(* Copyright 2014 Guillaume Bury *) module Fsat = struct exception Dummy of int (* Until the constant true_ and false_ are not needed anymore, * wa can't simply use sigend integers to represent literals *) type t = int let max_lit = max_int let max_fresh = ref (-1) let max_index = ref 0 let _make i = if i <> 0 && (abs i) < max_lit then begin max_index := max !max_index (abs i); i end else (Format.printf "Warning : %d/%d@." i max_lit; raise (Dummy i)) let dummy = 0 let neg a = - a let norm a = abs a, a < 0 let hash (a:int) = Hashtbl.hash a let equal (a:int) b = a=b let compare (a:int) b = Pervasives.compare a b let _str = Hstring.make "" let label a = _str let add_label _ _ = () let make i = _make (2 * i) let fresh, iter = let create () = incr max_fresh; _make (2 * !max_fresh + 1) in let iter: (t -> unit) -> unit = fun f -> for j = 1 to !max_index do f j done in create, iter let print fmt a = Format.fprintf fmt "%s%s%d" (if a < 0 then "~" else "") (if a mod 2 = 0 then "v" else "f") ((abs a) / 2) end module Tseitin = Tseitin.Make(Fsat) module Tsat = struct (* We don't have anything to do since the SAT Solver already * does propagation and conflict detection *) type formula = Fsat.t type proof = unit type level = unit type slice = { start : int; length : int; get : int -> formula; push : formula -> formula list -> proof -> unit; } type res = | Sat of level | Unsat of formula list * proof let dummy = () let current_level () = () let assume _ = Sat () let backtrack _ = () end module Make(Dummy : sig end) = struct module SatSolver = Solver.Make(Fsat)(Tsat) exception Bad_atom type atom = Fsat.t type clause = SatSolver.St.clause type proof = SatSolver.Proof.proof type res = | Sat | Unsat let _i = ref 0 let new_atom () = try Fsat.fresh () with Fsat.Dummy _ -> raise Bad_atom let make i = try Fsat.make i with Fsat.Dummy _ -> raise Bad_atom let neg = Fsat.neg let hash = Fsat.hash let equal = Fsat.equal let compare = Fsat.compare let iter_atoms = Fsat.iter let solve () = try SatSolver.solve (); Sat with SatSolver.Unsat -> Unsat let assume l = incr _i; try SatSolver.assume l !_i with SatSolver.Unsat -> () let eval = SatSolver.eval let get_proof () = SatSolver.Proof.learn (SatSolver.history ()); match SatSolver.unsat_conflict () with | None -> assert false | Some c -> SatSolver.Proof.prove_unsat c let unsat_core = SatSolver.Proof.unsat_core let print_atom = Fsat.print let print_clause = SatSolver.St.print_clause let print_proof = SatSolver.Proof.print_dot end