty then e else make_ ctx (E_var { v with v_ty }) ty' | E_const (c, args) -> let args' = List.map (f false) args in if List.for_all2 equal args args' then e else make_ ctx (E_const (c, args')) ty' | E_bound_var v -> let ty' = f false v.bv_ty in if v.bv_ty == ty' then e else make_ ctx (E_bound_var { v with bv_ty = ty' }) (Lazy.from_val (Some ty')) | E_app (hd, a) -> let hd' = f false hd in let a' = f false a in if a == a' && hd == hd' then e else make_ ctx (E_app (f false hd, f false a)) ty' | E_lam (n, tyv, bod) -> let tyv' = f false tyv in let bod' = f true bod in if tyv == tyv' && bod == bod' then e else make_ ctx (E_lam (n, tyv', bod')) ty' | E_arrow (a, b) -> let a' = f false a in let b' = f false b in if a == a' && b == b' then e else make_ ctx (E_arrow (a', b')) ty' | E_kind | E_type | E_box _ -> assert false) *) exception IsSub let[@inline] is_type_ e = match e.view with | E_type _ -> true | _ -> false let[@inline] is_a_type e = is_type_ e || is_type_ (ty_exn e) let iter_dag ?(seen = Tbl.create 8) ~iter_ty ~f e : unit = let rec loop e = if not (Tbl.mem seen e) then ( Tbl.add seen e (); if iter_ty && not (is_type_ e) then loop (ty_exn e); f e; iter_shallow e ~f:(fun _ u -> loop u) ) in loop e exception E_exit let exists_shallow ~f e : bool = try iter_shallow e ~f:(fun b x -> if f b x then raise_notrace E_exit); false with E_exit -> true let for_all_shallow ~f e : bool = try iter_shallow e ~f:(fun b x -> if not (f b x) then raise_notrace E_exit); true with E_exit -> false let contains e ~sub : bool = try iter_dag ~iter_ty:true e ~f:(fun e' -> if equal e' sub then raise_notrace IsSub); false with IsSub -> true let free_vars_iter e : var Iter.t = fun yield -> iter_dag ~iter_ty:true e ~f:(fun e' -> match view e' with | E_var v -> yield v | _ -> ()) let free_vars ?(init = Var.Set.empty) e : Var.Set.t = let set = ref init in free_vars_iter e (fun v -> set := Var.Set.add v !set); !set module Make_ = struct let compute_db_depth_ e : int = if is_type_ e then 0 else ( let d1 = db_depth @@ ty_exn e in let d2 = match view e with | E_type _ | E_const _ | E_var _ -> 0 | E_bound_var v -> v.bv_idx + 1 | E_app (a, b) -> max (db_depth a) (db_depth b) | E_lam (_, ty, bod) | E_pi (_, ty, bod) -> max (db_depth ty) (max 0 (db_depth bod - 1)) in max d1 d2 ) let compute_has_fvars_ e : bool = if is_type_ e then false else has_fvars (ty_exn e) || match view e with | E_var _ -> true | E_type _ | E_bound_var _ | E_const _ -> false | E_app (a, b) -> has_fvars a || has_fvars b | E_lam (_, ty, bod) | E_pi (_, ty, bod) -> has_fvars ty || has_fvars bod let universe_ (e : t) : int = match e.view with | E_type i -> i | _ -> assert false let[@inline] universe_of_ty_ (e : t) : int = match e.view with | E_type i -> i + 1 | _ -> universe_ (ty_exn e) module T_int_tbl = CCHashtbl.Make (struct type t = term * int let equal (t1, k1) (t2, k2) = equal t1 t2 && k1 == k2 let hash (t, k) = H.combine3 27 (hash t) (H.int k) end) let db_shift_ ~make (e : t) (n : int) = let rec loop e k : t = if is_closed e then e else if is_a_type e then e else ( match view e with | E_bound_var bv -> if bv.bv_idx >= k then make (E_bound_var (BVar.make (bv.bv_idx + n) bv.bv_ty)) else e | _ -> map_shallow_ e ~make ~f:(fun inbind u -> loop u (if inbind then k + 1 else k)) ) in assert (n >= 0); if n = 0 || is_closed e then e else loop e 0 (* replace DB0 in [e] with [u] *) let db_0_replace_ ~make e ~by:u : t = let cache_ = T_int_tbl.create 8 in let rec aux e k : t = if is_a_type e then e else if db_depth e < k then e else ( match view e with | E_const _ -> e | E_bound_var bv when bv.bv_idx = k -> (* replace here *) db_shift_ ~make u k | _ -> (* use the cache *) (try T_int_tbl.find cache_ (e, k) with Not_found -> let r = map_shallow_ e ~make ~f:(fun inb u -> aux u (if inb then k + 1 else k)) in T_int_tbl.add cache_ (e, k) r; r) ) in if is_closed e then e else aux e 0 type subst = { m: t Var.Map.t } [@@unboxed] let subst_ ~make ~recursive e0 (subst : subst) : t = (* cache for types and some terms *) let cache_ = T_int_tbl.create 16 in let rec loop k e = try T_int_tbl.find cache_ (e, k) with Not_found -> let r = loop_uncached_ k e in T_int_tbl.add cache_ (e, k) r; r and loop_uncached_ k (e : t) : t = match view e with | _ when not (has_fvars e) -> e (* nothing to subst in *) | E_var v -> (* first, subst in type *) let v = { v with v_ty = loop k v.v_ty } in (match Var.Map.find v subst.m with | u -> let u = db_shift_ ~make u k in if recursive then loop 0 u else u | exception Not_found -> make (E_var v)) | E_const _ -> e | _ -> map_shallow_ e ~make ~f:(fun inb u -> loop (if inb then k + 1 else k) u) in if Var.Map.is_empty subst.m then e0 else loop 0 e0 let compute_ty_ ~make (view : view) : t = match view with | E_var v -> Var.ty v | E_bound_var v -> BVar.ty v | E_type i -> make (E_type (i + 1)) | E_const (_, ty) -> ty | E_lam (name, ty, bod) -> (* type of [\x:tau. bod] is [pi x:tau. typeof(bod)] *) let ty_bod = ty_exn bod in make (E_pi (name, ty, ty_bod)) | E_app (f, a) -> (* type of [f a], where [a:tau] and [f: Pi x:tau. ty_bod_f], is [ty_bod_f[x := a]] *) let ty_f = ty_exn f in let ty_a = ty_exn a in (match ty_f.view with | E_pi (_, ty_arg_f, ty_bod_f) -> (* check that the expected type matches *) if not (equal ty_arg_f ty_a) then Error.errorf "@[<2>cannot apply %a to %a,@ expected argument type: %a@ actual: \ %a@]" pp_debug f pp_debug a pp_debug ty_arg_f pp_debug ty_a; db_0_replace_ ~make ty_bod_f ~by:a | _ -> Error.errorf "@[<2>cannot apply %a,@ must have Pi type, but actual type is %a@]" pp_debug f pp_debug ty_f) | E_pi (_, ty, bod) -> (* TODO: check the actual triplets for COC *) Fmt.printf "pi %a %a@." pp_debug ty pp_debug bod; let u = max (universe_of_ty_ ty) (universe_of_ty_ bod) + 1 in make (E_type u) (* hashconsing + computing metadata + computing type (for new terms) *) let rec make_ (store : store) view : t = let e = { view; ty = None; id = -1; flags = 0 } in let e2 = Hcons.hashcons store.s_exprs e in if e == e2 then ( (* new term, compute metadata *) assert (store.s_uid land store_id_mask == store.s_uid); (* first, compute type *) if not (is_type_ e) then ( let ty = compute_ty_ ~make:(make_ store) view in e.ty <- Some ty ); let has_fvars = compute_has_fvars_ e in e2.flags <- (compute_db_depth_ e lsl (1 + store_id_bits)) lor (if has_fvars then 1 lsl store_id_bits else 0) lor store.s_uid; Store.check_e_uid store e2 ); e2 let type_of_univ store i : t = make_ store (E_type i) let type_ store : t = type_of_univ store 0 let var store v : t = make_ store (E_var v) let var_str store name ~ty : t = var store (Var.make name ty) let bvar store v : t = make_ store (E_bound_var v) let const store c ~ty : t = make_ store (E_const (c, ty)) let app store f a = make_ store (E_app (f, a)) let app_l store f l = List.fold_left (app store) f l let abs_on_ (store : store) (v : var) (e : t) : t = Store.check_e_uid store v.v_ty; Store.check_e_uid store e; if not (is_closed v.v_ty) then Error.errorf "cannot abstract on variable@ with non closed type %a" pp_debug v.v_ty; let db0 = bvar store (BVar.make 0 v.v_ty) in let body = db_shift_ ~make:(make_ store) e 1 in subst_ ~make:(make_ store) ~recursive:false body { m = Var.Map.singleton v db0 } let lam store v bod : t = let bod' = abs_on_ store v bod in make_ store (E_lam (Var.name v, Var.ty v, bod')) let pi store v bod : t = let bod' = abs_on_ store v bod in make_ store (E_pi (Var.name v, Var.ty v, bod')) let arrow store a b : t = let b' = db_shift_ ~make:(make_ store) b 1 in make_ store (E_pi ("", a, b')) let arrow_l store args ret = List.fold_right (arrow store) args ret (* find a name that doesn't capture a variable of [e] *) let pick_name_ (name0 : string) (e : t) : string = let rec loop i = let name = if i = 0 then name0 else Printf.sprintf "%s%d" name0 i in if free_vars_iter e |> Iter.exists (fun v -> v.v_name = name) then loop (i + 1) else name in loop 0 let open_lambda store e : _ option = match view e with | E_lam (name, ty, bod) -> let name = pick_name_ name bod in let v = Var.make name ty in let bod' = db_0_replace_ bod ~make:(make_ store) ~by:(var store v) in Some (v, bod') | _ -> None let open_lambda_exn store e = match open_lambda store e with | Some tup -> tup | None -> Error.errorf "open-lambda: term is not a lambda:@ %a" pp_debug e end include Make_ let get_ty store e : t = match e.view with | E_type i -> type_of_univ store (i + 1) | _ -> ty_exn e module Subst = struct type t = subst let empty = { m = Var.Map.empty } let is_empty self = Var.Map.is_empty self.m let add v t self = { m = Var.Map.add v t self.m } let pp out (self : t) = if is_empty self then Fmt.string out "(subst)" else ( let pp_pair out (v, t) = Fmt.fprintf out "(@[%a := %a@])" Var.pp v pp_debug t in Fmt.fprintf out "(@[subst@ %a@])" (Util.pp_iter pp_pair) (Var.Map.to_iter self.m) ) let of_list l = { m = Var.Map.of_list l } let of_iter it = { m = Var.Map.of_iter it } let to_iter self = Var.Map.to_iter self.m let apply (store : store) ~recursive (self : t) (e : term) : term = subst_ ~make:(make_ store) ~recursive e self end